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 I. INTRODUCTION 

 The graph G= (V(G), E(G)), where V(G) be the vertex set 

and E(G) be the edge set.  
Gd u  be the degree of a vertex 

u. For undefined term and notation, we refer the books [1, 

2]. 

 

   Graph indices have their applications in various 

disciplines of Science and Engineering. Recently some new 

graph indices were studied, for example, in [3, 4, 5, 6, 7]. 

             The domination degree  
dd u  of a vertex u [8] in a 

graph G is defined as the number of minimal dominating 

sets of G which contains u. 

 

In [9], Kulli introduced the first and second Gourava indices 

of a graph and they are defined as  

 

         
 

1 .


     G G G G

uv E G

GO G d u d v d u d v  

 

           
 

2 .


  G G G G

uv E G

GO G d u d v d u d v

 
Recently some Gourava indices were studied, for example, 

in [10, 11, 12]. 

              Motivated by the work on Gourava indices, we 

introduce the first and second Gourava domination indices 

as follows: 

          The first and second Gourava domination indices of a 

graph G are defined as 

   

 

 

         
 

1 .d d d d

uv E G

GOD G d u d v d u d v


      

 

           
 

2 .d d d d

uv E G

GOD G d u d v d u d v


 
 

 

       Considering the first and second Gourava domination 

indices, we introduce the first and second Gourava 

domination polynomials of a graph G and they are defined 

as 

 

   

         

 
1 , .d d d dd u d v d u d v

uv E G

GOD G x x
 



 
 

   
         

 
2 , d d d dd u d v d u d v

uv E G

GOD G x x




   

Ref. [8] was soon followed by a series of publications [13, 

14, 15, 16, 17, 18, 19, 20, 21, 22]. . Recently some new 

domination parameters were studied, for example, in [23, 

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. 

          

          In this paper, we determine the first and second 

Gourava domination indices of some standard graphs, 

French windmill graphs, friendship graphs and book graphs. 

 

II. RESULTS FOR SOME STANDARD GRAPHS 

 Proposition 1. If  nK  is a complete graph with n vertices, 

then        

(i)       1  

3 ( 1)
.

2
n

n n
GOD K
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(ii)      2 ( 1).nGO n nKD    

Proof: If  nK  is a complete graph, then dd(u) =1.  

From definition, we have   

(i)       1  nGOD K  

                

       

  n

d d d d

uv E K

d u d v d u d v


      

              
 

( 1) 3 ( 1)
1 1 (1 1) .

2 2

n n n n 
     

(ii)     2  nGOD K  

            

         
  n

d d d d

u Kv E

d u d v d u d v


     

          
 

( 1) 2 ( 1)
(1 1)(1 1) .

2 2

n n n n 
                            

Proposition 2. If 1 nS   is a star graph with dd(u) =1, then           

(i)       1 1 3 .nGOD S n            

(ii)     2 1 2 .nGOD S n   

 Proposition 3. If 1, 1 p qS    is a double star graph with dd(u) 

=2, then            

(i)        1 1, 1 8 1 .p qGOD S p q               

(ii)      2 1, 1 16 1 .p qGOD S p q           

Proposition 4.  Let Km,n   be a complete bipartite graph with 

2 ≤ m≤ n. Then 

(i)       
,  1 2 2 3 .m nGOD mn mn m nK      

(ii)         
,  2 2 1 1 .m nGOD mn m n m nK         

Proof: Let G=Km,n , m, n≥2 with 

  
dd u = m+1 

           = n+1,   for all u∈ V(G). 

From definition, we have   

(i)       1 ,  m nKGOD  

                

       

 ,  m n

d d d d

uv KE

d u d v d u d v


      

              
 1 1 ( 1)( 1)mn m n m n      

  

               2 2 3 .mn mn m n     

(ii)       2 ,  m nKGOD   

                    

   

         
 ,  m nK

d d d d

uv E

d u d v d u d v


     

              
 ( 1 1)( 1)( 1)mn m n m n     

    

                 2 1 1 .mn m n m n                       

                         

    

         In the following proposition, by using definition, we 

obtain the first and second Gourava domination polynomials 

of  ,nK 1 ,nS  1, 1p qS    and Km,n  . 

 

Proposition 5. The first and second Gourava domination 

polynomials of  ,nK 1 ,nS  1, 1p qS    and Km,n    are given by  

 

(i)     
       

 
1 , d d d d

n

d u d v d u d v
n

uv E K

GOD K x x
 



 
    

                

1 1 (1 1) 3( 1) ( 1)
.

