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I. INTRODUCTION 

Graph theory is a fascinating and inviting branch of 

mathematics. The application of Graph Theory in the 

various fields like Network, Webpage, Neural networks, 

Chemistry 

     All the graph considered in this paper are simple and 

connected. Let G=(V(G),E(G)) be a graph with vertex set 

V(G) and edge set E(G). The number of vertices and number 

of edges are called the order n and size m respectively. A 

graph of order n and size m will be denoted by G(n,m). For 

a vertex Vv , we denote the degree of v by )(VdG  or 

briefly )(vd which is defined as the number of edges of G 

incident at a vertex V. For a simple graph G, The Sub-

division of the graph G is denoted by )(GS  and obtained 

by inserting a new vertex on every edge of G. 

         Topological indices have been found to be useful in 

establishing relation between the Structure and the 

properties of molecules. Topological indices mainly used in 

Quantitative Structure Property Relationship (QSPR) and 

Quantitative Structure Activity Relationship (QSAR). Some 

Topological indices are degree based and some are distance 

based. 

         The Zagreb indices were introduced more than thirty 

years ago by Gutman and Trinajstic[7] 

The First and Second Zagreb indices are defined as 
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These indices were introduced to study the Structure –

dependency of the total  -electron energy )( . It was 

found that the  depends on )(1 GM  and thus provides a 

measure of carbon skeleton of the underlying molecules. 

The Y-index is defined as 
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The Redefined third Zagreb index is defined as 
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            The Redefined third Zagreb index was also 

independently defined by Mansour and Song [11]. 

Moreover, the generalized version was presented in[11] 

          Let ),( 111 mnG and ),( 222 mnG  be two connected 

simple graphs. Corona product of graphs 
1G  and 

2G  , 

denoted by
21 GG  is obtained by taking one copy of 

1G and 

1n copies of 
2G and joining each vertex of i-th copy of 

2G  to  

i-th vertex of 
1G [9] 

          The Sub-division vertex variant of corona of 
1G  and 

2G is attained from )( 1GS and 
1n copies of 

2G by joining the 

thi vertex of a )( 1GV  to every vertex in the 
thi copy of 

2G  

      
The Join graph of 

1G  and 
2G is obtained by joining each 

vertex of 
1G  to each vertex  

2G  and it is denoted by 

1G +
2G [11] 

          Abdu Alameri [8] computed Y-index for some special 

graphs that have been applied to compute the Y-index for 

Nano-tube and Nano-torus. Wei Gao [] investigated the 

Redefined First, Second and Third Zagreb indices of Titania 

Nanotubes Tio2 [m, n] some graph operations and their 

topological indices are presented in [12]-[15] 

 

1. CORONA JOIN PRODUCT 

https://doi.org/10.47191/ijmcr/v11i8.011


“Two Topological indices of two new variants of Graph products” 

3705                                                                                            M. Durga, IJMCR Volume 11 Issue 08 August 2023 

Let ),( 111 mnG and ),( 222 mnG  be simple connected graphs 

and the corona join graph of 
1G  and 

2G is obtained by  

taking one copy of  
1G , 1n copies of 

2G , and joining each 

vertex of the  
thi copy of 

2G with all vertices of  
1G .The 

Corona join product of 
1G  and 

2G is denoted by 

1G  2G and shown in fig 1 

 

 
Figure 1: Corona join product 

1G 
2G  

 

2, SUBDIVISION VERTEX JOIN PRODUCT 

Let ),( 111 mnG  , ),( 222 mnG  and )( 1GS = ),(
'

1

'

1 mn be three 

simple connected graphs. The Sub-division vertex join 

graph is obtained by joining the each new vertex of  )( 1GS  to 

all vertices of 
2G and it is denoted by 1G + 2G . The Sub-

division vertex join graph is presented in the fig 2 

 
 

II. MAIN RESULTS 

Throughout this part, we present the main results. The 

following lemma’s can be used to obtain exact expressions 

of topological indices of two new graph variants of 

products. The proofs of the following two lemmas are 

directly from the Corona join product 
1G 

2G and Sub-

division vertex join 
1G +

2G  

Lemma.1 

),( 111 mnG   and ),( 222 mnG  be two graphs ; then the 

degree behavior of vertices in the graph 
21 GG   is 

  )(
21

vd GG  =  

 

Lemma.2 

  Let we have three simple connected graphs    

),( 111 mnG  , ),( 222 mnG   and   )','()( 211 mnGS   then 

the degree behavior of vertices in the graph 21 GG  is 

 )(
21

vd GG  

 

THEOREM.3 

Let we have two simple connected graphs   ),( 111 mnG  , 

and ),( 222 mnG   then the Y-index of corona join product 

21 GG   is given as  
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Proof: From the definition Y-index, we have 
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Now we apply the lemma 1 
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 Hence we get the result 

 

EXAMPLE: By using the statement of theorem 3 , we get 

)( mn CPY  = )1(8)64(6)148(43016 3322  nmnnmnnnmn  
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THEOREM. 4 

Let we have three simple connected graphs  ),( 111 mnG  , 

),( 222 mnG  and )','()( 1

'

11 mnGS  , the Y-index of 

Subdivision-vertex join 
21 GG   is given as 
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Proof: From the definition of Y-index, we have 
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Which is our required result 

EXAMPLE: By using the statement of theorem 4, we get 
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THEOREM.5 

Let we have the two simple connected graphs   

),( 111 mnG  , and ),( 222 mnG   then the Redefined third 

Zagreb index of corona join product 
21 GG   is given as  

Proof: By the definition of Redefined third Zagreb index, 

we have  
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EXAMPLE: By using the statement of theorem 5, we get  
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THEOREM.6  

Let we have three simple connected graphs 

),(),( 2221,11 mnGmnG  and )','()( 11 mnGS   then the 

Redefined third Zagreb index of Sub-division vertex join 

1G +
2G  is given as 

Proof: From the definition of Redefined Zagreb index, we 

get 
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EXAMPLE 

 Using the statement of theorem 6, we obtain 
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III. CONCLUSION 

We proposed two variants of special graph generate and 

their exact formulations for Y-index and Redefined third 

Zagreb index .The results we obtained in this paper may 
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help to build and investigate the Topological indices of 

complex network structures 
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