
  

 
 

3639 V. R. Kulli, IJMCR Volume 11 Issue 08 August 2023 
 

International Journal of Mathematics and Computer Research  

ISSN: 2320-7167 

Volume 11 Issue 08 August 2023, Page no. 3639-3644 

Index Copernicus ICV: 57.55, Impact Factor: 7.362 

 DOI: 10.47191/ijmcr/v11i8.03 

 
. 

Modified Domination Sombor Index and its Exponential of a Graph 
 

V. R. Kulli 

Department of Mathematics, Gulbarga University, Gulbarga 585106, India 

 

ARTICLE INFO ABSTRACT 

Published Online: 

12 August 2023 

 

Corresponding Author: 

V. R. Kulli 

In this paper, we introduce the modified domination Sombor index and its corresponding 

exponential of a graph. Also we introduce the domination Sombor exponential of a graph. We 

compute the modified domination Sombor index and its corresponding exponential for some 

standard graphs, French windmill graphs, friendship graphs and book graphs. Furthermore, we 

establish some properties of the domination Sombor index.  
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  I. INTRODUCTION 

 Let G be a simple, connected graph with vertex set V(G) 

and edge set E(G). The degree dG(u) of a vertex u is the 

number of vertices adjacent to u.  We refer [1, 2] for 

undefined term and notation. 

                  A molecular graph is a simple graph, 

representing the carbon atom skeleton of an organic 

molecule of the hydrocarbon. Therefore the vertices of a 

molecular graph represent the carbon atoms and its edges 

the carbon-carbon bonds. Chemical Graph Theory is a 

branch of Mathematical Chemistry which has an important 

effect on the development of Chemical Sciences. Several 

graph indices have found some applications in Chemistry, 

especially in QSPR/QSAR research [3, 4]. 

            The domination degree  
dd u  of a vertex u [5] in a 

graph G is defined as the number of minimal dominating 

sets of G which contains u. 

            The modified first domination Zagreb index [5] of a 

graph is defined as  

             
 

*
1 .d d

uv E G

DM G d u d v


   

Ref. [5] was soon followed by a series of publications [6, 7, 

8, 9, 10, 11, 12, 13]. 

  

The modified forgotten domination index [5] of a graph is 

defined as  

             
 

* 2 2 .d d

uv E G

DF G d u d v


   

 

Recently, the so-called domination Sombor index was put 

forward, defined as [14] 

          

     
 

2 2
.d d

uv E G

DSO G d u d v


 
 

Considering the domination Sombor index, we 

define the domination Sombor exponential of a graph G as 

          
   

 

2 2

, .d dd u d v

uv E G

DSO G x x




   

Recently, some Sombor indices were studied, for example, 

in [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30].  

  

We propose the modified domination Sombor 

index of a graph G and defined it as 

         

    
2 2

1
.m

uv E G
d d

DSO G

d u d v






 

Considering the modified domination Sombor 

index, we define the modified domination Sombor 

exponential of a graph G as 

            
   

 

2 2

1

, .d dd u d vm

uv E G

DSO G x x




   

Recently, some domination indices were studied, for 

example, in [31, 32, 33, 34, 35, 36].  

 

 In this paper, we compute the modified domination 

Sombor index for some standard graphs, French windmill 

graphs, friendship graphs. Also we compute the domination 

Sombor exponential and   modified domination Sombor 
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exponential for some standard graphs, French windmill 

graphs, friendship graphs and book graphs. Furthermore, we 

establish some properties of the domination Sombor index.

  

II. RESULTS FOR SOME STANDARD GRAPHS 

Proposition 1. If  nK  is a complete graph with n vertices, 

then       
( 2)

.
2 2

m
n

n n
DSO K


  

Proof: If  nK  is a complete graph, then dd(u) =1.  

From definition, we have   

   

    
2 2

1m

uv E G
d d

DSO G

d u d v




      

        
2 2

( 1) 1 ( 1)
.

2 2 21 1

n n n n 
 


                           

Proposition 2. If 1 nS   is a star graph with dd(u) =1, then            

            1 .
2

m
n

n
DSO S       

Proposition 3. If 1, 1 p qS    is a double star graph with dd(u) 

=2, then            

             1, 1

1
.

2 2

m
p q

p q
DSO S  

 
  

Proposition 4.  Let Km,n   be a complete bipartite graph with 

2 ≤ m≤ n. Then 

       
 

,   
2 2

.
2 1

n
m

m

mn
DSO

m n
K

m n


   
 

Proof: Let Km,n    be a complete bipartite graph with m + n 

vertices and mn edges such that |V1|= m , | V2 |= n, V (Kr,s ) = 

V1  V2   for 1 ≤ m  ≤ n, and n ≥ 2. Every vertex of V1 is 

incident with n edges and every vertex of V2   is incident 

with m edges. Then   

       
dd u =m+1,  

                   =n+1,        for all u∈V(Km,n ). 

