International Journal of Mathematics and Computer Research ISSN: 2320-7167

Volume 11 Issue 07 July 2023, Page no. 3565-3570 Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i7.11

Strongly Binary G*-Closed Set in Binary Topological Spaces

A. Gnana Arockiam¹, M. Gilbert Rani², R. Premkumar³

¹ Research Scholar, Department of Mathematics, Madurai Kamaraj University, Madurai District, Tamil Nadu, India ^{2,3} Assistant Professor, Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India.

ARTICLE INFO	ABSTRACT
Published online:	In this paper, we introduce the concept of strongly binary g [*] -closed sets in binary topological
22 July 2023	space and we investigate the group of structure of the set of all strongly binary g [*] -closed sets.
Corresponding Name	
R. Premkumar	
KEYWORDS: binary closed, binary g*-closed set and strongly binary g*-closed set	

I. INTRODUCTION AND PRELIMINARIES

In 1970 Levine [7] gives the concept and properties of generalized closed (briefly g-closed) sets and the complement of g-closed set is said to be g-open set. Njasted [16] introduced and studied the concept of α -sets. Later these sets are called as *a*-open sets in 1983. Mashhours et.al [10] introduced and studied the concept of α -closed sets, α closure of set, α -continuous functions, α -open functions and α -closed functions in topological spaces. Maki et.al [8, 9] introduced and studied generalized α -closed sets and α generalized closed sets. In 2011, S.Nithyanantha Jothi and P.Thangavelu [11] introduced topology between two sets and also studied some of their properties. Topology between two sets is the binary structure from X to Y which is defined to be the ordered pairs (A, B) where A-subseteqX and B-subseteqY. In this paper, we introduce the concept of strongly binary g*-closed sets in binary topological space and we investigate the group of structure of the set of all strongly binary g*-closed sets.

Throughout this paper, (X, Y) denote binary topological spaces (X, Y, \mathcal{M}) .

Let X and Y be any two nonempty sets. A binary topology [11] from X to Y is a binary structure $\mathcal{M} \subseteq \mathbb{P}(X) \times \mathbb{P}(Y)$ that satisfies the axioms namely 1. (ϕ, ϕ) and $(X, Y) \in \mathcal{M}$, 2. $(A_1 \cap A_2, B_1 \cap B_2) \in \mathcal{M}$ whenever $(A_1, B_1) \in \mathcal{M}$ and $(A_2, B_2) \in \mathcal{M}$, and 3. If $\{(A_{\alpha}, B_{\alpha}): \alpha \in \delta\}$ is a family of members of \mathcal{M} , then $(\bigcup_{\alpha \in \delta} A_{\alpha}, \bigcup_{\alpha \in \delta} B_{\alpha}) \in \mathcal{M}$.

If \mathcal{M} is a binary topology from X to Y then the triplet (X, Y, \mathcal{M}) is called a binary topological space and the members of \mathcal{M} are called the binary open subsets of the binary topological space (X, Y, \mathcal{M}) . The elements of $X \times Y$ are called the binary points of the binary topological space (X, Y, \mathcal{M}) . If Y = X then \mathcal{M} is called a binary topology on X in which case we write (X, \mathcal{M}) as a binary topological space.

Definition 1.1 [11] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in \mathbb{P}(X) \times \mathbb{P}(Y)$. We say that $(A, B) \subseteq (C, D)$ if $A \subseteq C$ and $B \subseteq D$.

Definition 1.2 [11] Let (X, Y, \mathcal{M}) be a binary topological space and $A \subseteq X$, $B \subseteq Y$. Then (A, B) is called binary closed in (X, Y, \mathcal{M}) if $(X \setminus A, Y \setminus B) \in \mathcal{M}$.

Proposition 1.3 [11] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \cap \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$ and $(A, B)^{2*} = \cap \{B_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$. Then $((A, B)^{1*}, (A, B)^{2*})$ is binary closed and $(A, B) \subseteq (A_{\alpha}, B_{\alpha})\}$. Then $((A, B)^{1*}, (A, B)^{2*})$ is binary closed and $(A, B) \subseteq ((A, B)^{1*}, (A, B)^{2*})$.

