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In this paper, the unsteady MHD Couette flow through a porous medium of a viscous incompressible 

fluid bounded by two parallel porous plates under the influence of thermal radiation and chemical 

reaction is investigated. A uniform suction and injection are applied perpendicular to the plates 

while the fluid motion is subjected to time dependent pressure gradient. The transformed 

conservation equations are solved analytically subject to physically appropriate boundary 

conditions by using perturbation and Eigenfunction expansion techniques. The effects of some non-

dimensional parameters are graphically represented and interpreted. It is observed that primary 

velocity is maximum when pressure gradient is time dependent as compared to when it is 

independent on time. Also, increase in temperature dependent pressure gradient leads to oscillation 

in primary velocity along distance y. 
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1. INTRODUCTION  

The dynamics of fluids through porous channel has been a 

popular area of research regarding to numerous increasing 

applications in chemical, mechanical and material process 

engineering. Examples of such fluid includes clay coating, 

coal, oil slurries, shampoo, paints cosmetic products, grease, 

custard and physiological liquids (blood, bile, and synovial 

fluid). Over the years, considerable interest has been 

observed on the effect of MHD in viscous, incompressible, 

non-Newtonian fluid flow with heat transfer. These interests 

on non-Newtonian fluids are owed to its important 

applications in various branches of science, engineering and 

technology, particularly in chemical and nuclear industries, 

material processing, geophysics and bio-engineering. In view 

of these applications, an extensive range of mathematical 

models have been developed to simulate the diverse 

hydrodynamic behavior of these non-Newtonian fluids. 

However, different non-Newtonian fluid models have been 

presented by researchers and solved using various types of 

analytical and computational schemes. 

Anyanwu et al. [1] studied the radiative effects on unsteady 

MHD Couette flow through a parallel plate with constant 

pressure gradient. Olayiwola [2] investigated the modeling 

and simulation of combustion fronts in porous media. Jana et 

al. [3] examined Couette flow through a porous medium in a 

rotating system. In another related work, Seth et al. [4] 

studied the effects of rotation and magnetic field on unsteady 

Couette flow in a porous channel. Seth et al. [5] studied the 

unsteady hydromagnetic Couette flow within porous plates in 

a rotating system. Recently, Sharma & Yadav [6] considered 

Heat transfer through three dimensional Couette flow 

between a stationary porous plate bounded by porous medium 

and moving porous plates. Sharma et al. [7] investigated the 

steady laminar flow and heat transfer of a non-Newtonian 

fluid through a straight horizontal porous channel in the 

presence of heat source. Olayiwola & Ayeni [8] examined a 

mathematical model and simulation of In-situ combustion in 

porous media. In another related work, the mathematical 

model of solid fuel Arrhenius combustion in a fixed-bed was 

analyzed by Olayiwola [9]. Bhattacharyya et al. [10] studied 

analytically the solution for magnetohydrodynamic boundary 

layer flow of Casson fluid over a stretching/shrinking sheet 

with wall mass transfer. The unsteady boundary layer flow of 

a Casson fluid due to an impulsively started moving plate was 

considered by Mustafa et al. [11]. Recently, Mukhopadhyay 

et al. [12] investigated the steady boundary layer flow and 

heat transfer over a porous moving plate in the presence of 

thermal radiation. Makinde and Mhone [13] studied the heat 

transfer to MHD flow in a channel filled with porous medium. 

Malapati & Polarapu [14] analyzed unsteady MHD free 
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convective heat and mass transfer in a boundary layer flow 

past a vertical peameable plate with thermal radiation and 

chemical reaction. Chamkha and Ahmed [15] examined 

unsteady MHD heat and mass transfer by mixed convection 

flow in the forward stagnation region of a rotating sphere at 

different wall conditions. The effects of thermal radiation and 

magnetic field on unsteady mixed convection flow and heat 

transfer over a stretching in the presence of internal heat 

generation/absorption was studied by Elbashbeshy & 

Aldawody [16]. Talukdar [17] investigated the buoyancy and 

chemical reaction effects on MHD mixed convection heat and 

mass transfer in a porous medium with thermal radiation and 

ohmic heating. Mohammed et al. [18] analyzed radiation and 

mass transfer effects on MHD oscillatory flow in a channel 

filled with porous medium in the presence of chemical 

reaction. The aim of the research is to establish an analytical 

solution capable of describing the concentration, temperature 

and velocity in the process of MHD Couette flow through a 

parallel plate. 

