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In this paper we introduce notion of Ricci solitons in 𝛼-para Kenmotsu manifold with semi -

symmetric metric connection. We have found the relations between curvature tensor, Ricci tensors 

and scalar curvature of 𝛼-para Kenmotsu manifold with semi-symmetic metric connection.We have 

proved that 3-dimensional 𝛼-para Kenmotsu manifold with semi -symmetric metric connection is 

an 𝜂-Einstein manifold and the Ricci soliton defined on this manifold is named expanding and 

steady with respect to the value of 𝜆  constant.It is proved that Conharmonically flat 𝛼 -para 

Kenmotsu manifold with semi-symmetric metric connection is 𝜂-Einstein manifold. 
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1  INTRODUCTION 

In 1972 Kemmotsu[18] studied a class of contact Riemannian 

manifolds satisfying some special conditions and this 

manifolds is known as Kenmotsu manifold.Sharma and 

Sinha[15] started to study of the Ricci solitons in contact 

geometry in 1983.Later Mukut Mani Tripathi,Cornelia Livia 

Bejan and Mircea Crasmareanu[3],[17] and others 

extensively studied Ricci solitons in contact metric 

manifolds.In 1985, almost paracontact geometry was 

introduced by kaneyuki and williams[7] and then it was 

continued by many authors. Nagaraja ve premalatha[11] 

studied exclusively about Ricci solitons on Kenmotsu 

manifold in 2012 .Agashe and Chafle ,Liang,pravonovic and 

Sengupta,Yildiz and Cetinkaya [1],[9],[12],[14] and [19] 

studied semi-symmetric non-metric connection in different 

ways  

A systematic study of almost paracontact metric 

manifolds was carried out by Zamkovoy[21].However such 

structures were also studied by Buchner and Rosca. Rossca 

and Venhecke[13]. Further almost Para-Hermitian Structure 

on the tangent of an almost Para-Co hermitian manifolds was 

studied by Bejan[3].A class of 𝛼-para kenmotsu manifolds 

was studied by srivastva and srivastva[16]. We can observe 

that the concircular curvature tensor on Pseudo-Riemannian 

manifold to be of constant curvature. Hayden[9] introduced 

Semi-symmetric linear connection on a Riemannian 

manifold.Let M be an n-dimensional Riemannian manifold of 

class C-endowed with the Riemannian metric g and ▽ be the 

Levi-Civita Connection on 𝑀𝑛 . A linear connection ▽̅ 

defined on 𝑀𝑛 is said to be semi symmetric[8] if its torsion 

tensor T is of the form  

𝑇(𝑋, 𝑌) = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌 

where 𝜉 is a vector field and 𝜂 is a 1-form defined by  

𝑔(𝑋, 𝜉) = 𝜂(𝑋) 

 

for all vector field X ∈ 𝜒(𝑀𝑛) where, 𝜒(𝑀𝑛) is the set of all 

differentiable vector fields on 𝑀𝑛 . A relation between the 

semi-symmetric metric connection ▽̅  and the Levi-Civita 

connection ▽ on 𝑀𝑛 has been obtained by Yano[20] which 

is given as  

▽̅𝑋 𝑌 =▽𝑋 𝑌 + 𝜂(𝑌)𝑋 − 𝑔(𝑋, 𝑌)𝜉 (1.1) 

 

2  Preliminaries 

A differentiable manifold 𝑀𝑛 of dimension n is said to have 

an almost paracontact (𝜙,𝜉,𝜂)-structure if it admits an (1,1) 

tensor field 𝜙,a unique vector field 𝜉,1-form 𝜂 such that : 

 

𝜙2 = 𝐼 − 𝜂 ⊗ 𝜉, 

  

𝜙𝜉 = 0, 

 

𝜂 ∘ 𝜙 = 0 (2.1) 

       𝜂(𝜉) = 1 (2.2) 

 

for any vector field X,Y on 𝑀𝑛 .The manifold 𝑀𝑛 equipped 

with an almost paracontact structure (𝜙,𝜉,𝜂) is called almost 
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paracontact manifold . In addition,if an almost paracontact 

manifold admits a pseudo-Riemannian metric satisfying 

 

𝑔(𝑋, 𝜉) = 𝜂(𝑋) (2.3) 

  

𝑔(𝜙𝑋, 𝜙𝑌) = −𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌) (2.4) 

  