Proposition 1.4 [11] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \bigcup \{A_{\alpha} : (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$ and

 $(A, B)^{2*} = \bigcup \{B_{\alpha}: (A_{\alpha}, B_{\alpha}) \text{ is binary open and} \\ (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}.$

Definition 1.5 [11] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ is called the binary closure of (A, B), denoted by b-cl(A, B) in the binary space (X, Y, \mathcal{M}) where $(A, B) \subseteq (X, Y)$.

Definition 1.6 [11] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ defined in proposition 1.4 is called the binary interior of of (A, B), denoted by b-int(A, B). Here $((A, B)^{1*}, (A, B)^{2*})$ is binary open and $((A, B)^{1*}, (A, B)^{2*}) \subseteq (A, B)$.

Definition 1.7 [11] Let (X, Y, \mathcal{M}) be a binary topological space and let $(x, y) \subseteq (X, Y)$. The binary open set (A, B) is said to be a binary neighbourhood of (x, y) if $x \in A$ and $y \in B$.

Proposition 1.8 [11] Let $(A, B) \subseteq (C, D) \subseteq (X, Y)$ and (X, Y, \mathcal{M}) be a binary topological space. Then, the following statements hold:

1. $b \operatorname{int}(A, B) \subseteq (A, B)$.

- 2. If (A, B) is binary open, then b-int(A, B) = (A, B).
- 3. $b \operatorname{int}(A, B) \subseteq b \operatorname{int}(C, D)$.
- 4. b-int(b-int(A, B)) = b-int(A, B).
- 5. $(A, B) \subseteq b cl(A, B)$.
- If (A, B) is binary closed, then b-cl(A, B) = (A, B).
- 7. $b-cl(A, B) \subseteq b-cl(C, D)$.
- b-cl(b-cl(A, B)) = b-cl(A, B).

Definition 1.9 A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

- 1. a binary semi open set [15] if $(A, B) \subseteq b-cl(b-int(A, B))$.
- a binary pre open set [5] if (A, B) ⊆ b-int(b-cl(A, B)),

3. a binary regular open set [14] if (A, B) = b-int(bcl(A, B)).

Definition 1.10 A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

1. a binary g-closed set [12] if \mathbf{b} -cl(A, B) \subseteq (U,V) whenever (A, B) \subseteq (U,V) and (U,V) is binary open.

2. a binary gs-closed set [17] if $b-scl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

3. a binary sg-closed set [17] if $b-scl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary semi open.

4. a binary gr-closed set [14] if $b-rcl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

5. a binary gsp-closed set [6] if $b-\beta cl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

Definition 1.11 [4] Let (A, B) be a subset of a binary topological space (X, Y). Then (A, B) is called a binary g^* -closed set if b-cl $(A, B) \subseteq (P, Q)$ whenever $(A, B) \subseteq (P, Q)$ and (P, Q) is binary g-open in (X, Y).

Definition 1.12 [2] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called a binary α -open if $(A, B) \subseteq b$ -int(b-cl(b-int(A, B))).

Definition 1.13 [1] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called a binary αg -closed if **b**- $\alpha cl(A, B) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary open.

II. STRONGLY BINARY G*-CLOSED SETS

Definition 2.1 Let (X, Y, \mathcal{M}) be a binary topological space and (A, B) be its subset, then (A, B) is strongly binary g^* closed set if $b-cl(b-int(A, B)) \subseteq (U, V)$ whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary g-open.

Theorem 2.2 Every binary closed set is strongly binary **g***-closed but not conversely.

Proof. The proof is immediate from the definition of binary closed set.

Example 2.3 Let $X = \{1,2\}$, $Y = \{a, b\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{a\}), (\{1\}, \phi), (\{1\}, \{a\}), (\{1\}, \{b\}), (\{1\}, Y), (\{2\}, \{a\}), (X, \{a\}), (X, Y)\}$. Then the set $(\{1\}, \{a\})$ is strongly binary g^* -closed set but not a binary closed in (X, Y).

Theorem 2.4 If a subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is binary g^* -closed then it is strongly binary g^* -closed in (X, Y) but not conversely.

Proof. Suppose (A, B) is binary g^* -closed in (X, Y). Let (G, H) be an binary open set containing (A, B) in (X, Y). Then (G, H) contains b-cl(A, B). Now $(G, H) \supseteq b$ -cl $(A, B) \supseteq b$ -cl(b-int(A, B)). Thus (A, B) is strongly binary g^* -closed in (X, Y).

