International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 08 August 2023, Page no. 3680-3684

Index Copernicus ICV: 57.55, Impact Factor: 7.362

ESK: 220.71 IJMCR International Journal Of Mathematics & Computer Research Volume 11 Volume 11 Volume 11 Volume 2020 Vear 2023

Gourava Domination Indices of Graphs

V. R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

ARTICLE INFO	ABSTRACT
Published Online:	In this paper, we introduce the first and second Gourava domination indices and their
26 August 2023	corresponding polynomials of a graph. Furthermore, we compute these indices and their
Corresponding Author:	corresponding polynomials for some standard graphs, French windmill graphs, friendship
V. R. Kulli	graphs and book graphs.
KEYWORDS: Gourava domination index, Gourava domination polynomial, graph.	

I. INTRODUCTION

The graph G = (V(G), E(G)), where V(G) be the vertex set and E(G) be the edge set. $d_G(u)$ be the degree of a vertex u. For undefined term and notation, we refer the books [1, 2].

Graph indices have their applications in various disciplines of Science and Engineering. Recently some new graph indices were studied, for example, in [3, 4, 5, 6, 7].

The domination degree $d_d(u)$ of a vertex u [8] in a graph G is defined as the number of minimal dominating sets of G which contains u.

In [9], Kulli introduced the first and second Gourava indices of a graph and they are defined as

$$GO_{1}(G) = \sum_{uv \in E(G)} \left[d_{G}(u) + d_{G}(v) + d_{G}(u) d_{G}(v) \right].$$

$$GO_{2}(G) = \sum_{uv \in E(G)} \left(d_{G}(u) + d_{G}(v) \right) \left(d_{G}(u) d_{G}(v) \right).$$

Recently some Gourava indices were studied, for example, in [10, 11, 12].

Motivated by the work on Gourava indices, we introduce the first and second Gourava domination indices as follows:

The first and second Gourava domination indices of a graph *G* are defined as

$$GOD_{1}(G) = \sum_{uv \in E(G)} \left[d_{d}(u) + d_{d}(v) + d_{d}(u) d_{d}(v) \right].$$

$$GOD_{2}(G) = \sum_{uv \in E(G)} (d_{d}(u) + d_{d}(v)) (d_{d}(u)d_{d}(v)).$$

Considering the first and second Gourava domination indices, we introduce the first and second Gourava domination polynomials of a graph G and they are defined as

$$GOD_{1}(G, x) = \sum_{uv \in E(G)} x^{d_{d}(u) + d_{d}(v) + d_{d}(u)d_{d}(v)}.$$

$$GOD_{2}(G, x) = \sum_{uv \in E(G)} x^{(d_{d}(u) + d_{d}(v))(d_{d}(u)d_{d}(v))}$$

Ref. [8] was soon followed by a series of publications [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Recently some new domination parameters were studied, for example, in [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

In this paper, we determine the first and second Gourava domination indices of some standard graphs, French windmill graphs, friendship graphs and book graphs.

II. RESULTS FOR SOME STANDARD GRAPHS

Proposition 1. If K_n is a complete graph with *n* vertices, then

(i)
$$GOD_1(K_n) = \frac{3n(n-1)}{2}.$$

(ii) $GOD_2(K_n) = n(n-1).$

Proof: If K_n is a complete graph, then $d_d(u) = 1$. From definition, we have

(i)
$$GOD_1(K_n)$$

$$= \sum_{uv \in E(K_n)} [d_d(u) + d_d(v) + d_d(u)d_d(v)]$$

$$= \frac{n(n-1)}{2} [1 + 1 + (1 \times 1)] = \frac{3n(n-1)}{2}.$$
(ii) $GOD_2(K_n)$

$$= \sum_{uv \in E(K_n)} \left[\left(d_d(u) + d_d(v) \right) \left(d_d(u) d_d(v) \right) \right]$$
$$= \frac{n(n-1)}{2} \left[(1+1)(1\times 1) \right] = \frac{2n(n-1)}{2}.$$