𝑔(𝜙𝑋, 𝑌) = −𝑔(𝑋, 𝜙𝑌) (2.5) 

 

for any vector field X,Y on 𝑀𝑛 ,where 𝜙 is a (1,1) tensor 

field, 𝜉  is a vector field, 𝜂  is a 1-form and g is the 

Riemannian metric.Then 𝑀  is called an almost contact 

manifold.For an almost contact manifold 𝑀,it follows that 

[9] 

 (▽𝑋 𝜙)𝑌 =▽𝑋 𝜙𝑌 − 𝜙(▽𝑋 𝑌) (2.6) 

 

 

 (▽𝑋 𝜂)𝑌 =▽𝑋 𝜂(𝑌) − 𝜂(▽𝑋 𝑌) (2.7) 

Let 𝑅  be Riemann curvature tensor, 𝑆  Ricci curvature 

tensor,𝑄 Ricci operator we have 

 

𝑆(𝑋, 𝑌) = ∑𝑛
𝑖=1 𝑔(𝑅(𝑒𝑖 , 𝑋)𝑌, 𝑒𝑖) (2.8) 

 

 

𝑄𝑋 = − ∑𝑛
𝑖=1 𝑅(𝑒𝑖 , 𝑋)𝑒𝑖 (2.9) 

 

and  

𝑆(𝑋, 𝑌) = 𝑔(𝑄𝑋, 𝑌) (2.10) 

 

for any vector field X,Y on 𝑀𝑛,then (𝜙,𝜉,𝜂,g),is called an 

almost paracontact metric structure and the manifold 𝑀 

equipped with an almost paracontact metric structure is called 

an almost paracontact metric manifold.Further in addition,if 

the structure (𝜙,𝜉,𝜂,g) satisfies  

𝑑𝜂(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌) (2.11) 

for any vector fields X,Y on 𝑀𝑛 .Then the manifold is called 

paracontact metric manifold and the corresponding structure 

(𝜙,𝜉,𝜂,g) , is called a paracontact structure with the associated 

metric g [10]. On an almost paracontact metric manifold,the 

(1,2) tensor field 𝑁𝜙 defined as  

  𝑁𝜙 = [𝜙, 𝜙] − 2𝑑𝜂 ⊗ 𝜉 (2.12) 

 

Where [𝜙 ,𝜙 ] is the nijenhuis tensor of 𝜙 .If N vanishes 

identically,then we say that the manifold 𝑀𝑛  is a normal 

almost parametric metric manifold. The normality condition 

implies that the almost paracomplex structure J defined on 

𝑀𝑛 ×R 

𝐽(𝑋, 𝜆
𝑑

𝑑𝑡
) = (𝜙𝑋 + 𝜆(𝜉), 𝜂(𝑋)

𝑑

𝑑𝑡
), 

is integrable . Here X is tangent to 𝑀𝑛 , t is the coordinate of 

R and 𝜆 is a differentiable function on 𝑀𝑛 ×R. 

For an almost paracontact metric 3-dimensional manifold 𝑀3 

, the following three conditions are mutually equivalent : 

(i) there exist smooth functions 𝛼,𝛽 on 𝑀3 such that  

 (▽𝑋 𝜙)𝑌 = 𝛼(𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋) +

𝛽(𝑔(𝑋, 𝑌)𝜉) − 𝜂(𝑌)𝑋) (2.13) 

(ii) 𝑀3 is normal, 

(iii) there exist smooth functions 𝛼,𝛽 on 𝑀3 such that  

  ▽𝑋 𝜉 = 𝛼(𝑋 − 𝜂(𝑋)𝜉) + 𝛽𝜙𝑋 (2.14) 

 

where ▽ is Levi-Civita connection of pseudo-Riemannian 

metric g. 

A normal almost paracontact metric 3-dimensional manifold 

is called  

(a) Para-Cosymplectic manifold if 𝛼 = 𝛽 =0, 

(b) quasi-para Sasakian manifold if and only if 𝛼 =0 and 𝛽 

≠ 0, 

(c) 𝛽-para Sasakian manifold if and only if 𝛼 = 0 and 𝛽 is a 

non- zero constant,in particular para-Sasakian manifold if 𝛽 

= -1  

(d) 𝛼-para Kenmotsu manifold if 𝛼 is a non-zero constant 

and 𝛽 =0 in particular para-Kenmotsu manifold if 𝛼=1. 