Example 2.5 Let $X = \{a, b, c\}$, $Y = \{1, 2\}$ and $\mathcal{M} = \{(\phi, \phi), (\{a\}, \{1\}), (\{b\}, \phi), (\{b\}, \{2\}), (\{a, b\}, \{1\}), (\{a, b\}, Y), (X, Y)\}$. Then the set $(\{a\}, \{2\})$ is strongly binary g^* -closed but not binary g^* -closed set.

Theorem 2.6 If (A,B) is subset of a binary topological space (X,Y) is binary open and strongly binary g^* -closed then it is binary closed.

Proof. Suppose a subset (A, B) of (X, Y) is both binary open and strongly binary g^* -closed. Now $(A, B) \supseteq b$ -cl(bint $(A, B)) \supseteq b$ -cl(A, B). Therefore $(A, B) \supseteq b$ -cl(A, B). Since b-cl $(A, B) \supseteq (A, B)$. We have $(A, B) \supseteq b$ -cl(A, B). Thus (A, B) is binary closed in (X, Y).

Corollary 2.7 If (A, B) is both binary open and strongly binary g^* -closed in (X, Y) then it is both binary regular open and binary regular closed in (X, Y).

Proof. As (A, B) is binary open (A, B) = b-int(A, B) = b-int(b-cl(A, B)), since (A, B) is binary closed. Thus (A, B) is binary regular open. Again (A, B) is binary open in (X, Y), b-

"Strongly Binary G*-Closed Set in Binary Topological Spaces"

cl(b-int(A, B)) = b-cl(A, B). As (A, B) is binary closed b-cl(b-int(A, B)) = (A, B). Thus (A, B) is binary regular closed.

Corollary 2.8 If (A, B) is both binary open and strongly binary g*-closed then it is binary rg-closed.

Theorem 2.9 If a subset (A, B) of a binary topological space (X, Y) is both strongly binary g^* -closed and binary semi open then it is binary g^* -closed.

Proof. Suppose (A, B) is both strongly binary g^* -closed and binary semi open in (X, Y). Let (G, H) be an binary open set containing (A, B). As (A, B) is strongly binary g^* -closed, $(G, H) \supseteq b\text{-cl}(b\text{-int}(A, B))$. Now $(G, H) \supseteq b\text{-cl}(A, B)$. Since (A, B) is binary semi open. Thus (A, B) is binary g^* -closed in (X, Y).

Corollary 2.10 If a subset (A, B) of a binary topological space (X, Y) is both strongly binary g^* -closed and binary open then it is binary g^* -closed set.

Proof. As every binary open set is binary semi open by the above theorem the proof follows.

Theorem 2.11 A set (A, B) is strongly binary g^* -closed iff b-cl(b-int(A, B)) - (A, B) contains no non empty binary closed set.

Proof. Necessary part: Suppose that (E,F) is non empty binary closed subset of b-cl(b-int(A, B)). Now $(E,F) \subseteq$ bcl(b-int(A, B)) – (A, B) implies $(E,F) \subseteq$ b-cl(bint(A, B)) \cap (A,B)^e, since b-cl(b-int(A, B)) – (A, B) = bcl(b-int(A, B)) \cap (A,B)^e. Thus $(E,F) \subseteq$ b-cl(b-int(A, B)). Now $(E,F) \subseteq (A,B)^e$ implies $(A,B) \subseteq (A,B)^e$. Here $(E,F)^e$ is binary g-open and (A,B) is strongly binary g*-closed, we have b-cl(b-int(A, B)) \subseteq $(E,F)^e$. Thus $(E,F) \subseteq$ (b-cl(bint(A, B)))^e. Hence $(E,F) \subseteq$ (b-cl(b-int(A, B))) \cap (b-cl(bint(A, B)))^e. Hence $(E,F) \subseteq$ (b-cl(b-int(A, B))) \cap (b-cl(bint(A, B)))^e = (ϕ, ϕ) . Therefore $(E,F) = (\phi, \phi) \Rightarrow$ b-cl(bint(A, B)) – (A, B) contains no non empty binary closed sets.