2 2

n n n n
x x  

 

 
(ii)      3

1 1, .nGOD S x nx   

(iii)      8
1 1, 1, 1 .p qGOD S x p q x    

 

(iv)     2 2 3
1 , , .mn m n

m nGOD K x mnx   
 

 

 (v)    
         

 
2 , d d d d

n

d u d v d u d v
n

uv E K

GOD K x x




 
    

                

(1 1)(1 1) 2( 1) ( 1)
.

2 2

n n n n
x x 

 

 
(vi)     2

2 1, .nGOD S x nx   

(vii)      16
2 1, 1, 1 .p qGOD S x p q x    

 

(viii)     
   2 1 1

2 , , .m n m n
m nGOD K x mnx    

 
 

III. RESULTS FOR FRENCH WINDMILL GRAPHS 

The French windmill graph m

nF  is the graph obtained by 

taking m  3 copies of Kn, n  3 with a vertex in common. 

The graph m

nF  is presented in Figure 1. The French 

windmill graph 3

mF  is called a friendship graph. 

 

 

Figure 1. French windmill graph 
m

nF
 

 

 Let F be a French windmill graph m

nF . Then  

 
 

dd u =1,       if u is in center 

            =   1
1

m
n


 ,        otherwise. 

Theorem 1. Let F be a French windmill graph m

nF .  Then 

     
     

 1

1 1 1 2 1
m

GOD F m n n
            

               [( 1 / 2) 1 ]mn n m n     

               
 

 
 1 1

1 [2 1 ]
m m

n n
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Proof: In F, there are two sets of edges. Let E1 be the set of 

all edges which are incident with the center vertex and E2 be 

the set of all edges of the complete graph. Then 

 

 

         

 
1 d d d d

uv E F

GOD F d u d v d u d v


    
 

   

       

 1

d d d d

uv E F

d u d v d u d v


    
 

  

       

 2

d d d d

uv E F

d u d v d u d v


                    

 

      
 

 
 1 1

1 1 1 1 1
m m

m n n n
          

    
   [( 1 / 2) 1 ]mn n m n   

     
 

 
 

 
 

 
 1 1 1 1

[ 1 1 1 1 ]
m m m m

n n n n
   

     
 

      
 1

1 1 2 1
m

m n n
       

       [( 1 / 2) 1 ]mn n m n     

      
 

 
 1 1

1 [2 1 ].
m m

n n
 

    

     

Corollary 1.1.  Let 
3

mF be a friendship graph. Then 

 

     1 1
1 3 2 1 2 2 2 2 .m m m mGOD F m m            

         In the following theorem, by using definitions, we 

obtain the first Gourava domination  polynomials  of m

nF  

and 3 .mF  

 

Theorem 2 . The first Gourava domination polynomials of 
  

m

nF
  
and 3

mF  are given by  

(i)             

 
1 , d d d d

m

n

d u d v d u d vm
n

uv E F

GOD F x x
 



 
    

           
   

 1
1 2 11

m
nm n x

      

          
     

 
 

 1 1
1 [2 1 ][( 1 / 2) 1 ]

m m
n nmn n m n x

 
     

   

(ii)             

 3

1 3 , d d d d

m

d u d v d u d vm

uv E F

GOD F x x
 



 
   

    

 

          
   1 11 2 2 2 22 .

m m m

mx mx
     

 

Theorem 3. Let F be a French windmill graph m

nF .  Then 

     
    

 
 

 1 1

2 1 1 1 1
m m

GOD F m n n n
              

                 
 3 1

[( 1 / 2) 1 ]2 1 .
m

mn n m n n


                       

Proof: In F, there are two sets of edges. Let E1 be the set of 

all edges which are incident with the center vertex and E2 be 

the set of all edges of the complete graph. Then 

 

 

           
 

2 d d d d

uv E F

GOD F d u d v d u d v


   
 

   

         
 1

d d d d

uv E F

d u d v d u d v


   
 

  

         
 2

d d d d

uv E F

d u d v d u d v


                   

 

        
    

 1 1
1 1 1 1 1

m m
m n n n

         

     
   [( 1 / 2) 1 ]mn n m n   

                1 1 1 1
[ 1 1 1 1 ]

m m m m
n n n n

   
    

 

     
 

 
 1 1

1 1 1 1
m m

m n n n
         

         
 3 1

[( 1 / 2) 1 ]2 1 .
m

mn n m n n


      

      

 Corollary 3.1.  Let 
3

mF be a friendship graph. Then 

 

   
   1 3 2

2 3 2 1 2 2 .m m m mGOD F m m          

        In the following theorem, by using definitions, we 

obtain the second Gourava domination polynomials of  
m

nF
  

and 3

mF   .  