 

3  On 3-dimensional 𝜶-para Kenmotsu manifold with 

semi-symmetric metric connection 

In 3-dimensional 𝛼 -para Kenmotsu manifold, the Ricci 

tensor 𝑆 of Levi-Civita connection ▽ is given by 

 

𝑆(𝑋, 𝑌) = 𝑔(𝑅(𝑒1, 𝑋)𝑌, 𝑒1) − 𝑔(𝑅(𝜙𝑒1, 𝑋)𝑌, 𝜙𝑒1)

+ 𝑔(𝑅(𝜉, 𝑋)𝑌, 𝜉). 

 

Let 𝑀3  ( 𝜙 , 𝜉 , 𝜂 ,g) be an 𝛼 -para Kenmotsu manifold 

[13],then we have 

 

  𝑅(𝑋, 𝑌)𝑍 = (
𝑟

2
+ 2𝛼2)[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] 

−(
𝑟

2
+ 3𝛼2)[𝜂(𝑋)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)]𝜉 

+(
𝑟

2
+ 3𝛼2)[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]𝜂(𝑍) (3.1) 

 

Replace Z = 𝜉 in equation (3.1), we get 

  

𝑅(𝑋, 𝑌)𝜉 = 𝛼2𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, (3.2) 

 

 

𝑆(𝑋, 𝑌) = (
𝑟

2
+ 2𝛼2)𝑔(𝑋, 𝑌) − (

𝑟

2
+

3𝛼2)𝜂(𝑋)𝜂(𝑌) (3.3) 

 

 

𝑆(𝑋, 𝜉) = −2𝛼2𝜂(𝑋) (3.4) 

 

 

 (▽𝑋 𝜙)𝑌 = 𝛼(𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋) (3.5) 

 

 

▽𝑋 𝜉 = 𝛼(𝑋 − 𝜂(𝑋)𝜉) (3.6) 

 

Let ▽̅  be a linear connection and ▽  be a Riemann 

connection of an 𝛼 -para Kenmotsu manifold M. This ▽̅ 
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linear connection defined by 

 

▽̅𝑋 𝑌 =▽𝑋 𝑌 + 𝜂(𝑌)𝑋 − 𝑔(𝑋, 𝑌)𝜉. (3.7) 

 

For 𝛼-para Kenmotsu manifold with semi-symmetric metric 

connection ,using (2.6),(3.5) and (3.7) we have 

 

(▽̅𝑋 𝜙)𝑌 = 𝛼[𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋] + 𝜂(𝑌)𝜙𝑋 (3.8) 

 

from equation (3.7),we have  

▽̅𝑋 𝜉 = (1 + 𝛼)(𝑋 − 𝜂(𝑋)𝜉) (3.9) 

Let 𝑀3 be a 3-dimensional 𝛼-para Kenmotsu manifold .The 

curvature tensor 𝑅̅  of 𝑀3  with respect to the semi-

symmetric metric connection ▽̅ is defined by 

 

𝑅̅(𝑋, 𝑌)𝑍 =▽̅𝑋▽̅𝑌 𝑍 −▽̅𝑌▽̅𝑋 𝑍 −▽̅[𝑋,𝑌] 𝑍, (3.10) 

with the help of (3.7) and (3.9), we get  

▽̅𝑋▽̅𝑌 𝑍 =▽𝑋▽𝑌 𝑍 + 𝑋𝜂(𝑍)𝑌 + 𝜂(𝑍) ▽𝑋 𝑌 − 𝑋𝑔(𝑌, 𝑍)𝜉 

−𝛼𝑔(𝑌, 𝑍)𝑋 + 𝛼𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 

+𝜂(▽𝑌 𝑍)𝜂(𝑍)𝜂(𝑌)𝑋 − 𝑔(𝑌, 𝑍)𝑋 

−𝑔(𝑋,▽𝑌 𝑍)𝜉 − 𝜂(𝑍)𝑔(𝑋, 𝑌)𝜉 + 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉    

(3.11) 

  

▽̅𝑌▽̅𝑋 𝑍 =▽𝑌▽𝑋 𝑍 + 𝑌𝜂(𝑍)𝑋 + 𝜂(𝑍) ▽𝑌 𝑋 − 𝑌𝑔(𝑋, 𝑍)𝜉 

−𝛼𝑔(𝑋, 𝑍)𝑌 + 𝛼𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 

+𝜂(▽𝑋 𝑍)𝜂(𝑍)𝜂(𝑋)𝑌 − 𝑔(𝑋, 𝑍)𝑌 

−𝑔(𝑌,▽𝑋 𝑍)𝜉 − 𝜂(𝑍)𝑔(𝑌, 𝑋)𝜉 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉  