Sufficient part:Let $(A, B) \subseteq (G, H)$, (G, H) is binary g-open. Suppose that b-cl(b-int(A, B)) is not contained in (G, H)then $(b-cl(b-int(A, B)))^c$ is a non empty binary closed set bcl(b-int(A, B)) - (A, B) which is a contradiction. Therefore b-cl(b-int(A, B)) $\subseteq (G, H)$ and hence (A, B) is strongly binary g*-closed.

Corollary 2.12 A strongly binary g^* -closed set (A, B) is binary regular closed iff b-cl(b-int $(A, B)) \supseteq (A, B)$.

Proof. Assume that (A, B) is binary regular closed. Since b-cl(b-int(A, B)) = (A, B),

b-cl(b-int(A, B)) – (A, B) = (ϕ, ϕ) is binary regular closed and hence binary closed.

Conversely assume that b-cl(b-int(A, B)) - (A, B) is binary closed. By above theorem b-cl(b-int(A, B)) - (A, B)contains no non empty binary closed set. Therefore $b-cl(b-int(A, B)) - (A, B) = (\phi, \phi)$. Thus (A, B) is binary regular closed.

Theorem 2.13 Suppose that $(C, D) \subseteq (A, B) \subseteq (X, Y)$, (C, D) is strongly binary g^* -closed set relative to (A, B) and that both binary open and strongly binary g^* -closed subset of (X, Y) then (C, D) is strongly binary g^* -closed set relative to (X, Y).

Proof. Let $(C, D) \subseteq (G, H)$ and (G, H) be an binary open set in (X, Y). But given that $(C, D) \subseteq (A, B) \subseteq (X, Y)$, therefore $(C, D) \subseteq (A, B)$ and $(C, D) \subseteq (G, H)$. This implies $(C, D) \subseteq (A, B) \cap (G, H)$. Since (C, D) is strongly binary g^* -closed relative to (A, B),

 $b-cl(b-int(C, D)) \subseteq (A, B) \cap (G, H).$

 $\begin{array}{ll} (ie) & (A,B)\cap b\text{-cl}(b\text{-int}(C,D))\subseteq (A,B)\cap (G,H). & \text{This}\\ \\ implies & (A,B)\cap b\text{-cl}(b\text{-int}(C,D)))\subseteq (G,H). & \text{Thus}\\ \\ ((A,B)\cap (b\text{-cl}(b\text{-int}(C,D))))\cup (b\text{-cl}(b\text{-}$

 $int(C, D)))^{c} \subseteq (G, H) \cup (b-cl(b-int(C, D)))^{c}$

implies $(A, B) \cup (b\text{-cl}(b\text{-int}(C, D)))^c \subseteq (G, H) \cup (b\text{-cl}(b\text{-int}((C, D))))^c$. Since (A, B) is strongly binary g^* -closed in (X, Y), we have $(b\text{-cl}(b\text{-int}(A, B))) \subseteq (G, H) \cup (b\text{-cl}(b\text{-int}(C, D)))^c$. Also $(C, D) \subseteq (A, B) \Rightarrow b\text{-cl}(b\text{-int}(C, D)) \subseteq b\text{-cl}(b\text{-int}(A, B))$. Thus $b\text{-cl}(b\text{-int}(C, D)) \subseteq b\text{-cl}(b\text{-int}(C, D)) \subseteq (G, H) \cup (b\text{-cl}(b\text{-int}(C, D))) \subseteq b\text{-cl}(b\text{-int}(C, D)) \subseteq (G, H) \cup (b\text{-cl}(b\text{-int}(C, D)))^c$. Therefore (C, D) is strongly binary g^* -closed set relative to (X, Y).

Corollary 2.14 Let (A, B) be strongly binary g^* -closed and suppose that (E, F) is binary closed then $(A, B) \cap (E, F)$ is strongly binary g^* -closed set.

Proof. To show that $(A, B) \cap (E, F)$ is strongly binary g^* closed, we have to show $b\text{-cl}(b\text{-int}(A, B) \cap (E, F)) \subseteq (G, H)$ whenever $(A, B) \cap (E, F) \subseteq (G, H)$ and (G, H) is binary gopen. $(A, B) \cap (E, F)$ is binary closed in (A, B) and so strongly binary g^* -closed in (C, D). By the above theorem $(A, B) \cap (E, F)$ is strongly binary g^* -closed in (X, Y). Since $(A, B) \cap (E, F) \subseteq (A, B) \subseteq (X, Y)$.