 

2. MATHEMATICAL FORMULATION 

Following Anyanwu et al. [1] while they analyzed the flow 

under constant pressure gradient, the unsteady flow of a 

viscous, incompressible, non-conducting fluid through a 

channel with chemical reaction and thermal radiation in the 

presence of magnetic field is investigated under a 

time/temperature dependent pressure gradient. The flow is 

assumed to be laminar, incompressible and flows between 

two infinite horizontal plates located at y h  which 

extends from x    to  and from z    to  . 

The upper plate is suddenly set into motion and moves with a 

uniform velocity 0U  while the lower plate is kept stationary 

as shown in the diagram below. The upper plate is 

simultaneously subjected to a step change in temperature 

from 1T  to 2T . The upper and lower plates are kept at two 

constant temperatures 2T  and 1T  respectively with 2 1T T . 

The fluid flows between the two plates under the influence of 

an exponential decaying with time pressure gradient in the x-

direction which is a generalization of a constant pressure 

gradient. A uniform suction from above and injection from 

below with constant velocity 0 which are all applied at 

0t  . The system is subjected to a uniform magnetic field 

0B in the positive y-direction and is assumed undisturbed as 

the induced magnetic field is neglected by assuming a small 

magnetic Reynolds number. The Hall effect is considered 

hence which gives rise to a z-component of velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the problem 

 

Based on the above assumptions, 

wkjvuiv  0           (1) 

Introducing a Chapman-Rubesin viscosity law, with 1w  as shown in Olayiwola (2016) and using the condition at the lower 

plate, results in: 
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Where 1  is the Casson coefficient of viscosity. 

Thus, the two components of the governing momentum equation in dimensional form are as follows: 
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The energy equation in dimensional form is given as      
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The concentration equation in dimensional form is given as:  
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Where   and  are respectively the density and apparent viscosity of the fluid,   is electric conductivity,  is Hall factor, Bi  

is ion slip parameter, 0Be B  is Hall parameter, c  and k  are respectively the specific heat capacity and thermal conductivity 

of the fluid. Where u  and w  are components of velocities along and perpendicular to the plate in x  and y  directions respectively, 

σ is the electrical conductivity, T  is the coefficient of volume expansion of the moving fluid, C  is the coefficient of volumetric 

expansion with concentration, v  is the kinematic viscosity, T  is the temperature of the fluid, C  is the concentration of the fluid, 

1C  is concentration at infinity, 1D  the thermal diffusivity, 2D  the chemical reaction rate constant, PC is the specific heat capacity 

at constant pressure. t  is time, g  is gravitational force, e  
is magnetic permeability of the fluid, K  is the porous media 

permeability coefficient, q  is radiative heat flux, 0H  is intensity of magnetic field, 0 0eB H  is electromagnetic induction, 0  

is yield stress,  is coefficient of volume expansion due to temperature and   is mean radiation absorption coefficient. 

 

To write the governing dimensional equations (3)-(6) with their corresponding boundary conditions (7) in non-dimensional form, 

we use the following dimensionless variables:  
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When the pressure gradient is a function of time: 
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In this case, equations (3) - (6) reduce to; 
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Where  
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METHOD OF SOLUTION 

Since the boundary conditions are from -1 to 1, we first transform the boundary conditions to 0 to 1 using the transformation: 
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Collecting like powers of S, we have for:
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EIGENFUNCTION EXPANSION TECHNIQUE 

Now, consider the problem (see Myint-U and Debnath, (1987)) 



Time Dependent Pressure Gradient Effects on Unsteady MHD Couette Flow Through a Parallel Porous Plate 

3600                                                                                         E.O. Anyanwu, IJMCR Volume 11 Issue 07 July 2023 

2

2
( , )

(25)

( ,0) ( ), (0, ) 0, ( , ) 0

u u
k u F x t

t x

u x f x u t u L t


 

   
  


  



 

For the solution of problem (24), we assume a solution of the form 
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Comparing equation (17) – (24) with the (25) we obtain the solutions to the velocity (primary and secondary), temperature, and 

concentration distributions as  
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Where 
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Therefore the solutions to the governing equations are given as: 
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4. RESULTS AND DISCUSSIONS 

