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In this paper, we will define - -sets, - -sets, - -sets, - -sets, 

- -sets, - -sets, - -sets, - -sets, - -sets, -

-sets, - -sets and - -sets and study some of their properties. Also we 

will prove that - -sets and - -sets are stronger than - -sets and 

weaker than binary locally closed sets. 
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I.  INTRODUCTION 

In 2011, S.Nithyanantha Jothi and P.Thangavelu [8] 

introduced topology between two sets and also studied some 

of their properties. For background material, papers [1] to 

[15] may be perused. In this paper, we will define -

-sets, - -sets, - -sets, - -sets, 

- -sets, - -sets, - -sets, -

-sets, - -sets, - -sets, - -

sets and - -sets and study some of their 

properties. Also we will prove that - -sets and 

- -sets are stronger than - -sets and weaker 

than binary locally closed sets. 

II.  WEAKLY BINARY -LOCALLY CLOSED SETS 

AND WEAKLY BINARY -LOCALLY CLOSED 

SETS 

 

Definition 2.1 Let  be a subset of . Then 

 is called a   

1.  weakly binary generalized -locally closed set (briefly 

- -set) if , where  

is -open and  is -closed in .  

2.  weakly binary -generalized locally closed set (briefly 

- -set) if , where  

is -open and  is -closed in .  

3.  - -set if , where 

 is -open and  is binary closed in 

.  

4.  - -set if , where 

 is -open and  is binary closed in 

.  

5.  - -set if , where 

 is binary open and  is -closed in 

.  

6.  - -set if , where 

 is binary open and  is -closed in 

.  

 The collection of all - -sets (resp. -

-sets, - -sets, - -sets, - -sets 

and - -sets) of  will be denoted by 

 (resp. , 

, ,  

and ).  
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Definition 2.2 Let  be a subset of . Then 

 is called a  

1.  generalized -locally closed set (briefly - -set) if 

, where  is -open 

and  is -closed in .    

2.  - -set if , where 

 is -open and  is binary closed in 

.  

3.  - -set if , where 

 is binary open and  is -closed in 

.  

 The collection of all - -sets (resp. -

-sets and - -sets) of  will be denoted 

by  (resp.  and 

.  

 

Definition 2.3 Let  be a subset of . Then 

 is called a   

1.  weakly binary generalized -locally closed set (briefly 

- -set) if , where 

 is -open and  is -closed in 

.  

2.  - -set if , where 

 is -open and  is binary closed in 

.  

3.  - -set if , where 

 is binary open and  is -closed in 

.  

 The class of all - -sets (resp. - -

sets and - -sets) of  will be denoted 

by  (resp.  and 

.  

 

Theorem 2.4 For a binary topological space , the 

following inclusions hold:   

    1.  .  

    2.  .  

    3.  .  

Proof. (1) Assume that . Then 

, where  is -open and 

 is -closed in . Since every -open set 

is -open and every -closed set is -closed, we 

get  is -open and  is -closed in 

. Hence . 

(2) and (3) follow from the fact that every binary 

closed set is -closed and every binary open set is 

-open. 

The reverse implications need not be true as seen 

from the following example: 

 

Example 2.5  Let ,  and 

  . Then  

    

   . 

    

     

   

   

     

. 

   

     

 .  

 

Theorem 2.6 Let  be any subset of . If 

, then 

,  and 

.  

Proof. Assume that . Then 

, where  is -open 

and  is -closed in . Since every 

-open ( -closed) set is -open ( -

closed), -open ( -closed) and -open 

( -closed),  is -open, -open and 

-open in  and  is -closed, 

-closed and -closed in . Hence 

,  and 

. 

The reverse implications need not be true as seen 

from the following example: 

 

Example 2.7 In Example 2.5, then the subset  is 

- -set, - -set and - -set but it is not 

- -set.  

 

Remark 2.8 The following examples show that the concept 

of  and  are 

independent.  
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Example 2.9 In Example 2.5, then the subset  is 

- -set but not - -set and also the subset 

 is - -set but not - -set.  

 

Theorem 2.10  Let  be any subset of , then   

    1.  ,  

    2.  , 

    3.  .  

Proof. The proof follows from the fact that every binary 

closed set is binary -closed, every binary -closed set is 

-closed and every -closed set is -closed 

in . 

The reverse implications need not be true as seen 

from the following example. 

 

Example 2.11 Let ,  and 

  . Then 

   . 

    

     . 