Theorem 2.15 If (A, B) is strongly binary g^* -closed and $(A, B) \subseteq (C, D) \subseteq b$ -cl(b-int(A, B)) then (C, D) is strongly binary g^* -closed.

Proof. Given that $(C, D) \subseteq b\text{-cl}(b\text{-int}(A, B))$ then $b\text{-cl}(b\text{-int}(C, D)) \subseteq b\text{-cl}(b\text{-int}(A, B))$,

 $b \operatorname{cl}(b \operatorname{int}(C, D)) - (C, D) \subseteq b \operatorname{cl}(b \operatorname{int}(A, B)) - (A, B).$

Since $(A, B) \subseteq (C, D)$. As (A, B) is strongly binary g^{*}-closed by the above theorem b-cl(b-int(A, B)) - (A, B) contains no non empty binary closed set, b-cl(b-int(C, D)) - (C, D) contains no empty binary closed set. Again by theorem 2.13, **(C, D)** is strongly binary **g***-closed set.

Theorem 2.16 Let $(A, B) \subseteq (U, V) \subseteq (X, Y)$ and suppose that (A, B) is strongly binary g^* -closed in (X, Y) then (A, B) is strongly binary g^* -closed relative to (U, V).

Proof. Given that $(A, B) \subseteq (U, V) \subseteq (X, Y)$ and (A, B) is strongly binary g^* -closed in (X, Y). To show that (A, B) is strongly binary g^* -closed relative to (U, V), let $(A, B) \subseteq (U, V) \cap (G, H)$, where (G, H) is binary g-open in (X, Y). Since (A, B) is strongly binary g^* -closed in (X, Y), $(A, B) \subseteq (G, H)$ implies b-cl(b-int(A, B)) $\subseteq (G, H)$.

(ie) $(U, V) \cap b\text{-cl}(b\text{-int}(A, B)) \subseteq (U, V) \cap (G, H)$, where $(U, V) \cap b\text{-cl}(b\text{-int}(A, B))$ is binary closure of binary interior of (A, B) in (U, V). Thus (A, B) is strongly binary g^* -closed relative to (U, V).

Theorem 2.17 If a subset (A, B) of a binary topological space (X, Y) is binary gsp-closed then it is strongly binary g*-closed.

Proof. Suppose that (A, B) is binary gsp-closed in (X, Y), let (G, H) be binary open set containing (A, B). Then (G, H) \subseteq bsp-cl(A, B), (A, B) \cup (G, H) \supseteq (A, B) \cup (b-int(bcl(b-int(A, B)))) which implies (G, H) \supseteq b-int(b-cl(bint(A, B))) as (G, H) is binary open. (ie) (G, H) \supseteq b-cl(bint(A, B)) – (A, B) is strongly binary g*-closed set in (X, Y).

Theorem 2.18 Every strongly binary **g***-closed set is an binary **ag**-closed set and hence binary **gs**-closed but not conversely.

Proof. Let (A, B) be a strongly binary g^* -closed set of (X, Y, \mathcal{M}) . By above theorem, (A, B) is binary g-closed and binary αg -closed. Then we know that every binary g-closed set is binary g-closed. By above theorem every strongly binary g^* -closed set is binary g-closed.

Example 2.19 Let $X = \{a, b\}$, $Y = \{1,2\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{2\}), (\{a\}, \{1\}), (\{a\}, Y), (X, \{1\}), (X, Y)\}$. Then the set $(\{a\}, \phi)$ is strongly binary g^* -closed set but not binary αg -closed.

Example 2.20 Let $X = \{a, b\}$, $Y = \{1,2\}$ and $\mathcal{M} = \{(\phi, \phi), (\phi, \{1\}), (\{a\}, \{1\}), (\{b\}, \{1\}), (X, \{1\}), (X, Y)\}$. Then the set (ϕ, Y) is strongly binary g^* -closed set but not binary g^s -closed.

III. MORE ON STRONGLY BINARY G*-OPEN SETS

Definition 3.1 Let (X, Y) be a binary topological space and $(x, y) \in (X, Y)$. A subset (J, K) of (X, Y) is said to be strongly binary g^* -neighbourhood of (x, y) if there exists an strongly binary g^* -open set (G, H) such that $(x, y) \in (G, H) \subset (J, K)$.