  From definition, we have  

        
    ,   

2
,   

2

1

m n

m n

K

m

uv E
d d

DSO

d u d

K

v




               

     2 2 2 2
.

2 11 1

mn mn

m n m nm n

 
     

      

                    In the following proposition, by using 

definitions, we obtain the modified domination Sombor 

exponential of  ,nK 1 ,nS  1, 1p qS    and Km,n  . 

.  

Proposition 5. The modified domination Sombor 

exponential of  ,nK 1 ,nS  1, 1p qS    and Km,n  are given by  

(i)          
   

 

2 2

1

, d dd u d vm
n

uv E G

DSO K x x




 
 

                          

2 2

1 1

1 1 2( 1) ( 1)
.

2 2

n n n n
x x 

 

 

(ii)          
1

2
1, .m

nDSO S x nx   

(iii)           
1

2
1, 1, 1 .m

p qDSO S x p q x    
 

(iv)            2 2

1

2 1
, , .m m n m n

m nDSO K x mnx      

 

                    In the following proposition, by using 

definitions, we obtain the domination Sombor exponential 

of  ,nK 1 ,nS  1, 1p qS    and Km,n  . 

.  

Proposition 6. The domination Sombor exponential of 

 ,nK 1 ,nS  1, 1p qS    and Km,n  are given by  

(i)          
   

 

2 2

, d dd u d v
n

uv E G

DSO K x x




 
 

                          

2 21 1 2( 1) ( 1)
.

2 2

n n n n
x x 

 

 

(ii)           2
1, .nDSO S x nx   

(iii)            2 2
1, 1, 1 .p qDSO S x p q x    

 

(iv)          
 2 2 2 1

, , .m n m n
m nDSO K x mnx      

       

III. RESULTS FOR FRENCH WINDMILL GRAPHS 

 The French windmill graph m

nF  is the graph 

obtained by taking m  3 copies of Kn, n  3 with a vertex 

in common [18]. The graph m

nF  is presented in Figure 4. 

The French windmill graph 
3

mF  is called a friendship graph. 

 

 

Figure 4. French windmill graph m

nF  

 

 Let F be a French windmill graph m

nF . Then  

 
dd u =1,       if u is in center 
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             =   1
1

m
n


 ,        otherwise. 

Theorem 1. Let F be a French windmill graph m

nF .  Then 

 
 

 
 1 2

1

1 1

m

m

m n
DSO F

n





 

       

                    
   

 
 1

[( 1 / 2) 1 ]
.

1 2
m

mn n m n

n


  



 

Proof: In F, there are two sets of edges. Let E1 be the set of 

all edges which are incident with the center vertex and E2 be 

the set of all edges of the complete graph. Then 

|  

    
2 2

1m

uv E G
d d

DSO F

d u d v




  

                   

    1

2 2

1

uv E G
d dd u d v




    

                 

    2

2 2

1

uv E G
d dd u d v




  

    
 

 
 

   

 
 

 
 1 2 1 2 1 22

1 [( 1 / 2) 1 ]

1 1 1 1
m m m

m n mn n m n

n n n
  

   
 

    

 

    
 

 
 

   

 
 11 2

1 [( 1 / 2) 1 ]
.

1 21 1
mm

m n mn n m n

nn


   
 

 

 

Corollary 1.1.  Let 3
mF  be a friendship graph. Then 

 

 
 

 
 3 11 2

2 2
.

2 21 2

m m

mm

m m n
DSO F




 


                                    

        In the following theorem, by using definition, we 

obtain the modified domination Sombor exponential of a 

French windmill graph
m

nF . 

  

Theorem 2. The modified domination Sombor exponential 

of 
m

nF is given by 

              
 1 2

1

1 1, 1
m

m m n
nDSO F x m n x


  

 

         
     

 1

1

1 2[( 1 / 2) 1 ]
m

nmn n m n x


   
 

 

        In the following theorem, by using definition, we 

obtain the domination Sombor exponential of a French 

windmill graph
m

nF . 

  

Theorem 3. The domination Sombor exponential of 
m

nF is 

given by 

              
 1 2

1 1, 1
m

m n
nDSO F x m n x


  

 

         
     

 1
1 2[( 1 / 2) 1 ] .

m
nmn n m n x


   

 

 

        In the following theorem, by using definition, we 

obtain the modified domination Sombor index of a 

friendship graph 3
mF . 

               
         

Theorem 4. The modified domination Sombor index of 3
mF   

is given by 

      
   3 11 2

2
.

2 21 2

m m

mm

m m
DSO F


 


 

 

        In the following theorem, by using definition, we 

obtain the modified domination Sombor exponential of a 

friendship graph 3
mF . 

               
         

Theorem 5. The modified domination Sombor exponential 

of 3
mF   is given by 

      
   1 2 1

1 1

1 2 2 2
3 , 2 .

m mm mDSO F x mx mx
    

  

        In the following theorem, by using definition, we 

obtain the domination Sombor exponential of obtain a 

friendship graph 3
mF . 