 

Definition 2.12 A binary topological space  is 

said to be a   

1.  weakly binary -door (briefly -door) space if 

each subset of  is either -open or -

closed in .  

2.  weakly binary -door (briefly -door) space if 

each subset of  is either -open or -

closed in .  

3.  binary -door (briefly -door) space if each 

subset of  is either -open or -closed 

in .  

4.  weakly binary -door (briefly ) space if each 

subset of  is either -open or -

closed in .  

  

Remark 2.13 Let  be a binary topological space.   

1. If  is -door space, then 

.  

2. If  is -door space, then 

.  

3. If  is -door space, then 

.  

4. If  is -door space, then 

.  

  

Theorem 2.14 Let  be a -space. Then 

the following results hold:   

    1.  .  

    2.  .  

    3.  .  

Proof. (1) Since  is a -space, every 

-open set is binary open and every -closed set is 

binary closed in . Hence we have 

. By Theorem 2.10, 

.  

Hence . Since 

 and 

  (1) and (3) follow. 

 

Theorem 2.15 Let  be a -space and let 

 be a subset of , then the following statements 

are equivalent:   

           1.  .  

    2.  -  for 

some -open set .  

  

Proof.  Let . Then 

, where  is -open 

and  is -closed in . Since 

 and - , 

- . By the definition of 

-closure, we have -  and 

hence  

- . 

Thus - . 

 Assume that -

 for some -open set . 

Since -  is -closed and hence 

-

. 

 

Theorem 2.16 Let  be a -space and let 

 be a subset of , then the following statements 

are equivalent:   

1.  -  is -open set 

.  

2.  -  is -closed.  
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3.  -  is -

open.   

Proof.  Let - , for 

some -open set . We have -

- ,  is 

-closed in , as  is -open. Since 

 is a -space,  is binary closed 

in . Thus -  is binary closed in 

. Since every binary closed set is -closed, -

 is -closed in . Hence -

 is -closed in . 

 Assume that -  is 

-closed. Let -

. Then  is -open and 

hence -  holds. 

 Let -  be 

-closed. Then -

- . 

Since  is -closed,  is 

-open. Thus -  is 

-open. 

 Let -

 be -open. Then 

-

- -

. Since  is -

closed, -  is -closed. 

 

Theorem 2.17 Let  be a subset of  is a 

-space. Then  if 

and only if -  for some 

binary open set .  

Proof. (Necessity) Let . 

Then , where  is binary 

open in  and  is -closed in . 

Since  and - , 

we have - . Since 

 is a -closed set containing , we have 

- . This implies 

- . 

Therefore - . 

(Sufficiency) Assume that 

-  for some binary 

open set . Since -  is -closed. 

Hence we have . 

 

Theorem 2.18 For a -closed subset  of a binary 

topological space  the following statements are 

equivalent:   

    1.  .  

    2. -  for some 

-open set  in .  

Proof.  Let . Then 

there exists a -open subset  and a -closed 

subset  of  such that 

. Since  and 

- , -

. Conversely, by definition of -closure, 

-  and hence -

. Therefore 

- . 

 Assume that  

-  for some -open 

set . Since -  is -closed and 

hence  

- . 

 

Definition 2.19 A subset  of  is called   

    1.  -dense if - .  

    2.  -dense if - .  

    3.  -dense if - .  

    4. -dense if - .  

  

Theorem 2.20  For a binary topological space , 

the following results hold:   

    1.  Every -dense set is binary dense.  

    2.  Every -dense set is -dense.  

  

    

Proof. 1.  Assume that  is a -dense set. Then 

- . Obviously,  

- . Since - -

, - - . Hence 

- . Therefore  is binary dense.  

    2.  Assume that  is a -dense set. 

Then - . Obviously, -

. Since - -

, which implies - -
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. Hence - . 

Therefore  is -dense.  

 The converses of the above Theorem need not be 

true as seen from the following examples: 

 

Example 2.21 Let ,  and 

    . 

Then the subset  is binary dense but not -

dense.  

 

Example 2.22  Let ,  and 

   . Then the 

subset  is -dense but not -dense.  

 

Theorem 2.23 Let  be a binary topological space. 

Then   

      1.  Every -dense set is a -dense set.  

      2.  Every -dense set is also a -dense set.  

proof . Similar to Theorem 2.20. 

 

Definition 2.24 A binary topological space  is 

called   

1.  -submaximal if every -dense subset is 

-open in .  

2.  -submaximal if every -dense subset is 

-open in .  