The collection of all strongly binary g^* -neighborhoods of $(x, y) \in (J, K)$ is called a strongly binary g^* -neighborhood system at (x, y) and shall be denoted by strongly $bg^*N(x, y)$.

Definition 3.2 Let (X, Y) be a binary topological space and (A, B) be a subset of (X, Y). (A, B) subset (J, K) of (X, Y) is said to be strongly binary g^* -neighborhood of (A, B) if there exists a strongly binary g^* -open set (G, H) such that $(A, B) \in (G, H) \subseteq (J, K)$.

Definition 3.3 Let (X, Y) be a binary topological space and (A, B) be a subset of (X, Y). A point $(x, y) \in (A, B)$ is said to be a strongly binary g^* -interior point of (A, B), if (A, B) is strongly binary $g^*N(x, y)$. The set of all strongly binary g^* -interior points of (A, B) is called a strongly binary g^* -interior points of (A, B) is called a strongly binary g^* -interior of (A, B) and is denoted by SBG*INT(A, B). SBG*INT(A, B) = U {(G, H): (G, H) is strongly binary g^* -open, $(G, H) \subset (A, B)$ }.

Definition 3.4 Let (X, Y) be a binary topological space and (A, B) be a subset of (X, Y). A point $(x, y) \in (A, B)$ is said to be a strongly binary g^* -closure of (A, B). Then $SBG^*CL(A, B) = \bigcap \{(E, F): (A, B) \subset (E, F)in \text{ strongly binary } g^*\text{-closed } BG^*C(X, Y, \mathcal{M})\}.$

Theorem 3.5 A subset (A, B) of a binary topological space is strongly binary g^* -open if it is a strongly binary g^* neighborhood of each points.

Proof. Let (G, H) be subset of a binary topological space be strongly binary g^* -open. Then for every $(x, y) \in (X, Y)$, $(x, y) \in (G, H) \subseteq (G, H)$, and therefore (G, H) is a strongly binary g^* -neighborhood of each of the points.

Theorem 3.6 Let (X, Y) be a binary topological space. If (A, B) is strongly binary g^* -closed subset of (X, Y) and $(x, y) \in SBG^*CL(A, B)$ if and only if for any strongly binary g^* -neighborhood (J, K) of (x, y) in (X, Y), $(J, K) \cap (A, B) \neq (\phi, \phi)$.

Proof. Let us assume that there is a strongly binary g^* -neighborhood (J, K) of the point (x, y) in (X, Y) such that $(J, K) \cap (A, B) = (\phi, \phi)$. There exists a strongly binary g^* -open set (G, H) of (X, Y) such that $(x, y) \in (G, H) \subseteq (J, K)$. Therefore we have $(G, H) \cap (A, B) = (\phi, \phi)$ and so $(x, y) \in (X, Y) - (G, H)$.

Then $SBG^*CL(A, B) \in (X, Y) - (G, H)$ and therefore $(x, y) \notin SBG^*CL(A, B)$, which contradicts the hypothesis that $(x, y) \in SBG^*CL(A, B)$.

Therefore $(J, K) \cap (A, B) \neq (\phi, \phi)$.

Conversely, suppose that $(x, y) \notin SBG^*CL(A, B)$. Then there exists a strongly binary g^* -closed set (G, H) of (X, Y)

"Strongly Binary G*-Closed Set in Binary Topological Spaces"

such that $(A, B) \subseteq (G, H)$ and $(x, y) \notin (G, H)$. Thus $(x, y) \in (X, Y) - (G, H)$ and (X, Y) - (G, H) is strongly binary g^* -open in (X, Y) and hence (X, Y) - (G, H) is strongly binary g^* -open in (X, Y) and hence (X, Y) - (G, H) is a strongly binary g^* -neighborhood of (x, y) in (X, Y). But $(A, B) \cap ((X, Y) - (G, H)) = (\phi, \phi)$ which is a contradiction. Hence $(x, y) \in SBG^*CL(A, B)$.

Theorem 3.7 Let (X, Y) be a binary topological space and $(x, y) \in (X, Y)$. Let strongly $bg^*N(x, y)$ be a collection of all strongly binary g^* -neighborhood of (x, y). Then

1. Strongly $bg^*N(x, y) \neq (\phi, \phi)$ and (x, y) belongs to each member of Strongly $bg^*N(x, y)$.

2. The intersection of the any two members of strongly $bg^*N(x, y)$ is again a member of strongly $bg^*N(x, y)$.

3. If $(J, K) \in \text{Strongly bg}^*N(x, y)$ and $(U, V) \subseteq (J, K)$, then $(U, V) \in \text{Strongly bg}^*N(x, y)$.