               
         

Theorem 6. The domination Sombor exponential of 3
mF   is 

given by 

      
   1 2 11 2 2 2

3 , 2 .
m mmDSO F x mx mx
  

 
 

IV. RESULTS FOR Bn  

         The book graph Bn, n≥3, is a cartesian product of star 

Sn+1 and path P2. 

For Bn, n≥3, we have  

 
dd u = 3,   if u is the center vertex, 

          = 
12n

+1,   otherwise. 

 

Theorem 7. If Bn, n≥3, is a book graph, then 

      1 16 2 4 2 2 2 1 .m n n
nDSO B n n       

 Proof: In Bn, there are three types of edges as follow: 

 E1 = {uv  E(Bn) | dd(u)=dd(v)=3},             | E1| = 1  

 E2 = {uv  E(Bn) | dd(u) = 3, dd(v)= 
12n

+1}, | E2| = 2n. 

 E3 = {uv  E(Bn) | dd(u) = dd(v)= 
12n

+1},    | E3| = n. 

 

By definition, we have 

    
    

2 2

1m
n

uv E G
d d

DSON B

d u d v




        
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 
2 2 2

2 1

1 1
1 2

3 3 3 2 1n

n


 
  

 

       

   
2 2

1 1

1

2 1 2 1n n

n
 



  

 

      
 12( 1)

1 2
.

18 2 1 210 2 2
nn n

n n


  
 

      

         In the following theorem, by using definition, we 

obtain the modified domination Sombor exponential of Bn. 

 

Theorem 8. The modified domination Sombor exponential 

of Bn is given by      

 
   2 1 1

1 11

18 10 2 2 2 1 2, 2 .
n n nm

nDSO x x nx nxB
         

 

         In the following theorem, by using definition, we 

obtain the domination Sombor exponential of Bn. 

 

Theorem 9. The domination Sombor exponential of Bn is 

given by      

 
   2 1 118 10 2 2 2 1 2, 2 .
n n nm

nDS BO x x nx nx
        

 

 V. RESULTS FOR GoKp 

 

Theorem 10. Let H=GoKp, where G is a connected graph 

with n vertices and m edges; and Kp is a complete graph. 

Then  

     

 
 

2

1

2
.

2 2 1

m

n

m np np
DSO H

p


 



 

Proof: If H=GoKp, then  
dd u =  

1
1

n
p


 . In Kp, there 

are 
( 1)

.
2

p p 
 edges. Thus H has 

21
(2 )

2
m np np   

edges. Thus 

    

    
2 2

1m

uv E G
d d

DSO H

d u d v






 

      

 
 

 
 

2

2 1 2 1

1 1
(2 )

2
1 1

n n
m np np

p p
 

  

  

       

      

 
 

2

1

2
.

2 2 1
n

m np np

p


 


  

           In the following theorem, by using definition, we 

obtain the modified domination Sombor exponential of 

GoKp . 

 

Theorem 11. The modified domination Sombor exponential 

of GoKp is given by 

         
 1

1

2 121
, (2 ) .

2

n
p

p
m DSO x m nK n xG po p




  
 

           In the following theorem, by using definition, we 

obtain the domination Sombor exponential of GoKp . 

Theorem 12. The domination Sombor exponential of GoKp 

is given by 

         
 1

2 121
, (2 ) .

2

n
p

pDSO x m nK pG p xo n



  

 
 

VI. PROPERTIES OF DOMINATION SOMBOR 

INDEX  

Theorem 13. Let G be a connected graph with m edges. 

Then 

                * *
1 1

1
.

2
DM G DSO G DM G 

 

Proof: For any two positive numbers a and b, 

    
  2 21

( ) .
2

a b a b a b   
    

  For a=dd(u)  and 
 

b=dd(v) ,  the above inequalities 

transform into
    

             
        2 2

 
1

2
 d d d dd u d v d u d v 

    

                            

   
d dd u d v 

  Now, we obtain      

    
 

   
 

2 21

2
 d d d d

uv E G uv E G

d u d v d u d v
 

  

                                                

    
 

d d

uv E G

d u d v


   

with the help of definitions, we arrive the desired result.     

Theorem 14. Let G be a connected graph with m edges. 

Then 

                *( ).DSO G mDF G  

 Proof:  Using the Cauchy-Schwarz inequality, we obtain 

         
 

2
2 2

d d

uv E G

d u d v


 
 

 


 

                    
 

    
 

2 2
 1 .d d

uv E G uv E G

d u d v
 

    

                        
*( ).mDF G  

Thus                              

         *( ).DSO G mDF G
 

 

VII. CONCLUSION                              

In this paper, we have introduced the modified domination 

Sonbor index and its corresponding exponential of a graph. 

Also we have introduced the domination Sonbor exponential 

of a graph. We have computed newly defined modified 

domination Sombor index and exponentials for some 
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standard graphs, French windmill graphs, friendship graphs. 

We have established some properties of the domination 

Sombor index. 
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