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1. INTRODUCTION 

 Graph theory has established itself as an important 

mathematical tool in a wide variety of subjects ranging from 

operational research, linguistic sociology and Architecture. In 

real word, the complexity generally arises from uncertainty 

in the form of ambiguity. Classical set theory also termed as 

crisp set theory and propounded by George Cantor,is 

fundamental to the study of fuzzy sets. In 1965, Lofti A. 

Zadeh introduced the notion of a fuzzy subset of a set as a 

method for representing uncertainty. In 1975, Rosenfeld first 

introduced fuzzy graph theory as a generalization of Euler 

graph theory. Fuzzy graph is the generalization of the 

ordinary graph. The Fundamental operations on Complement 

of Strong Neutrosophic Graphs. We apply the concept of 

strong Neutrosophic Graphs and also some graphs are 

connected, we explore some Particular Cases of strong 

Neutrosophic Graphs.

 

2. PRELIMINARIES 

Definition 2.1. 

 A Neutrosophic Graph is of the form G = < N, L > Where, 

(i) N = {n1, n2, n3,… nn} such that  λ𝑇  ∶ N(NG) → [a, b] , λI  ∶ N(NG) → [a, b ] and  

 λF  ∶ N(NG) → [a, b] denote the  three ways of  truth, indeterminacy and falsity.   

for all ni  ∈ N, with a = 0 and b = 1. 

 0 ≤ λT(ni) + λI(ni) + λF(ni) ≤ 3 for each ni ∈ N(NG), (i = 1, 2,…n) 

 

(ii) L ⊆ NxN Where ηT  ∶ NxN → [a, b] , ηI  ∶ NxN → [a, b], ηF  ∶ NxN → [a, b], are  

such that 

ηT(ninj) ≤ min[ λT(ni), λT(nj), ] 

ηI(ninj) ≤ min[ λI(ni), λI(nj)], 

 ηF(ninj) ≤ max[ λF(ni), λF(nj)],   

0 ≤  ηT(ninj) + ηI(ninj) + ηF(ninj) ≤ 3, for each  (ninj ) ∈ L(NG) (i,j = 1,2,…,n) 

Definition 2.2. 

 A Neutrosophic Graph NG = < N, L > with the triplet ( λT, λI,  λF ) and ( ηT, ηI,  ηF ) is called Strong Neutrosophic Graph 

if 

ηT(ninj) = min[ λT(ni), λT(nj)] 

ηI(ninj) = min[ λI(ni), λI(nj)] 

https://doi.org/10.47191/ijmcr/v11i7.19
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 ηF(ninj) = max[ λF(ni), λF(nj)], ∀ (ninj) ∈ L(NG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Strong Neutrosophic Graph 

               Figure 1. 

                                                                

Definition 2.3. 

 The Complement of a Strong Neutrosophic Graph SNG = < λ,η > with  is a  G = (N, L ) Strong Neutrosophic Graph   

SNGc = (λc, ηc)  where 

(i) Nc = N 

(ii) (λ)T
  C(ni) =  (λ)T

  (ni), (λ)I
  C(ni) =  (λ)I

  (ni), (λ)F
  C(ni) =  (λ)F

  (ni)  

 

(iii) (η)T
  C(nj, nk) = {

                   0                     ;  njnk ∈ L

min[ (λ)T
  (nj), (λ)T

  (nk)] ;   njnk ∈  L
C  

 

                    (η)I
  C(nj, nk) = {

                   0                     ;  njnk ∈  L

min[ (λ)I
  (nj), (λ)I

  (nk)] ;    njnk ∈  L
C  

 

        (η)F
  C(nj, nk) = {

                   0                       ;  njnk ∈  L

max[ (λ)F
  (nj), (λ)F

  (nk)] ; njnk ∈  L
C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strong Neutrosophic Graph                    Complement of Strong Neutrosophic Graph 

 Figure 2.                                 Figure 3. 

Remarks:2.4. 

    If NG = < λ,η > is a Neutrosophic Graph  on SNG. Then from above Definition 2.3 it follows that 

 (NGC )C = <  (λC )C , (ηC )C >  on SNG where (λC )C =  λ and 

 ((η)T
  C)C(nj, nk) = min[ (λ)T

  (nj, nk)], ((η)I
  C)C(nj, nk) = min[ (λ)I

  (𝑛j, nk)], 

 ((η)F
  C)C(nj, nk) = min[ (λ)F

  (nj, nk)]. for all (ninj ) ∈ L(SNG). 

Thus ((η)T
  C)C = (η)T

  , ((η)I
  C)C = (η)I

  , and ((η)F
  C)C = (η)F

  , the Strong Neutrosophic relation for any Neutrosophic 

Graph NG. SNG is Strong Neutrosophic Graph and G ⊆ (GC )C .  
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3. MAIN RESULTS 

Definition 3.1. 