(3.12) 

and  

− ▽̅[𝑋,𝑌] 𝑍 = − ▽[𝑋,𝑌]− 𝜂(𝑍) ▽𝑋 𝑌 + 𝜂(𝑍) ▽𝑌 𝑋 

−𝑔(▽𝑋 𝑌, 𝑍)𝜉 + 𝑔(▽𝑌 𝑋, 𝑍)𝜉. (3.13) 

 

By using equations (3.7),(2.2),(2.3),(3.6),(3.9)(3.10),(3.11), 

(3.12) and(3.13) ,we get  

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (1 + 2𝛼)[𝑔(𝑌, 𝑍)𝑋 −

𝑔(𝑋, 𝑍)𝑌] + (1 + 𝛼)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]𝜂(𝑍) + (1 +

𝛼)[𝜂(𝑋)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)]𝜉 (3.14) 

 

Replace Z = 𝜉 in equation (3.14),using (2.3) and (3.2),we 

have  

𝑅̅(𝑋, 𝑌)𝜉 = 𝛼(1 + 𝛼)(𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋). (3.15) 

 

Replace Y = 𝜉  in equation (3.15) and using 

equation (2.3),we get 

𝑅̅(𝑋, 𝜉)𝜉 = 𝛼(1 + 𝛼)(𝜂(𝑋)𝜉 − 𝑋). (3.16) 

 In (3.15) taking the inner product with Z,we have  

𝑔(𝑅̅(𝑋, 𝑌)𝜉, 𝑍) = 𝛼(1 + 𝛼)(𝜂(𝑋)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)).

 (3.17) 

 Thus we have 

 

Lemma 3.1 Let M be a 3-dimensional 𝛼 -para Kenmotsu 

manifold with the semi-symmetric metric connection,𝑆̅ Ricci 

curvature tensor and 𝑄̅ Ricci operator .Then  

𝑆̅(𝑋, 𝜉) = −2𝛼(1 + 𝛼)𝜂(𝑋) (3.18) 

and  

𝑄̅𝜉 = −2𝛼(1 + 𝛼)𝜉 (3.19) 

Proof. Contracting with Y and Z in (3.17) and summing over 

i=1,2,...,n,from (2.8) expression  

 

 ∑ 𝑔(𝑅̅(𝑒𝑖 , 𝑌)𝜉, 𝑒𝑖) = 𝛼(1 + 𝛼)[∑ 𝜂(𝑒𝑖)𝑔(𝑌, 𝑒𝑖) −

𝜂(𝑌) ∑ 𝑔(𝑒𝑖 , 𝑒𝑖)] 

 

the proof of (3.18) is completed.Then also usnig (2.10) and 

(2.1),(2.2),(2.3) ,the proof of (3.19) is completed. 

 

Lemma 3.2 Let 𝑀  be a 3-dimensional 𝛼 -para Kenmotsu 

manifold with the semi-symmetric metric connection, 𝑟 

scalar curvature tensor,𝑆̅(X,Y) Ricci curvature tensor and 

𝑄̅X Ricci operator.Then it follows that 

 

 𝑆̅(𝑋, 𝑌) = (−1 +
𝑟

2
− 3𝛼 + 𝛼2)𝑔(𝑋, 𝑌) + (1 −

𝑟

2
+

𝛼 − 3𝛼2)𝜂(𝑋)𝜂(𝑌) (3.20) 

 And  

𝑄̅𝑋 = (−1 +
𝑟

2
− 3𝛼 + 𝛼2)𝑋 + (1 −

𝑟

2
+ 𝛼 −

3𝛼2)𝜂(𝑋)𝜉 (3.21) 

 

Proof. Taking inner product of equation (3.14) with 𝑈 and 

using equation (2.3) we have  

𝑔(𝑅̅(𝑋, 𝑌)𝑍, 𝑈) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑈) − (1

+ 2𝛼)[𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑈) − 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑈)] 

+(1 + 𝛼)[𝜂(𝑌)𝑔(𝑋, 𝑈) − 𝜂(𝑋)𝑔(𝑌, 𝑈)]𝜂(𝑍) 

+(1 + 𝛼)[𝜂(𝑋)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)]𝜂(𝑈) (3.22) 