 

Theorem 4. The second Gourava domination polynomials 

of 
  

m

nF
  
and 3

mF  are given by  

  

(i)               

 
2 , d d d d

m

n

d u d v d u d vm
n

uv E F

GOD F x x




 
   

 

            
   

 
 

 1 1
1 1 11

m m
n nm n x

        

           
     

 3 1
2 1[( 1 / 2) 1 ]

m
nmn n m n x


   

      

(ii)               

 3

2 3 , d d d d

m

d u d v d u d vm

uv E F

GOD F x x




 
   

    
    

            
 1 1 3 22 1 2 22 .

m m m

mx mx
     

    
 

IV. RESULTS FOR GoKp 

Theorem 5. Let H=GoKp, where G is a connected graph 

with n vertices and m edges; and Kp is a complete graph. 

Then  

(i)    
1GOD H     

          
1 121

(2 ) 1 2 1 .
2

n n
m np np p p

          

(ii)   
 3 12

2

1
( ) (2 )2 1

2

n
GOD H m np np p


     

Proof: If H=GoKp, then  
dd u =  

1
1

n
p


 . In F, there are 

( 1)
.

2

p p 
 edges. Thus H has 

21
(2 )

2
m np np   edges. 

Thus 

(i)          

 
1 d d d d

uv E H

GOD H d u d v d u d v
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21

(2 )
2

m np np  
 

               
1 1 1 1

1 1 1 1
n n n n

p p p p
            

       
1 121

(2 ) 1 2 1 .
2

n n
m np np p p

        
 

(ii)

           
 

2 d d d d

uv E H

GOD H d u d v d u d v


      

       
21

(2 )
2

m np np    

           
       

1 1 1 1
1 1 1 1

n n n n
p p p p

           

      
 

 3 121
(2 )2 1

2

n
m np np p


   

 
           In the following theorem, by using definitions, we 

obtain the first and second Gourava domination polynomials 

of H. 

 

Theorem 6. The first and second Gourava domination 

Polynomials of H are given by 

(i)      
1 1

1 2 12
1

1
, (2 )

2

n n
p p

GOD H x m np np x
       

  

(i)    
 3 1

2 12
2

1
, (2 ) .

2

n
p

GOD H x m np np x



  

 

 

V. RESULTS FOR Bn 
 The book graph Bn, n≥3, is a cartesian product of star Sn+1 

and path P2. 

For Bn, n≥3, we have  

 
dd u = 3,   if u is the center vertex, 

          = 
12n

+1,   otherwise. 

 

Theorem 7. If Bn, n≥3, is a book graph, then 

 (i)   1 nGOD B
 

          
    1 1 115 2 7 4 2 2 1 2 3 .n n nn n          

(ii)   2 nGOD B
 

             
3

1 1 154 6 2 4 2 1 2 2 1 .n n nn n         

 Proof: In Bn, there are three types of edges as follow: 

   

 E1 = {uv  E(Bn) | dd(u)=dd(v)=3},                 | E1| = 1. 

 E2 = {uv  E(Bn) | dd(u) = 3, dd(v)= 
12n

+1},| E2| = 2r. 

 E3 = {uv  E(Bn) | dd(u) = dd(v)= 
12n

+1},     | E3| = r. 

 

(i)       By definition, we have 

          

 
1

n

n d d d d

uv E B

GOD B d u d v d u d v


      

        1 11 3 3 3 3 2 3 2 1 3 2 1n nn                

        1 1 1 12 1 2 1 2 1 2 1n n n nn                 

      1 1 115 2 7 4 2 2 1 2 3 .n n nn n           

(ii)       By definition, we have 

           

 
2

n

n d d d d

uv E B

GOD B d u d v d u d v


     

          1 11 3 3 3 3 2 3 2 1 3 2 1n nn             

  

        1 1 1 12 1 2 1 2 1 2 1n n n nn                

      
3

1 1 154 6 2 4 2 1 2 2 1 .n n nn n           

         By using definitions, we obtain the first and second 

Gourava domination polynomials of Bn. 

 

Theorem 8. The first and second Gourava domination 

polynomials of Bn are given by  

 

(i)  
    1 1 115 7 4 2 2 1 2 3

1 , 2 .
n n n

nGOD B x x nx nx
      

  

(i)  
    

3
1 1 154 3 2 4 2 1 2 2 1

2 , 2 .
n n n

nGOD B x x nx nx
      

   

 

VI. CONCLUSION                                 

In this study, we have defined the first and second Gourava 

domination indices and their corresponding polynomials of a 

graph. Also the first and second Gourava domination indices 

and their corresponding polynomials of some standard 

graphs, windmill graphs, book graphs are computed.      
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