 Let SNG1 = (λ1 , η1 ) and SNG2 = (λ2 , η2 ) be two Strong Neutrosophic Graph corresponding to the crisp graph (G1) =

(N1 , L1 ) and (G2) = (V2 , E2 ). Then the union of two Strong Neutrosophic Graph is defined as SNG = (SNG1) ∪ (SNG2) =

( λ1 ∪ λ2 , η1 ∪ η2 ) with the node set  V(SNG) = V(SNG1) ∪ V(SNG2) and the line set L(SNG) = L(SNG1) ∪ L(SNG2) and 

 λ(nj) = ( λT(nj), λI(nj), λF(nj) ) and for all nj ∈ N(SNG); 

 η (njnk) = ( ηT(njnk), ηI(njnk), ηF(njnk))  for all njnk ∈ L(SNG); 

 

For any nj ∈ N(SNG); 

i) λT(nj) =

{
 

 
(λ1)T

  (nj)                                 ; if nj ∈ N1 − N2

(λ2)T
  (nj)                                  ; if nj ∈ N2 − N1

max ((λ1)T
  (nj), (λ2)T

  (nj)) ;  if nj ∈ N1 ∩ N2

 

ii) λI(nj) =

{
 

 
(λ1)I

  (nj)                                 ; if nj ∈ N1 − N2

(λ2)I
  (nj)                                   ; if nj ∈ N2 − N1

max ((λ1)I
  (nj), (λ2)I

  (nj)) ;  if nj ∈ N1 ∩ N2

 

iii) λF(nj) =

{
 

 
(λ1)F

  (nj)                                     ; if nj ∈ N1 − N2

(λ2)F
  (nj)                                     ; if nj ∈ N2 − N1

min ((λ1)F
  (nj), (λ2)F

  (nj))   ;  if nj ∈ N1 ∩ N2

  

 

For any njnk ∈ L(SNG); 

iv) ηT(njnk) =

{
 

 
                     (η1)T

  (njnk)                    ; if njnk ∈ L1 − L2

                   (η2)T
  (njnk)                     ; if njnk ∈ L2 − L1

max ((η1)T
  (njnk), (η2)T

  (njnk)) ;  if njnk ∈ L1 ∩ L2

 

v) ηI(njnk) =

{
 

 
                     (η1)I

  (njnk)                    ; if njnk ∈ L1 − L2

                   (η2)I
  (njnk)                     ; if njnk ∈ L2 − L1

max ((η1)I
  (njnk), (η2)I

  (njnk)) ;  if njnk ∈ L1 ∩ L2

 

vi) ηF(njnk) =

{
 

 
                     (η1)F

  (njnk)                    ; if njnk ∈ L1 − L2

                   (η2)F
  (njnk)                     ; if njnk ∈ L2 − L1

min ((η1)F
  (njnk), (η2)F

  (njnk)) ;  if njnk ∈ L ∩ L2

 

 

Definition 3.2. 

  Let SNG1 = (λ1 , η1 ) and SNG2 = (λ2 , η2 ) be two Strong Neutrosophic Graph corresponding to the crisp graph G1 =

(N1 , L1 )and G2 = (N2 , L2 ). Then the join of two Strong Neutrosophic Graph is defined as (SNG) =  (SNG1) + (SNG2) =

( λ1 + λ2 , η1 + η2 ) where the set of nodes areN(SNG) = N(SNG1) ∪ N(SNG2) and the set of lines are 

 L(SNG) = L(SNG1) ∪ L(SNG2) ∪ L(SNG)
∗ where L(SNG)∗is the set of all Lines joining the Nodes of  N(SNG1), N(SNG2). 

With usual notation λ and η  are represented by the triplet 

λ(nj) = ( λT(nj), λI(nj), λF(nj) )  ∀ nj ∈ N(SNG)  and  

 η (njnk) = ( ηT(njnk), ηI(njnk), ηF(njnk)) ∀ njnk ∈ L(SNG)  is defined as,  

For any  nj ∈ N(NG) = V(SNG1) ∪ V(SNG2). 

 

(i) λT(nj) =

{
 

 
(λ1)T

  (nj)                                     ; if nj ∈ N1 − N2

(λ2)T
  (nj)                                     ; if nj ∈ N2 − N1

max ((λ1)T
  (nj), (λ2)T

  (nj))   ;  if nj ∈ N1 ∩ N2

 

(ii) λI(nj) =

{
 

 
(λ1)I

  (nj)                                     ; if nj ∈ N1 − N2

(λ2)I
  (nj)                                     ; if nj ∈ N2 − N1

max ((λ1)I
  (nj), (λ2)I

  (nj))   ;  if nj ∈ N1 ∩ N2
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(iii) λF(nj) =

{
 

 
(λ1)F

  (nj)                                     ; if nj ∈ N1 − N2

(λ2)F
  (nj)                                     ; if nj ∈ N2 − N1

min ((λ1)F
  (nj), (λ2)F

  (nj))   ;  if nj ∈ N1 ∩ N2

  

 

For any njnk ∈ L(SNG) = L(SNG1) ∪ L(SNG2) ∪ L(SNG)
∗ 

(iv) ηT(njnk) =

{
 
 

 
 
                           (η1)T

  (njnk)          ;  if njnk ∈ L1 − L2

                           (η2)T
  (njnk)          ;  if njnk ∈ L2 − L1

max ((η1)T
  (njnk), (η2)T

  (njnk)) ; if njnk ∈ L1 ∩ L2

min ((λ1)T
  (nj), (λ2)T

  (nj))   ;  if  njnk ∈ L
∗

 

(v) ηI(njnk) =

{
 
 

 
 
                           (η1)I

  (njnk)          ;  if njnk ∈ L1 − L2

                           (η2)I
  (njnk)          ;  if njnk ∈ L2 − L1

max ((η1)I
  (njnk), (η2)I

  (njnk)) ; if njnk ∈ L1 ∩ L2

min ((λ1)I
  (nj), (λ2)I

  (nj))   ;  if  njnk ∈ L
∗

 

(vi) ηF(njnk) =

{
 
 

 
 
                           (η1)F

  (njnk)          ;  if njnk ∈ L1 − L2

                           (η2)F
  (njnk)          ;  if njnk ∈ L2 − L1

min ((η1)F
  (njnk), (η2)F

  (njnk)) ; if njnk ∈ L1 ∩ L2

max ((λ1)F
  (nj), (λ2)F

  (nj))   ;  if  njnk ∈ L
∗

 

 

Theorem 3.3: 

 Let SNG1 = (λ1 , η1 ) and SNG2 = (λ2 , η2 ) be two Complement of Strong Neutrosophic Graph corresponding to the crisp 

graph G1 = (N1 , L1 ) and G2 = (N2 , L2 ) respectively, and N1 ∩ N2 =  𝜑. Then (SNG1 ∪ SNG2)
𝑐 = (SNG1)

c + (SNG2)
c. 