 

Let {𝑒1, 𝜙𝑒1, 𝜉}  be a local orthonormal 𝜙 -basis of vector 

fields on 𝛼-para Kenmotsu manifold 𝑀3.Then, we get  

 𝑆̅(𝑋, 𝑌) = (−1 +
𝑟

2
− 3𝛼 + 𝛼2)𝑔(𝑋, 𝑌) + (1 −

𝑟

2
+

𝛼 − 3𝛼2)𝜂(𝑋)𝜂(𝑌) (3.23) 

 

from equation (3.23) ,we have  

𝑟̅ = −2 + 𝑟 − 8𝛼 (3.24) 

where 𝑟̅ is the scalar curvature with semi-symmetric metric 

connection. 

using (3.23) and (2.10),it’s verified that  

𝑔(𝑄̅𝑋, 𝑌) = 𝑔((−1 +
𝑟

2
− 3𝛼 + 𝛼2)𝑋 + (1 −

𝑟

2
+

𝛼 − 3𝛼2)𝜂(𝑋)𝜉), 𝑌) (3.25) 

from equation (3.25),we get  

 𝑄̅𝑋 = (−1 +
𝑟

2
− 3𝛼 + 𝛼2)𝑋 + (1 −

𝑟

2
+ 𝛼 −

3𝛼2)𝜂(𝑋)𝜉 (3.26) 

the proof of (3.21) is completed. 

 

4  Ricci solitons in 𝜶 -para kenmotsu Manifold with 

semi-symmetric metric connection 

Let M be a 3-dimensional 𝛼-para Kenmotsu manifold with 

the semi-symmetric metric connection and V be pointwise 

collinear with 𝜉 (i.e.V =b𝜉 , where b is a function ).Then  

 (𝐿𝑉𝑔 + 2𝑆 + 2𝜆𝑔)(𝑋, 𝑌) = 0 

implies 
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0 = 𝑏𝑔(▽̅𝑋 𝜉, 𝑌) + (𝑋𝑏)𝜂(𝑌) + 𝑏𝑔(𝑋,▽̅𝑌 𝜉) 

+(𝑌𝑏)𝜂(𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) (4.1) 

 

using (3.9) in (4.1) , we get 

0 = 2𝑏(1 + 𝛼)𝑔(𝑋, 𝑌) − 2𝑏(1 + 𝛼)𝜂(𝑋)𝜂(𝑌) + (𝑋𝑏)𝜂(𝑌) 

+(𝑌𝑏)𝜂(𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) (4.2) 

 

With the substitution of Y with 𝜉 in (4.2) , it follows that 

 (𝑋𝑏) + (𝜉𝑏)𝜂(𝑋) + 2𝜆𝜂(𝑋) − 4𝛼(1 + 𝛼)𝜂(𝑋) = 0 (4.3) 

 

Again replacing X by 𝜉 in (4.3) shows that 

𝜉𝑏 = −𝜆 + 2𝛼(𝛼 + 1) (4.4) 

 

Putting (4.4) in (4.3), we obtain 

𝑏 = (2𝛼(1 + 𝛼) − 𝜆)𝜂 (4.5) 

 

By applying 𝑑 in (4.5), we get 

 

0 = (2𝛼(1 + 𝛼) − 𝜆)𝑑𝜂 (4.6) 

 

Since d𝜂 ≠ 0 from , we have 

 

2𝛼(1 + 𝛼) − 𝜆 = 0 (4.7) 

 

By using (4.5) and (4.7), we obtain that b is constant. Hence 

from (4.2) it is verified  

 

𝑆̅(𝑋, 𝑌) = −𝑏((1 + 𝛼) + 𝜆)𝑔(𝑋, 𝑌) + 𝑏(1 + 𝛼)𝜂(𝑋)𝜂(𝑌) 

 (4.8) 

which implies that 𝑀 is an 𝜂-Einstein manifold. This leads 

to the following 

 

Theorem 4.1 If in a 3-dimensional 𝛼 -para Kenmotsu 

manifold with the semi symmetric metric connection , the 

metric g is a Ricci soliton and 𝑉 is a pointwise collinear with 

𝜉 ,then 𝑉 is a constant multiple of 𝜉 and g is an 𝜂-Einstein 

manifold of the form (4.8) and Ricci soliton is steady and 

expanding according as 𝜆 = 2𝛼(1+𝛼 ) is zero and positive , 

respectively.  

