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This paper aims at determining non-zero distinct integer solutions to the homogeneous cone given by

2422 z)1k(y)k2k(x  . A few interesting properties between the solutions are presented. 
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INTRODUCTION 

The subject of quadratic Diophantine equations has a rich 

variety of fascinating problems. The homogeneous or non-

homogeneous quadratic equations with three unknowns are 

rich in variety. For an extensive review of sizable literature 

and various problems, one may refer [1-14 ].This paper 

concerns with yet another interesting homogeneous ternary 

quadratic Diophantine equation given by 

2422 z)1k(y)k2k(x   for determining its distinct 

integer solutions. 

 

METHOD OF ANALYSIS 

 The ternary quadratic equation representing homogeneous cone under consideration  is 
24222 z)1k(y)k2k(x   (1)The 

introduction of the linear transformations TXy,T)k2k(Xx 2  (2)in (1)  leads to 

22222 z)1k(T)k2k(X  (3)Assume 22 b)k2k(az   (4) Write 2)1k(  on the R.H.S. of 

(3) as )k2ki1()k2ki1()1k( 222      (5)Substituting (4) and (5) in (3) and employing the 

method of factorization ,the corresponding  values of T,X obtained through equating the rational and irrational parts are as 

follows: 

ba2b)k2k(aT

,ba)k2k(2b)k2k(aX

222

2222




 

In view of (2), it is seen that 

            










2

22222

)1k(ba2y

,b)1k()k2k(a)1k(x
   (6) 

Thus, (4) and (6) represent the integer solutions to (1). 

 

PROPERTIES 

i) yx   is expressed as difference of two squares 

ii) x  is a perfect square when qp2b,qp)k2k(a 222   

iii) z  is a perfect square when qp2b,qp)k2k(a 222   
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iv) The members of the triple )z)1k(,a)1k(,x( 222   form an Arithmetic progression 

v) z is a cubical integer when )B)k2k(A(Bb,)B)k2k(A(Aa 2222   

vi) Each of the following expressions is a nasty number x3)b2z()1k(3,)z)1k(x(3 222   Albeit tacitly ,there are other sets 

of integer solutions to (1)  that are illustrated below: 

 

Set 1: Write (3) as 
22222 XT)k2k(z)1k(      (7) Assume

  
2222 b)k2k(a)1k(X 

  
(8)

 

Using (8) in (7) and applying the method of factorization, define 222 )bk2ka)1k((Tk2kz)1k( 
   

(9) 

Equating the rational and irrational parts in (9) and replacing b by B)1k(  ,the corresponding integer solutions to (1) after some 

algebra are given by 

 
222

2222

22224

B)1k()k2k(a)1k(z

,B)1k()Ba()1k(y

,)aB()1k()k2k(a)1k(x







 

Set 2: 

Rewrite (7) as 1*XT)k2k(z)1k( 22222 
   

(10) Write 1 on the R.H.S. of (10) as 

)k2k1k()k2k1k(1 22 
     

(11) 

Substituting (8) & (11) in (10) and following the procedure as above ,the corresponding integer solutions to (1) are given by 

 

222

222

22222

a)ba()k2k(z

,b)k2k(2ba)1k(2y

,b)k2k(a)1k(b)k2k(x







 

Set 3: 

Write (3) in the form of ratios as 

           0Q,
Q

P

Xz)1k(

T)2k(

Tk

Xz)1k(









    

(12) 

Which is equivalent to  the system of double equations 

 

0zP)1k(TQ)2k(XP

,0zQ)1k(TPkXQ




 

Employing the method of cross-multiplication and using (2) , the corresponding integer  solutions to (1)  are found to be 

22

22

223

PkQ)2k(z

,)QP2Q)2k(Pk()1k(y

,)PkQ()2k()1k(P)1k(kx







 

 

Note:  One may write (3) in the form of ratios as 0Q,
Q

P

Xz)1k(

Tk

T)2k(

Xz)1k(








 

 The repetition of the above process leads to a different set of integer solutions Remark:  In addition to (2), on  introducting  the 

following linear transformations TXy,T)k2k(Xx 2  , different sets of integer solutions to (1) are obtained . 

 

CONCLUSION 

In this paper,an attempt has been made to obtain non-zero 

distinct integer solutions to the considered homogeneous 

cone. To conclude, one may search for the integral solutions 

to the other choices of homogeneous or non-homogeneous 

cones. 
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