 

Proof: To Prove that (SNG1 ∪ SNG2)
𝑐 = (SNG1)

c + (SNG2)
c , it is enough to prove that 

 

(i)                 ((λ1)T
  ∪ (λ2)T

  )c(m) =  ((λ1)T
  )c(m) + ((λ2)T

  )c(m) 

 ((λ1)I
  ∪ (λ2)I

  )c(m) =  ((λ1)I
  )c(m) + ((λ2)I

  )c(m)  

 ((λ1)F
  ∪ (λ2)F

  )c(m) =  ((λ1)F
  )c(m) + ((λ2)F

  )c(m) 

          for all m ∈ N = N1 ∪ N2 

(ii)                 ((η1 )T
  ∪ (η2 )T

  )c(mn) =  ((η1 )T
  )c(mn) + ((η2 )T

  )c(mn) 

 ((η1 )I
  ∪ (η2 )I

  )c(mn) =  ((η1 )I
  )c(mn) + ((η2 )I

  )c(mn)  

 ((η1 )F
  ∪ (η2 )F

  )c(mn) =  ((η1 )F
  )c(mn) + ((η2 )F

  )c(mn) 

       for all nm ∈ L = L1 ∪ L2 

Claim: To Prove 

   ((λ1)T
  ∪ (λ2)T

  )c(n) =  ((λ1)T
  )c(n) + ((λ2)T

  )c(n) 

Consider 

    ((λ1)T
  ∪ (λ2)T

  )c(n) =  ((λ1)T
  ∪ (λ2)T

  )(n) 

                

                                   (λ1)T
  )c(n)  =  (λ1)T

  (n)   

                          (λ2)T
  )c(n)  =  (λ2)T

  (n)      (By Definition 2.3)    

                                              

      Assume that  λ1
   ∪  λ2

  =  λ                                                  

 

 

                                    (λ)T
  (n) =  {

(λ1)T
  (n), if     n ∈ N1 − N2 

(λ2)T
  (n), if     n ∈ N2 − N1 

} (By Definition 3.1)    

                                       

        ((λ1)T
  )c(n) + ((λ2)T

  )c(n) =  (λ1)T
  (n) + (λ2)T

  (n)   (By Definition 2.3)    

 

                                                                = {
(λ1)T

  (n), if     n ∈ N1 − N2 
(λ2)T

  (n), if     n ∈ N2 − N1 
} (By Definition 3.2)    
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            Hence  ((λ1)T
  ∪ (λ2)T

  )c(n) =  ((λ1)T
  )c(n) + ((λ2)T

  )c(n)   for all  n ∈ N 

  (1) 

 Similarly the results also apply for the intermediate and falsity values.   

 

     Thus              ((λ1)T
  ∪ (λ2)T

  )c(n) =  ((λ1)T
  )c(n) + ((λ2)T

  )c(n) 

 ((λ1)I
  ∪ (λ2)I

  )c(n) =  ((λ1)I
  )c(n) + ((λ2)I

  )c(n)  

 ((λ1)F
  ∪ (λ2)F

  )c(n) =  ((λ1)F
  )c(n) + ((λ2)F

  )c(n) 

 

Now consider  

(i) ((η1 )T
  ∪ (η2 )T

  )c(nm) =  {
(η1 )T

  (mn), if    mn ∈ E1 − E2
(η2 )T

  (mn), if     mn ∈ E2 − E1
}
𝐜

 

(ii) ((η1 )I
  ∪ (η2 )I

  )c(nm) =  {
(η1 )I

  (mn), if     mn ∈ E1 − E2
(η2 )I

  (nm), if    mn ∈ E2 − E1
}
𝐜

  

(iii) ((η1 )F
  ∪ (η2 )F

  )c(nm) =  {
(η1 )F

  (mn), if     mn ∈ E1 − E2
(η2 )F

  (mn), if     mn ∈ E2 − E1
}
𝐜

    

      (by Definition 3.1), (by Definition 2.3)  

 (η1 )T
  )c(mn)                               = {

                        0                    ;   if      mn ∈ E1
min[(λ1)T

  (m), (λ1)T
  (n)] ;  if      mn ∈ E1

C 
 

 (η2 )T
  )c(mn)                              = {

                        0                    ;   if      mn ∈ E2
min[(λ2)T

  (m), (λ2)T
  (n)] ;  if      mn ∈ E2

C 
                     (η1 )T

  )c(mn) ∪ (η2 )T
  )c(mn) =

{ 
                         0           ;   if     mn ∈ E∗               

min[(λ1)T
  (m), (λ2)T

  (n)]  ;  if  mn ∈ E∗, m ∈ N1, n ∈ N2 
} 

 

Similarly, the results also apply for the intermediate and falsity values  

Thus  

(𝑖) ((η1 )T
  ∪ (η2 )T

  )c(mn) = {

(η1)T
  (mn)             ; if mn ∈  L1

C               

(η2)T
  (mn)            ; if mn ∈  L2

C               

 min (λ1)T
  (n), (λ2)T

  (n) ;  if mn ∈  L∗, m ∈ n1, n ∈ n2

} 

…………(iv) 