 

5  Conharmonically flat 𝜶 -para Kenmotsu manifolds 

with the semi-symmetric metric connection 

We have studied conharmonically flat 𝛼 -para Kenmotsu 

manifolds with respect to the semi-symmetric metric 

connection. In a 𝛼-para Kenmotsu manifold the conharmonic 

curvature tensor with respect to the semi-symmetric metric 

connection is given by 

𝐾(𝑋, 𝑌)𝑍 = 𝑅̅(𝑋, 𝑌)𝑍 

−[𝑆̅(𝑌, 𝑍)𝑋 − 𝑆̅(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄̅𝑋 − 𝑔(𝑋, 𝑍)𝑄̅𝑌]. (5.1) 

If 𝐾=0 ,then the manifold M is called conharmonically flat 

manifold with respect to the semi- symmetric metric 

connection. Let M be a conharmonically flat manifold with 

respect to the semi-symmetric metric connection. from 

(5.1),we have  

 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑆̅(𝑌, 𝑍)𝑋 − 𝑆̅(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄̅𝑋 −

𝑔(𝑋, 𝑍)𝑄̅𝑌 (5.2) 

using (3,14),(3.20)and (3.21) in (5.1) ,we get  

𝑅(𝑋, 𝑌)𝑍 − (1 + 2𝛼)[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] 

+(1 + 𝛼)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]𝜂(𝑍) 

+(1 + 𝛼)[𝜂(𝑋)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)]𝜉 

          = 𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 

          +(
𝑟

2
− 6𝛼 − 2)[𝑔(𝑌, 𝑍)𝑋 −

𝑔(𝑋, 𝑍)𝑌] +(1 + 𝛼)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]𝜂(𝑍) +(1 −
𝑟

2
+ 𝛼 −

3𝛼2)[𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)]𝜉 (5.3) 

 Now putting X=𝜉 in (5.3), we obtain  

𝑅(𝜉, 𝑌)𝑍 = 𝑆(𝑌, 𝑍)𝜉 − 𝑆(𝜉, 𝑍)𝑌 + (
𝑟

2
− 1 − 4𝛼)[𝑔(𝑌, 𝑍)𝜉

− 𝜂(𝑍)𝑌] 

−(
𝑟

2
+ 3𝛼2)[𝑔(𝑌, 𝑍) − 𝜂(𝑍)𝜂(𝑌)]𝜉, (5.4) 

using (3.1) and (3.4) in (5.4), we get  

𝑆(𝑌, 𝑍)𝜉 − 𝑆(𝜉, 𝑍)𝑌 + (−1 − 4𝛼 − 2𝛼2)𝑔(𝑌, 𝑍)𝜉 + (1 +

4𝛼 + 2𝛼2)𝜂(𝑍)𝑌 = 0 (5.5) 

 

Taking inner product with 𝜉 in (5.5) , we get 

𝑆(𝑌, 𝑍) = (1 + 4𝛼 + 2𝛼2)𝑔(𝑌, 𝑍) − (1 + 4𝛼 +

4𝛼2)𝜂(𝑌)𝜂(𝑍)) (5.6) 

 Thus M is an 𝜂-Einstein manifold with respect to the Levi-

Civita connection. This leads to the following 

Theorem 5.1 If M is a conharmonically flat 𝛼 -para 

Kenmotsu manifolds with respect to the semi-symmetric 

metric connection.Then the manifold M is an 𝜂-Einstein. 

 

6  Example 

(A 3-dimensional 𝛼-para Kenmotsu manifold with the semi-

symmetric metric connection.) We consider the 3-

dimensional manifold 𝑀  = (x,y,z) ∈ 𝑅3, 𝑧 ≠ 0 , where 

(x,y,z) are the standard coordinates in 𝑅3. The vector fields 

 

𝑒1 = 𝑧2
𝜕

𝜕𝑥
, 𝑒2 = 𝑧2

𝜕

𝜕𝑦
, 𝑒3 =

𝜕

𝜕𝑧
 

 are linearly independent at each point of 𝑀. Let g be the 

Riemannian metric defined by 

 

𝑔(𝑒1, 𝑒3) = 𝑔(𝑒2, 𝑒3) = 𝑔(𝑒1, 𝑒2) = 0, 

  

𝑔(𝑒1, 𝑒1) = 𝑔(𝑒2, 𝑒2) = 𝑔(𝑒3, 𝑒3) = 1. 