4. Each member $(J, K) \in$ Strongly $bg^*N(x, y)$ is a superset of a member $(G, H) \in$ Strongly $bg^*N(x, y)$ where (G, H) is a strongly binary g^* -open set.

Proof. 1. Since (X, Y) is strongly binary g^* -open set containing (p, q), it is a strongly binary g^* -neighborhood of every $(p, q) \in (X, Y)$. Hence there exist at least one strongly binary g^* -neighborhood namely (X, Y) for each $(p, q) \in (X, Y)$ there is strongly $bg^*N(p, q) \neq (\phi, \phi)$. Let $(J, K) \in$ strongly $bg^*N(p, q)$, (J, K) is a strongly binary g^* neighborhood of (p, q), then there exists a strongly binary g^* -open set (G, H) such that $(p, q) \in (G, H) \subseteq (J, K)$, so $(p, q) \in (J, K)$. therefore (p, q) belongs to every number (J, K) strongly $bg^*N(p, q)$.

2. Let $(J, K) \in \text{Strongly } bg^*N(p, q)$ and $(U, V) \in \text{strongly}$ binary $g^*N(p,q)$. There exists strongly binary g^* -open set (G, H) and (E, F) such that $(p,q) \in (G, H) \subseteq (J, K)$ and $(p,q) \in (E, F) \subseteq (U, V)$. Hence $(p,q) \in (G, H) \cap (E, F) \subseteq (U, V) \cap (J, K)$. Note that $(G, H) \cap (E, F)$ is a strongly binary g^* -open set. Therefore it follows that $(J, K) \cap (U, V)$ is a strongly binary g^* neighborhood of (p,q). Hence $(J, K) \cap (U, V) \in \text{strongly}$ $bg^*N(p,q)$.

3. If $(J, K) \in$ strongly $bg^*N(p, q)$ then there is a strongly binary g^* -open set (G, H) such that $(p, q) \in (G, H) \subseteq (J, K)$. Since $(U, V) \subseteq (J, K)$, (U, V) is a strongly binary g^* neighborhood of (p, q). Hence $(U, V) \in$ Strongly $bg^*N(p, q)$.

4. Let $(J, K) \in$ strongly $bg^*N(p, q)$ then there exists a strongly binary g^* -open set (G, H), such that $(p, q) \in (G, H) \subseteq (J, K)$. Since (G, H) is strongly binary g^* -open set and $(p, q) \in (G, H)$, (G, H) is strongly binary g^* -

neighborhood of (p, q). Therefore $(G, H) \in$ Strongly $bg^*N(p, q)$ and also $(G, H) \subseteq (J, K)$.

Theorem 3.8 Let (X, Y) be a binary topological space. If (A, B) is strongly binary g^* -closed subset of (X, Y) and $(x, y) \in SBG^*INT(A, B)$ if and only if for any strongly binary g^* -neighborhood (J, K) of (x, y) in (X, Y), $(J, K) \cap (A, B) \neq (\phi, \phi)$.

Proof. Let us assume that there is strongly binary g^* -neighborhood (J, K) of the point (x, y) in (X, Y) such that (J, K) \cap (A, B) = (ϕ , ϕ). There exists an strongly binary g^* -open set (G, H) of (X, Y) such that (x, y) \in (G, H) \subseteq (J, K). Therefore we have (G, H) \cap (A, B) = (ϕ , ϕ) and so (x, y) \in (X, Y) - (G, H).

Then $SBG^*CL(A, B) \in (X, Y) - (G, H)$ and therefore $(x, y) \notin SBG^*(A, B)$, which is a contradiction to the hypothesis that $(x, y) \in SBG^*CL(A, B)$. Therefore $(J, K) \cap (A, B) \neq (\phi, \phi)$.