 

(𝑖𝑖) ((η1 )I
  ∪ (η2 )I

  )c(mn) = {

(η1)I
  (mn)             ; if mn ∈  L1

C               

(η2)I
  (mn)            ; if mn ∈  L2

C               

 min (λ1)I
  (n), (λ2)I

  (n) ;  ifmn ∈  L∗, m ∈ n1, n ∈ n2

} 

.....................(v) 

 

(𝑖𝑖𝑖) ((η1 )F
  ∪ (η2 )F

  )c(mn) = {

(η1)F
  (mn)             ; if mn ∈  L1

C               

(η2)F
  (mn)            ; if mn ∈  L2

C               

 min (λ1)F
  (m), (λ2)F

  (n) ;  if mn ∈  L∗, m ∈ n1, n ∈ n2 

} 

…………….(vi) 

Hence 

(𝑖𝑣) ((η1 )T
  ∪ (η2 )T

  )c(mn) = {
((η1 )T

  ∪ (η2 )T 
  )(mn)   ;                   if mn ∈  L1

C ∪ L2
C

min (λ1)T
  (n), (λ2)T

  (n) ;   if mn ∈  E∗, m ∈ N1, n ∈ N2
 

(𝑣) ((η1 )I
  ∪ (η2 )I

  )c(mn) =  {
((η1 )I

  ∪ (η2 )I 
  )(mn)     ;                   if mn ∈  L1

C ∪ L2
C

min (λ1)I
  (n), (λ2)I

  (n)  ;   if mn ∈  E∗, n ∈ N1, m ∈ N2
 

(𝑣𝑖) ((η1 )F
  ∪ (η2 )F

  )c(mn) = {
((η1 )F

  ∪ (η2 )F 
  )(mn)   ;                   if mn ∈  L1

C ∪ L2
C

max (λ1)F
  (n), (λ2)F

  (n) ;   if mn ∈  E∗, m ∈ N1, n ∈ N2
 

(By Definition 3.2) 

 

    ((η1 )T
  ∪ (η2 )T

  )c(mn) =  ((η1 )T
  )c(mn) + ((η2 )T

  )c(mn) 

 ((η1 )I
  ∪ (η2 )I

  )c(mn) =  ((η1 )I
  )c(mn) + ((η2 )I

  )c(mn)  

 ((η1 )F
  ∪ (η2 )F

  )c(mn) =  ((η1 )F
  )c(mn) + ((η2 )F

  )c(mn) for all  mn ∈ L. 

 (2) 

Here   L1
C = L1 − L2 and L1

C = L1 − L2 Since L1 ∩ L2 =  𝜑. 
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From (1) and (2) it follow that 

(SNG1 ∪ SNG2)
𝑐 = (SNG1)

c + (SNG2)
c. 

Illustration 3.4. 

The validity of the Theorem 3.3 is as follows:  

Consider the following Strong Neutrosophic Graphs SNG1 and SNG2 given in Figure (3.5) and  

Figure (3.6). 

 

 

   

 

 

 

 

 

 

 

 

𝐒𝐍𝐆𝟏       𝐒𝐍𝐆𝟐     (𝐒𝐍𝐆𝟏)
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         Figure 3.5.           Figure 3.6.         Figure 3.5(a)                Figure  3.6(a)        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(𝐒𝐍𝐆𝟏 ∪ 𝐒𝐍𝐆𝟐)
𝒄 = (𝐒𝐍𝐆𝟏)

𝐜 + (𝐒𝐍𝐆𝟐)
𝐜. 

Figure 3.7. 

 

Theorem 3.8. 

 Let SNG1 = (λ1 , η1 ) and SNG2 = (λ2 , η2 ) be two Strong Neutrosophic Graph corresponding to the crisp graph G1 =

(N1 , L1 ) and  G2 = (N2 , L2 ) respectively, with  

 N1 ∩ N2 =  𝜑. Then (SNG1 + SNG2)
𝑐 = (SNG1)

c ∪ (SNG1)
c. 

 

Proof: To Prove that (SNG1 + SNG2)
𝑐 = (SNG1)

c ∪ (SNG1)
c , it is enough to prove that 

 

 

(i)         ((λ1)T
  + (λ2)T

  )c(m) =  ((λ1)T
  )c(m) ∪ ((λ2)T

  )c(m) 

 ((λ1)I
  + (λ2)I

  )c(m) =  ((λ1)I
  )c(m) ∪ ((λ2)I

  )c(m)  

 ((λ1)F
  + (λ2)F

  )c(m) =  ((λ1)F
  )c(m) ∪ ((λ2)F

  )c(m) 

       for all n ∈ N = N1 ∪ N2 

(ii)                  ((η1 )T
  + (η2 )T

  )c(mn) =  ((η1 )T
  )c(mn) ∪ ((η2 )T

  )c(mn) 

 ((η1 )I
  + (η2 )I

  )c(mn) =  ((η1 )I
  )c(mn) ∪ ((η2 )I

  )c(mn)  

 ((η1 )F
  + (η2 )F

  )c(mn) =  ((η1 )F
  )c(mn) ∪ ((η2 )F

  )c(mn) 

       for all mn ∈ L = L1 ∪ L2 
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This is valid for the Intermediate and Falsity Values also. 

Consider 

  ((λ1)T
  + (λ2)T

  )c(m) =  ((λ1)T
  )c(m) ∪ ((λ2)T

  )c(m)  by the definition 3.1 and 3.2. 