 

Let 𝜂 be the 1-form defined by 𝜂(Z) = g(Z, 𝑒3) for any Z ∈ 

𝜒(M) . Let 𝜙 be the (1,1) tensor field defined by 𝜙(𝑒1) = -𝑒2 

, 𝜙(𝑒2) = 𝑒1 , 𝜙(𝑒3) = 0 . 

Then using linearity of 𝜙 and g we have  

𝜂(𝑒3) = 1, 𝜙2(𝑍) = −𝑍 + 𝜂(𝑍)𝑒3 

  

𝑔(𝜙𝑍, 𝜙𝑊) = 𝑔(𝑍, 𝑊) − 𝜂(𝑍)𝜂(𝑊) 

for any Z , W ∈ 𝜒(M) .Now , by direct computations we 

obtain 
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 [𝑒1, 𝑒2] = 0, [𝑒2, 𝑒3] = −
2

𝑧
𝑒2,    [𝑒1, 𝑒3] = −

2

𝑧
𝑒1 

by using these above equations we get[18] 

 

▽𝑒𝑖
𝑒𝑖 =

2

𝑧
𝑒3  𝑎𝑛𝑑  ▽𝑒𝑖

𝑒3 = −
2

𝑧
𝑒1 (6.1) 

 

 

▽𝑒2
𝑒1 =▽𝑒1

𝑒2 =▽𝑒3
𝑒1 =▽𝑒3

𝑒2 =▽𝑒3
𝑒3 = 0 (6.2) 

Now we consider at this example for semi-symmetric metric 

connection . from (3.8) , (6.1) and (6.2) 

 

▽̅𝑒𝑖
𝑒𝑖 = (

2

𝑧
− 1)𝑒3    𝑎𝑛𝑑    ▽̅𝑒𝑖

𝑒3 = (−
2

𝑧
+ 1)𝑒1 (6.3) 

  

▽̅𝑒𝑖
▽𝑒𝑗

=▽̅𝑒3
𝑒𝑗 = 0  𝑎𝑛𝑑  ▽̅𝑒3

= 0 (6.4) 

where i ≠ j =1,2 . it’s known that  

𝑅̅(𝑋, 𝑌)𝑍 =▽̅𝑋▽̅𝑌 𝑍 −▽̅𝑌▽̅𝑋 𝑍 −▽̅[𝑋,𝑌] 𝑍. (6.5) 

By using (6.3),(6.4) and (6.5) we obtain  

𝑅̅(𝑒𝑖 , 𝑒3)𝑒3 = (
6

𝑧2
+

2

𝑧
)𝑒𝑖 ,    𝑅̅(𝑒𝑖 , 𝑒𝑗)𝑒3 = 0 

 

 

𝑅̅(𝑒𝑖 , 𝑒𝑗)𝑒𝑗 = (
4

𝑧
−

4

𝑧2 − 1)𝑒𝑖 , 𝑅̅(𝑒𝑖 , 𝑒3)𝑒𝑗 = 0 (6.6) 

 

 

𝑅̅(𝑒3, 𝑒𝑖)𝑒𝑖 = (
2

𝑧
−

6

𝑧2
)𝑒3 

 

where i ≠ j = 1,2 . From (2.8) and (6.6) 

it’s verified that  

𝑆(𝑒1, 𝑒1) = (
−2

𝑧2
+

2

𝑧
− 1) 

  

𝑆(𝑒2, 𝑒2) = (
−10

𝑧2 +
6

𝑧
− 1) (6.7) 

  

𝑆(𝑒3, 𝑒3) = (
−12

𝑧2
+

4

𝑧
) 

 

7  CONCLUSION 

If in a 3-dimensional 𝛼-para Kenmotsu manifold with the 

semi-symmetric metric connection , the metric g is a Ricci 

soliton and In this study , we gave some curvature conditions 

for 3-dimensional 𝛼-para Kenmotsu manifolds with semi-

symmetric metric connection.In 3-dimensional 𝛼 -para 

Kenmotsu manifolds with semi-symmetric metric connection 

is also an 𝜂 -Einstein manifold and Ricci soliton defined 

steady or expanding on this manifold is named with respect 

to values of 𝛼  and 𝜆  constant.We also proved that 

conharmonically flat 𝛼-para Kenmotsu manifolds with semi-

symmetric metric connection is an 𝜂-Einstein manifold. 
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