3.  -submaximal if every -dense subset is -

open in .  

4.  -submaximal if every -dense subset is 

-open in .  

  

Theorem 2.25 Let  be a binary topological space. 

If  is binary submaximal, then it is also -

submaximal.  

Proof. Let  be a -dense subset of . 

By Theorem 2.20,  is binary dense in . 

Since  is binary submaximal,  is binary open. 

Then  is -open, as every binary open set is 

-open. Hence  is -submaximal. 

The converse of the above Theorem need not be 

true as seen from the following example. 

 

Example 2.26 Let ,  and 

    

  . Then  is 

-submaximal but not binary submaximal, since the 

subset  is binary dense but not binary open in 

.  

 

Theorem 2.27 Let  be a binary topological space. 

If  is -submaximal, then it is -

submaximal also.  

Proof. Let  be a -dense subset of . 

By Theorem 2.20,  is -dense in . 

Since  is -submaximal,  is -open. 

Since every -open set is -open,  is 

-open. Hence  is -submaximal. 

The converse of the above Theorem need not be 

true as seen from the following example. 

 

Example 2.28 In Example 2.22, then  is -

submaximal but not -submaximal, since the subset 

 is -dense but not -open in 

.  

 

Theorem 2.29 Let  be a binary topological space. 

If  is -submaximal, then  is both -

submaximal and -submaximal.  

Proof. Since every -dense set and -dense set is 

also -dense and since every -open set is both 

-open and -open in , the proof 

follows. 

 

REFERENCES 

1. D. Abinaya and M. Gilbert Rani, Bianry -

generalized closed sets in binary topological 

spaces, Indian Journal of Natural Sciences, 

14(77)(2023), 54089-54094. 

2. Carlos Granados, On binary -open sets and binary 

- -open sets in binary topological spaces, South 

Asian Journal of Mathematics, 11(1)(2021), 1-11. 

3. M. Gilber Rani and R. Premkumar, Properties of 

binary -closed sets in binary topological spaces, 

Journal of Education: Rabindra Bharati University, 

XXIV(1)(XII)(2022), 164-168. 

4. Gnana Arockiam, M. Gilbert Rani and R. 

Premkumar, Binary Generalized Star Closed Set in 

Binary Topological Spaces, Indian Journal of 

Natural Sciences, 13(76)(2023), 52299-52309. 

5. S.Jayalakshmi and A.Manonmani, Binary regular 

beta closed sets and Binary regular beta open sets 

in Binary topological spaces, The International 

Journal of Analytical and Experimental Modal 

Analysis, Vol 12(4)(2020), 494-497. 

6. S.Jayalakshmi and A.Manonmani, Binary Pre 

Generalized Regular Beta Closed Sets in Binary 



“Weakly binary gα-locally closed sets in Binary Topological Space” 

3679                                                      D. Abinaya, IJMCR Volume 11 Issue 08 August 2023 

Topological spaces, International Journal of 

Mathematics Trends and Technology, 66(7)(2020), 

18-23. 

7. N. Levine, Generalized Closed Sets in Topology, 

Rent. Circ. Mat. Palermo, 19(2)(1970), 89-96. 

8. S. Nithyanantha Jothi and P.Thangavelu, Topology 

between two sets, Journal of Mathematical 

Sciences & Computer Applications, 1(3)(2011), 

95-107. 

9. S. Nithyanantha Jothi and P. Thangavelu, 

Generalized binary closed sets in binary 

topological spaces, Ultra Scientist 

Vol.26(1)(A)(2014), 25-30. 

10. S. Nithyanantha Jothi and P. Thangavelu, Binary-

-space, Acta Ciencia Indica, XLIM(3)(2015), 

241-247. 

11. S. Nithyanantha Jothi and P. Thangavelu, 

Generalized binary regular closed sets, IRA-

International Journal of Applied Sciences, 

4(2)(2016), 259-263. 

12. S. Nithyanantha Jothi, Binary Semi open sets in 

Binary topological Spaces, International journal of 

Mathematical Archieve, 7(9)(2016), 73-76. 

13. R. Premkumar and O. Nethaji, Locally closed sets 

and g-locally closed sets in binary topological 

spaces, Communicated. 

14. R. Premkumar and O. Nethaji, binary -locally 

closed sets in binary topological spaces, 

Communicated. 

15. C.Santhini and T. Dhivya, New notion of 

generalised binary closed sets in binary topological 

space, International Journal of Mathematical 

Archive-9(10), 2018. 

 

 

 