 Assume that  λ1
   ∪  λ2

  =  λ 

                                    (λ)T
  (m) =  {

(λ1)T
  (m), if     m ∈ N1 − N2 

(λ2)T
  (m), if     m ∈ N2 − N1

}
𝑐

 

  

                                               (λ)T
  (m) =  {

(λ1)T
  (m), if     m ∈ N1 − N2 

(λ2)T
  (m), if    m ∈ N2 − N1 

}   

 

 (λ1)T
  )c(m)  =  (λ1)T

  (m)  if  m ∈ N = N1 ∪ N2            

            (λ2)T
  )c(m)  =  (λ2)T

  (m)   if  m ∈ N = N1 ∪ N2  

 

             ((λ1)T
  + (λ2)T

  )c(m)  = ((λ1)T
  + (λ2)T

  )(m) 

                                                = (λ1)T
  (m) ∪ (λ2)T

  (m)    

 ((λ1)T
  + (λ2)T

  )c(m)   = ((λ1)T
  )c(m) ∪ ((λ2)T

  )c(m)   

                                                            

             ((λ1)T
  + (λ2)T

  )c(m) =  ((λ1)T
  )c(m) ∪ ((λ2)T

  )c(m)   for all  m ∈ N.  

  

 Similarly the result also apply for the intermediate and falsity values.  

     (1) 

 Now Consider 

(i) ((η1 )T
  + (η2 )T

  )c(mn) = {
((η1 )T

  ∪ (η2 )T 
  )(mn)   ;                   if mn ∈  L1

C ∪ L2
C

min (λ1)T
  (m), (λ2)T

  (n) ;   if uv ∈  E∗, m ∈ N1, n ∈ N2
} 

 

(ii)  ((η1 )I
  + (η2 )I

  )c(mn) = {
((η1 )I

  ∪ (η2 )I 
  )(mn)   ;                   if mn ∈  L1

C ∪ L2
C

min(λ1)I
  (m) , (λ2)I

  (n) ;   if uv ∈  E∗, m ∈ N1, n ∈ N2
} 

 

(iii) ((η1 )F
  + (η2 )F

  )c(mn) = {
((η1 )F

  ∪ (η2 )F 
  )(mn)   ;                   if mn ∈  L1

C ∪ L2
C

max(λ1)F
  (m), (λ2)F

  (n) ;   if mn ∈  E∗, m ∈ N1, n ∈ N2
} 

 

 (𝑖) (η1 )T
  + (η2 )T

  )c(mn) = {

(η1)T
  (mn)             ; if mn ∈  L1

C               

(η2)T
  (mn)            ; if mn ∈  L2

C               

 min (λ1)T
  (m), (λ2)T

  (n) ;  if mn ∈  𝐿∗, m ∈ N1, n ∈ N2 

} 

 ……………………(iv) (𝑖𝑖) ((η1 )I
  +

(η2 )I
  )c(mn) = {

(η1)I
  (mn)             ; if mn ∈  L1

C               

(η2)I
  (mn)            ; if mn ∈  L2

C               

 min (λ1)I
  (m), (λ2)I

  (n) ;  if mn ∈  𝐿∗, m ∈ N1, n ∈ N2 

} 

 ……………………(v)(𝑖𝑖𝑖) ((η1 )F
  +

(η2 )F
  )c(mn) = {

(η1)F
  (mn)             ; if mn ∈  L1

C               

(η2)F
  (mn)            ; if mn ∈  L2

C               

 max (λ1)F
  (m), (λ2)F

  (n) ;  if mn ∈  𝐿∗, m ∈ N1, n ∈ N2 

} 

 …………………(vi) 

(𝑖𝑣) (η1 )T
  )c(mn)+(η2 )T

  )c(mn) =

{
  
 

  
 {

0                   ;   if     mn ∈ L1
min[(λ1)T

  (m), (λ1)T
  (n)] ;  if     mn ∈ L1

C                           

{
  0                  ;   if     mn ∈ L2

min[(λ2)T
  (m), (λ2)T

  (n)]  ;   if     mn ∈ L2
C                         

{ 
                         0           ;   if     mn ∈ L∗C               

min[(λ1)T
  (m), (λ2)T

  (n)]  ;  if  mn ∈ L∗, m ∈ N1, n ∈ N2  }
  
 

  
 

 

(v) (η1 )I
  )c(nm)+(η2 )I

  )c(mn) =

{
  
 

  
 {

0                   ;   if      mn ∈ L1
min[(λ1)I

  (m), (λ1)I
  (n)] ;  if      mn ∈ L1

C                           

{
  0                  ;   if    mn ∈ L2

min[(λ2)I
  (m), (λ2)I

  (n)]  ;   if      mn ∈ L2
C                         

{ 
                         0           ;   if     mn ∈ L∗C               

min[(λ1)I
  (m), (λ2)I

  (n)]  ;  if  mn ∈ L∗, m ∈ N1, n ∈ N2  }
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(𝑣𝑖) (η1 )F
  )c(mn)+(η2 )F

  )c(mn) =

{
  
 

  
 {

0                   ;   if     mn ∈ L1
max[(λ1)F

  (m), (λ1)F
  (n)] ;  if      mn ∈ L1

C                           

{
  0                  ;   if     mn ∈ L2

max[(λ2)F
  (m), (λ2)F

  (n)]  ;   if      mn ∈ L2
C                         

{                          0           ;   if     mn ∈ L∗
𝐶
               

max[(λ1)F
  (m), (λ2)F

  (n)]  ;  if  mn ∈ L∗, m ∈ N1, n ∈ N2  }
  
 