Proposition 2. If S_{n+1} is a star graph with $d_d(u) = 1$, then

- (i) $GOD_1(S_{n+1}) = 3n.$
- (ii) $GOD_2(S_{n+1}) = 2n.$

Proposition 3. If $S_{p+1,q+1}$ is a double star graph with $d_d(u) = 2$, then

(i)
$$GOD_1(S_{p+1,q+1}) = 8(p+q+1).$$

(ii) $GOD_2(S_{p+1,q+1}) = 16(p+q+1).$

Proposition 4. Let $K_{m,n}$ be a complete bipartite graph with $2 \le m \le n$. Then

(i) $GOD_1(K_{m,n}) = mn(mn + 2m + 2n + 3).$ (ii) $GOD_2(K_{m,n}) = mn(m + n + 2)(m + 1)(n + 1).$ **Proof:** Let $G = K_{m,n}, m, n \ge 2$ with $d_d(u) = m + 1$

= n+1, for all $u \in V(G)$.

From definition, we have

(i)
$$GOD_1(K_{m,n})$$

$$= \sum_{uv \in E(K_{m,n})} [d_d(u) + d_d(v) + d_d(u)d_d(v)]$$

$$= mn[m+1+n+1+(m+1)(n+1)]$$

$$= mn(mn+2m+2n+3).$$
(ii) $GOD_2(K_{m,n})$

$$= \sum_{uv \in E(K_{m,n})} \left[\left(d_d(u) + d_d(v) \right) \left(d_d(u) d_d(v) \right) \right]$$
$$= mn \left[(m+1+n+1)(m+1)(n+1) \right]$$
$$= mn(m+n+2)(m+1)(n+1).$$

In the following proposition, by using definition, we obtain the first and second Gourava domination polynomials of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$.

Proposition 5. The first and second Gourava domination polynomials of K_n , S_{n+1} , $S_{p+1,q+1}$ and $K_{m,n}$ are given by

(i)
$$GOD_1(K_n, x) = \sum_{uv \in E(K_n)} x^{d_d(u) + d_d(v) + d_d(u)d_d(v)}$$

 $= \frac{n(n-1)}{2} x^{1+1+(1\times 1)} = \frac{n(n-1)}{2} x^3.$
(ii) $GOD_1(S_{n+1}, x) = nx^3.$
(iii) $GOD_1(S_{p+1,q+1}, x) = (p+q+1)x^8.$

(iv)
$$GOD_1(K_{m,n}, x) = mnx^{mn+2m+2n+3}$$

(v)
$$GOD_2(K_n, x) = \sum_{uv \in E(K_n)} x^{(d_d(u)+d_d(v))(d_d(u)d_d(v))}$$

 $= \frac{n(n-1)}{2} x^{(1+1)(1\times 1)} = \frac{n(n-1)}{2} x^2.$
(vi) $GOD_2(S_{n+1}, x) = nx^2.$
(vii) $GOD_2(S_{p+1,q+1}, x) = (p+q+1)x^{16}.$
(viii) $GOD_2(K_{m,n}, x) = mnx^{(m+n+2)(m+1)(n+1)}.$

III. RESULTS FOR FRENCH WINDMILL GRAPHS

The French windmill graph F_n^m is the graph obtained by taking $m \square 3$ copies of K_n , $n \square 3$ with a vertex in common. The graph F_n^m is presented in Figure 1. The French windmill graph F_3^m is called a friendship graph.

Figure 1. French windmill graph F_n^m

Let *F* be a French windmill graph F_n^m . Then

 $d_d(u) = 1$, if *u* is in center

$$=(n-1)^{m-1}$$
, otherwise.