Conversely, suppose that $(x, y) \notin SBG^*CL(A, B)$, then there exists a strongly binary g^* -closed set (G, H) of (X, Y) such that $(A, B) \subseteq (G, H)$ and $(x, y) \notin (G, H)$. Thus $(x, y) \in (X, Y) - (G, H)$ and (X, Y) - (G, H) is strongly binary g^* -open in (X, Y) and hence (X, Y) - (G, H) is a strongly binary g^* -neighborhood of (x, y) in (X, Y). But $(A, B) \cap ((X, Y) - (G, H)) = (\phi, \phi)$ which is a contradiction. Hence $(x, y) \in SBG^*CL(A, B)$.

Proposition 3.9 If (A, B) is a subset of (X, Y), then SBG*INT $(A, B) = \bigcup \{(G, H): (G, H) \text{ is strongly binary } g^* \text{-} \text{open}, (G, H) \subset (A, B)\}.$

Proof. Let (A, B) be subset of (X, Y). а $(x, y) \in SBG^*INT(A, B) \Leftrightarrow (x, y)$ is a strongly binary g^* interior point of (A, B), (A, B) is a strongly binary $g^*N(x, y)$ which implies that there exists a strongly binary g^{*}-open set (G, H) $(x, y) \in (G, H) \subset (A, B)$ such that $(x, y) \in U \{(G, H): (G, H) \text{ is strongly binary } g^* \text{-open}, \}$ $(G, H) \subset (A, B)$

Hence $SBG^*INT(A, B) = \bigcup \{(G, H): (G, H) \text{ is strongly binary } g^*\text{-open}, (G, H) \subset (A, B)\}.$

REFERENCES

- D. Abinaya and M. Gilbert Rani, Bianry αgeneralized closed sets in binary topological spaces, Indian Journal of Natural Sciences, 14(77)(2023), 54089-54094.
- Carlos Granados, On binary α-open sets and binary α-ω-open sets in binary topological spaces, South Asian Journal of Mathematics, 11(1)(2021), 1-11.
- M. Gilber Rani and R. Premkumar, Properties of binary β-closed sets in binary topological spaces,

Journal of Education: Rabindra Bharati University, XXIV(1)(XII)(2022), 164-168.

- A. Gnana Arockiam, M. Gilbert Rani and R. Premkumar, Binary Generalized Star Closed Set in Binary Topological Spaces, Indian Journal of Natural Sciences, 13(76)(2023), 52299-52309.
- S.Jayalakshmi and A.Manonmani, Binary regular beta closed sets and Binary regular beta open sets in Binary topological spaces, The International Journal of Analytical and Experimental Modal Analysis, Vol 12(4)(2020), 494-497.
- S.Jayalakshmi and A.Manonmani, Binary Pre Generalized Regular Beta Closed Sets in Binary Topological spaces, International Journal of Mathematics Trends and Technology, 66(7)(2020), 18-23.
- 7. N. Levine, Generalized Closed Sets in Topology, Rent. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- H. Maki, R. Devi, and K. Balachandran, Generalized α-Closed Sets in Topology, Bull. Fukuoka Univ, Ed., Part (III)(42)(1993), 13-21.
- H. Maki, R. Devi, and K. Balachandran, Associate Topologies of Generalized α-Closed Sets and α-Generalized Closed Sets, Mem. Fac. Kochi Univ. Ser. A. Math., (15)(1994), 51-63.
- A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, α-Open Mappings, Acta. Math. Hungar., (41)(1983), 213-218.
- S. Nithyanantha Jothi and P.Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3)(2011), 95-107.
- 12. S. Nithyanantha Jothi and P. Thangavelu, Generalized binary closed sets in binary topological spaces, Ultra Scientist Vol.26(1)(A)(2014), 25-30.
- S. Nithyanantha Jothi and P. Thangavelu, Binary-T_{1/2}-space, Acta Ciencia Indica, XLIM(3)(2015), 241-247.
- S. Nithyanantha Jothi and P. Thangavelu, Generalized binary regular closed sets, IRA-International Journal of Applied Sciences, 4(2)(2016), 259-263.
- 15. S. Nithyanantha Jothi, Binary Semi open sets in Binary topological Spaces, International journal of Mathematical Archieve, 7(9)(2016), 73-76.
- O. Njastad, On Some Classes of Nearly open Sets, Pacific. J. Math., (15)(1965), 961-970.
- C.Santhini and T. Dhivya, New notion of generalised binary closed sets in binary topological space, International Journal of Mathematical Archive-9(10), 2018.