  
 

 

                                             = 

{
  
 

  
 {
(η1 )T

  (mn), if     mn ∈ L1 − L2
(η1 )T

  (mn), if     mn ∈ L2 − L1
}
𝑐

{
(η1 )I

  (mn), if     mn ∈ L1 − L2
(η1 )I

  (mn), if     mn ∈ L2 − L1
}
𝑐

{
(η1 )F

  (mn), if     mn ∈ L1 − L2
(η1 )F

  (mn), if     mn ∈ L2 − L1
}
𝑐

}
  
 

  
 

 

                                                           =

 

{
  
 

  
 {

((η1 )T
  ∪ (η2 )T 

  )(mn)   ;                   if mn ∈  L1 ∪ L2
min (λ1)T

  (m), (λ2)T
  (n) ;   if uv ∈  L∗, m ∈ N1, n ∈ N2

}
𝑐

{
((η1 )I

  ∪ (η2 )I 
  )(mn)   ;                   if mn ∈  L1 ∪ L2

min (λ1)I
  (m), (λ2)I

  (n) ;   if uv ∈  L∗, m ∈ N1, n ∈ N2
}
𝑐

{
((η1 )F

  ∪ (η2 )F 
  )(mn)   ;                   if mn ∈  L1 ∪ L2

max (λ1)F
  (m), (λ2)F

  (n) ;   if uv ∈  L∗, m ∈ N1, n ∈ N2
}
𝑐

}
  
 

  
 

 

 

      ((η1 )T
  + (η2 )T

  )c(mn) =  ((η1 )T
  )c(nm) ∪ ((η2 )T

  )c(mn) 

  ((η1 )I
  + (η2 )I

  )c(mn) =  ((η1 )I
  )c(nm) ∪ ((η2 )I

  )c(mn)  

  ((η1 )F
  + (η2 )F

  )c(mn) =  ((η1 )F
  )c(nm) ∪ ((η2 )F

  )c(mn) 

      (2) 

From (1) and (2) it follows that 

                         (SNG1 + SNG2)
𝑐 = (SNG1)

c ∪ (SNG1)
c. 

Illustration 3.9.  

Consider the Strong Neutrosophic Graphs SNG1 and SNG2 given in Figure 3.5 and Figure 3.6. 
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 (𝐒𝐍𝐆𝟏 + 𝐒𝐍𝐆𝟐)
𝒄          (𝐒𝐍𝐆𝟏)

𝐜 ∪ (𝐒𝐍𝐆𝟏)
𝐜 

                                Figure 3.11(a) Figure 3.11(b) 

  

Definition 3.12. 

  Let SNG1 = (λ1 , η1 ) and SNG2 = (λ2 , η2 ) be two Strong Neutrosophic Graph corresponding to the crisp graph G1 =

(N1 , L1 ) and  G2 = (N2 , L2 ) .The Product SNG1 ∘ SNG2 is the pair (λ,η) of Strong Neutrosophic set defined on the Cartesian Produ 

(SNG)∗ = (SNG1)
∗ ∘ (SNG2)

∗ such that 

  

(i)              λT(mjnk) = min[(λ1)T
  (mj), (λ2)T

  (nk)], 

                                               λI(mjnk) = min[(λ1)I
  (mj), (λ2)I

  (nk)], 

                                               λF(mjnk) = max[(λ1)F
  (mj), (λ2)F

  (nk)],  for all (nj, mk) ∈  N1xN2 

 

              (ii)              ηT(m,mj)(m, nk) = min[(λ1)T
  (m), (λ2)T

  (mj, nk)], 

                                                ηI(m,mj)(m, nk) = min[(λ1)I
  (m), (λ2)I

  (mj, nk)], 

                                                ηF(m,mj)(m, nk) = max[(λ1)F
  (m), (λ2)F

  (mj, nk)],  

for all m ∈ N1 and for all (mjnk) ∈  L2. 

 

              (iii)              ηT(mk, o)(nk, o) = min[(λ1)T
  (mk, nk), (λ2)T

  (o)] 

                                                ηI(m,mj)(m, nj) = min[(λ1)I
  (mk, nk), (λ2)I

  (o)] 

                                                ηF(m,mj)(m, nj) = max[(λ1)F
  (mk, nk), (λ2)F

  (o)] 

       for all (mknk) ∈  L1 and for all o ∈  N2. 

 

Theorem 3.13. 

Let SNG1 = (λ1 , η1 ) and SNG2 = (λ2 , η2 ) be two Strong Neutrosophic Graph corresponding to the crisp graph G1 =

(N1 , L1 ) and  G2 = (N2 , L2 ) respectively, and  SNG = (λ, η) be the Cartesian Product of SNG1 and SNG2 then  (SNG1 ∘ SNG2)
𝑐 =

 (SNG1)
c  ∘  (SNG1)

c. 