The system of partial differential equations describing 

unsteady couette flow of an electrically conducting 

incompressible fluid bounded by two parallel non conducting 

porous plates  are solved analytically using eigenfunction 

expansion method. The analytical solutions of the governing 

equations are computed and presented graphically with the 

aid of a computer symbolic algebraic package MAPLE 17 for 

the values of the following parameters: 
2Re 1, 1, 0.1, Pr 0.71, 1, 0.5, 0.22,

1, 1, 0.1, 0.2, 1, 0.1, 0.01,

Gr 0.2, 0.2, 2
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The figures 2-9 Explains the graphs of primary and secondary 

velocities, temperature and concentration against different 

dimensionless parameters. 

 

 

Figure 2: Effect of Hartman number  Ha  on 

secondary velocity profile  ,w y t  

 

Figure 3: Effect of Schimdt number  Sc  on 

concentration profile  ,y t  

 

 

 

Figure 4: Effect of ion slip parameter  Bi  on primary 

velocity profile  u y  
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Figure 5: Effect of ion slip parameter  Bi  on secondary 

velocity profile  w y  

 

 

Figure 6: Effect of Hall parameter  Be  on primary 

velocity profile  u y  

 

Figure 7: Effect of temperature dependent viscosity    

on primary velocity profile  u y  

 

 

Figure 8: Effect of temperature dependent viscosity    

on temperature profile  y  

 

 

Figure 9: Effect of porosity parameter  P  on primary 

velocity profile  u y
 

Figure 2 depicts the graph of secondary velocity for different 

values of Hartman number. It is observed that secondary 

velocity increases and then decreases along distance y. Also, 

increase in Hartman number leads to increase in secondary 

velocity. 

Figure 3 depicts the graph of concentration for different 

values of Schmidt number. It is observed that concentration 

increases and then decreases along distance y. Also, increase 

in Schmidt number leads to increase in concentration. 

Figure 4 depicts the graph of primary velocity for different 

values of Hall parameter. It is observed that primary velocity 

increases and then decreases along distance y. Also, increase 

in Hall parameter leads to decrease in primary velocity. 

Figure 5 depicts the graph of secondary velocity for different 

values of Hall parameter. It is observed that secondary 

velocity increases and then decreases along distance y. Also, 

increase in Hall parameter leads to decrease in secondary 

velocity. 
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Figure 6 depicts the graph of primary velocity for different 

values of Hall factor. It is observed that primary velocity 

increases and then decreases along distance y. Also, increase 

in Hall decrease leads to decrease in primary velocity. 

Figure 7 depicts the graph of primary velocity  ,u y t  for 

different values of temperature dependent viscosity ( ) . It is 

observed that primary velocity is maximum when viscosity is 

temperature dependent as compared to when it is independent 

on temperature. Also, increase in temperature dependent 

viscosity leads to oscillation in primary velocity along 

distance y. 

Figure 8 depicts the graph of temperature profile  ,y t  for 

different values of temperature dependent viscosity ( ) . It is 

observed that temperature increases with increase in 

viscosity. Also, increase in temperature dependent viscosity 

leads to increase in temperature along distance y. 

Figure 9 shows the effect of porosity parameter on primary 

velocity profile along distance y. it is observed that the 

primary velocity increases and then decreases along y while 

increase in porosity parameter leads to increase in primary 

velocity. 

5. Conclusion 

For temperature dependent pressure gradient, the unsteady 

MHD Couette flow through a porous medium of a viscous 

incompressible fluid bounded by two parallel porous plates 

under the influence of thermal radiation and chemical 

reaction is investigated. A uniform suction and injection are 

applied perpendicular to the plate. The transformed 

conservation equations are solved analytically subject to 

physically appropriate boundary conditions by using 

Eigenfunction expansion technique. From the results 

obtained, we can conclude that: 

1. It is observed that temperature increases with increase in 

viscosity. Also, increase in temperature dependent 

viscosity leads to increase in temperature along distance 

y. 

2. Concentration profile increases with time and also, 

increases as Reynolds number increases. 

3. Increase in the radiation parameter is found to decelerate 

the velocity of the flow. 

4. The flow field suffers a decrease in temperature as 

radiation parameter increases while as radiation 

parameter the temperature profile is observed to 

decreases with time t. 
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