Proof: 

To prove that (SNG1 ∘ SNG2)
𝑐 = (SNG1)

c  ∘  (SNG1)
c it is enough to prove that 

(i) ((λ1)T
  ∘ (λ2)T

  )𝑐(mjnk) = (λ1)T
  )c(mj) ∘ (λ2)T

  )c(nk)  

 ((λ1)I
  ∘ (λ2)I

  )𝑐(mjnk) = (λ1)I
  )c(mj) ∘ (λ2)I

  )c(nk) 

 ((λ1)F
  ∘ (λ2)F

  )𝑐(mjnk) = (λ1)F
  )c(mj) ∘ (λ2)F

  )c(nk) 

          ∀ (nj, vk) ∈  N1xN2 

(ii)  ((η1)T
  ∘ (η2)T

  )𝑐(m, nj)(o, nk) = ((η1)T
  )c(m, nj) ∘ ((η2)T

  )c(o, nk) 

  ((η1)I
  ∘ (η2)I

  )𝑐(m, n)(o, nk) = ((η1)I
  )c(m, nj) ∘ ((η2)I

  )c(o, nk) 

   ((η1)F
  ∘ (η2)F

  )𝑐(m, nj)(𝑜, nk) = ((η1)F
  )c(m, nj) ∘ ((η2)F

  )c(𝑜, nk) 

∀ n ∈  N1 and for all (vjvk) ∈  L2 

(iii)  ((η1)T
  ∘ (η2)T

  )𝑐(mi, x)(nk, o) = ((η1)T
  )c(mi, nk) ∘ ((η2)T

  )c(x, o) 

  ((η1)I
  ∘ (η2)I

  )𝑐(mi, x)(nk, o) = ((η1)I
  )c(mi, nk) ∘ ((η2)I

  )c(x, o) 

  ((η1)F
  ∘ (η2)F

  )𝑐(mi, x)(nk, o) = ((η1)F
  )c(mi, nk) ∘ ((η2)F

  )c(x, o) 

(0.2,0.5,0.6) (0.1,0.3,0.8)

d c 

a b 

(0.2,0.3,0.7) (0.1,0.4,0.8)

(0.1,0.4,0.5) (0.2,0.5,0.6) 

(0
.1

,0
.3

,0
.7

) (0
.1

,0
.4

,0
.8

) 

(0.3,0.2,0.8) 

g h 

f 

(0.1,0.3,0.8) 

(0.3,0.2,0.5) 
(0.3,0.7,0.8) 

(0
.1

,0
.2

,0
.9

) 

(0
.1

,0
.3

,0
.8

) 

(0.3,0.2,0.8) 

e 

(0.1,0.4,0.9) 
(0.1,0.3,0.8) 

(0.1,0.3,0.7) (0.1,0.4,0.8)

d c (0.1,0.4,0.5)

a b 

(0.2,0.3,0.7) (0.1,0.4,0.8) 

(0.1,0.4,0.9) 

(0.1,0.2,0.9) (0.1,0.3,0.8) 
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                                           ∀ (mink) ∈  L1 and  ∀ (𝑥, o) ∈  N2 

      by the definition 3.3 and 2.3. 

(i)  ((λ1)T
  ∘ (λ2)T

  )𝑐(mj, nk) = {
min(λ1)T

  )c(mj) ∘ (λ2)T
  )c(nk)

min (λ1)T
  )(mj) ∘ (λ2)T

  )(nk)
      

  ∀(mj, nk) ∈  N1xN2 

(ii)   ((λ1)I
  ∘ (λ2)I

  )𝑐(mj, nk) = {
min(λ1)I

  )c(mj) ∘ (λ2)I
  )c(nk)

min (λ1)I
  )(mj) ∘ (λ2)I

  )(nk)
      

 ∀(uj, vk) ∈  N1xN2 

(iii)      ((λ1)F
  ∘ (λ2)F

  )𝑐(mj, nk) = {
min(λ1)F

  )c(mj) ∘ (λ2)F
  )c(nk)

min (λ1)F
  )(mj) ∘ (λ2)F

  )(nk)
      

             ∀(uj, vk) ∈  N1xN2 

Thus      ((λ1)T
  ∘ (λ2)T

  )𝑐(mj, nk) = (λ1)T
  )c(mj) ∘ (λ2)T

  )c(nk)  

 ((λ1)I
  ∘ (λ2)I

  )𝑐(mj, nk) = (λ1)I
  )c(mj) ∘ (λ2)I

  )c(nk) 

 ((λ1)F
  ∘ (λ2)F

  )𝑐(mj, nk) = (λ1)F
  )c(mj) ∘ (λ2)F

  )c(nk) 

 (By Definition 3.3) 

 

  ((η1)T
  ∘ (η2)T

  )𝑐(m, nj)(o, nk) 

= {

min((λ1)T
  (𝑜), (η2)T

  (nj, nk): ∀ m = o ∈ N1 𝑎𝑛𝑑 njnk ∈ L2 or n isolated in N1 

min((η1)T
  (m, 𝑜), (λ2)T

  (nj): ∀ mo ∈  L1 𝑎𝑛𝑑 nj = nk ∈ N2 or mj isolated in N2

min((η1)T
  (n, 𝑙), (η2)T

  (mj, mk): ∀ m𝑜 ∈  L1 𝑎𝑛𝑑 njnk ∈  L2 

}

𝐶

 

 (By Definition 2.3) 

((η1)T
  ∘ (η2)T

  )𝑐(m, nj)(o, nk) =

{
 
 

 
 
min((λ1)T

  (o), (η2)T
  (nj, nk): ∀ m = o ∈  N1 and njnk ∈  L2

Cor n isolated in N1  

min((η1)T
  (m, o), (λ2)T

  (nj): ∀ mo ∉  L2 and nj = nk ∈  N2 or nj isolated in N2

min((η1)T
  (m, o), (η2)T

  (nj, nk): ∀ mo ∈  L1 and nj, nk ∈  L2
C  

min((η1)T
  (m, o), (η2)T

  (nj, nk): ∀ mo ∉  L1 and njnk ∈  L2 }
 
 

 
 

 

 

(η1)T
  ∘ (η2)T

  )c(m, nj)(o, nk)     = {

min((λ1)T
  (o), (η2)T

  (nj, nk): ∀ m = o ∈  N1 and njnk ∈  L2 or m isolated in N1 

min((η1)T
  (m, o), (λ2)T

  (nj): ∀ mo ∈  L1 and nj = nk ∈  N2 or nj isolated in N2

min((η1)T
  (m, o), (η2)T

  (nj, nk): ∀ mo ∈  L1 and njnk ∈  L2 

} 

 

 

   ((η1)T
  )𝑐(nj, nk) = {

                         0                  ;   if     njnk ∈ L1

min[(λ1)T
  (mj), (λ1)T

  (nk)] ;  if      njnk ∈ L1
C  

 

 

  ((η2)T
  )𝑐(nj, nk) = {

                         0                  ;   if     njnk ∈ L2

min[(λ2)T
  (mj), (λ2)T

  (nk)] ;  if      njnk ∈ L2
C  

 

  ((η1)T
  ∘ (η2)T

  )c(m, nj)(o, nk) = {
                         0                  ;   if    m = o ∈  N1 and nj, nk ∈  L2

C

min[(λ1)T
  (mj), (λ2)T

  (mk)] ;  if       mo ∈  L1
Cand njnk ∈  L2

 

 

                               ((η1)T
  ∘ (η2)T

  )𝑐(m, nj)(o, nk) = ((η1)T
  )c(m, nj) ∘ ((η2)T

  )c(o, nk) 

 

Similarly the results also apply for the intermediate and falsity values.  

(η1)T
  ∘ (η2)T

  )𝑐(ni, x)(nk, o)            = {

min((λ1)T
  (o), (η2)T

  (ni, nk): ∀ x = o ∈  N2 and nink ∈  L1 or ni isolated in N2 

min((η1)T
  (x, o), (λ2)T

  (ni): ∀ xo ∈  L1 and ni = nk ∈  N2 or ni isolated in N2
min((η1)T

  (x, o), (η2)T
  (ni, nk): ∀ xo ∈  L2 and nink ∈  L1 

}

C
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((η1)T
  ∘ (η2)T

  )c(ni, x)(nk, o)    =

{
 
 

 
 min((λ1)T

  (o), (η2)T
  (ni, nk): ∀ x = o ∈  N2 and nink ∈  L1

Cor y isolated in N2  

min((η1)T
  (x, o), (λ2)T

  (nj): ∀ xo ∈  E1
Cand ni = nk ∈  N2 or nk isolated in N2

min((η1)T
  (x, o), (η2)T

  (ni, nk): ∀ xo ∈  L2 and nink ∈  L1
C  

min((η1)T
  (x, o), (η2)T

  (ni, nk): ∀ xo ∈  L2
Cand nink ∈  L1 }

 
 

 
 

 

 

(η1)T
  ∘ (η2)T

  )c(ni, x)(nk, o) = {

min((λ1)T
  (o), (η2)T

  (𝑛i, nk): ∀ x = o ∈  N2 and nink ∈  L1 or niisolated in N2 

min((η1)T
  (n, o), (λ2)T

  (ni): ∀ xo ∈  L1 and ni = nk ∈  N2 or ni isolated in N2
min((η1)T

  (x, o), (η2)T
  (ni, nk): ∀ xo ∈  L2 and nink ∈  L1 

} 

 

 

   ((η1)T
  )c(ni, nk) = {

                         0                  ;   if     nink ∈ L1
min[(λ1)T

  (mi), (λ1)T
  (mk)] ;  if     nink ∈ L1

C  

 

           ((η2)T
  )c(ni, nk) = {

                         0                  ;   if     nink ∈ L2
min[(λ2)T

  (mi), (λ2)T
  (mk)] ;  if      nink ∈ L2

C  

  ((η1)T
  ∘ (η2)T

  )c(ni, x)(nk, o) = {
                         0                  ;   if     x = o ∈  N2 and nink ∈  L2

C

min[(λ1)T
  (ni), (λ2)T

  (nk)] ;  if      xo ∈  L2
Cand nink ∈  L1

 

 

  

    ((η1)T
  ∘ (η2)T

  )𝑐(ni, x)(nk, o) = ((η1)T
  )c(ni, nk) ∘ ((η2)T

  )c(x, o) 

 

Similarly the results also apply for the intermediate, falsity value the result holds. 

 

Illustration 3.14.  

 

     

                                                               

 

 

 

 

 

 

                                       

                                                  

(𝐒𝐍𝐆𝟏)   (𝐒𝐍𝐆𝟐)   

Figure 3.15 (a)                     Figure 3.15 (b)                   

 

 

 

 

                                                                                                                                

                                                 

                                            

    

 

              

                                              

                

(𝐒𝐍𝐆𝟏)
𝐜       (𝐒𝐍𝐆𝟐)

𝐜 

  Figure 3.16 (a)                           Figure 3.16 (b)                   
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      Figure 3.17          

     (𝐒𝐍𝐆𝟏)
𝐜  ∘  (𝐒𝐍𝐆𝟏)

𝐜   

     

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(𝐒𝐍𝐆𝟏 ∘ 𝐒𝐍𝐆𝟐)
𝒄 

Figure 3.18 
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4. CONCLUSION 

The strong neutrosophic graph is generalized 

information of the notion of fuzzy sets. We shall discuss the 

some opeartions establishes a particular cases of fuzzy set 

theory. The Strong Neutrosophic Graph have more 

precisions, Neutrosophic Graph, and Single Valued 

Neutrosophic Sets. We have defined for the strong 

Neutrosophic Graph, complement of union, join, self 

complementary and product of Strong Neutrosophic Graphs 

are also characterized. 
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