Theorem 1. Let *F* be a French windmill graph F_n^m . Then

$$GOD_{1}(F) = m(n-1) \Big[1 + 2(n-1)^{(m-1)} \Big]$$
$$+ [(mn(n-1)/2) - m(n-1)]$$
$$(n-1)^{(m-1)} [2 + (n-1)^{(m-1)}]$$

Proof: In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

$$\begin{aligned} GOD_{1}(F) &= \sum_{uv \in E(F)} \left[d_{d}(u) + d_{d}(v) + d_{d}(u) d_{d}(v) \right] \\ &= \sum_{uv \in E_{1}(F)} \left[d_{d}(u) + d_{d}(v) + d_{d}(u) d_{d}(v) \right] \\ &+ \sum_{uv \in E_{2}(F)} \left[d_{d}(u) + d_{d}(v) + d_{d}(u) d_{d}(v) \right] \\ &= m(n-1) \left[1 + (n-1)^{(m-1)} + 1(n-1)^{(m-1)} \right] \\ &+ \left[(mn(n-1)/2) - m(n-1) \right] \\ &\left[(n-1)^{(m-1)} + (n-1)^{(m-1)} + (n-1)^{(m-1)} (n-1)^{(m-1)} \right] \\ &= m(n-1) \left[1 + 2(n-1)^{(m-1)} \right] \\ &+ \left[(mn(n-1)/2) - m(n-1) \right] \\ &(n-1)^{(m-1)} \left[2 + (n-1)^{(m-1)} \right]. \end{aligned}$$

Corollary 1.1. Let F_3^m be a friendship graph. Then

$$GOD_1(F_3^m) = 2m(1+2^m) + m2^{m-1}(2+2^{m-1}).$$

In the following theorem, by using definitions, we obtain the first Gourava domination polynomials of F_n^m and F_3^m .

Theorem 2. The first Gourava domination polynomials of F_n^m and F_3^m are given by

(i)
$$GOD_{1}(F_{n}^{m}, x) = \sum_{uv \in E(F_{n}^{m})} x^{d_{d}(u) + d_{d}(v) + d_{d}(u)d_{d}(v)}$$
$$= m(n-1)x^{\left[1+2(n-1)^{(m-1)}\right]}$$
$$+[(mn(n-1)/2) - m(n-1)]x^{(n-1)^{(m-1)}[2+(n-1)^{(m-1)}]}$$
(ii)
$$GOD_{1}(F_{3}^{m}, x) = \sum_{uv \in E(F_{3}^{m})} x^{d_{d}(u) + d_{d}(v) + d_{d}(u)d_{d}(v)}$$
$$= 2mx^{(1+2^{m})} + mx^{2^{m-1}(2+2^{m-1})}.$$

Theorem 3. Let *F* be a French windmill graph F_n^m . Then

$$GOD_{2}(F) = m(n-1)(n-1)^{(m-1)} \left[1 + (n-1)^{(m-1)} \right]$$

+[(mn(n-1)/2) - m(n-1)]2(n-1)^{3(m-1)}.

Proof: In *F*, there are two sets of edges. Let E_1 be the set of all edges which are incident with the center vertex and E_2 be the set of all edges of the complete graph. Then

$$GOD_{2}(F) = \sum_{uv \in E(F)} \left[\left(d_{d}(u) + d_{d}(v) \right) \left(d_{d}(u) d_{d}(v) \right) \right]$$

$$= \sum_{uv \in E_{1}(F)} \left[\left(d_{d}(u) + d_{d}(v) \right) \left(d_{d}(u) d_{d}(v) \right) \right] \\ + \sum_{uv \in E_{2}(F)} \left[\left(d_{d}(u) + d_{d}(v) \right) \left(d_{d}(u) d_{d}(v) \right) \right] \\ = m(n-1) \left[\left(1 + (n-1)^{(m-1)} \right) 1(n-1)^{(m-1)} \right] \\ + \left[(mn(n-1)/2) - m(n-1) \right] \\ \left[\left((n-1)^{m-1} + (n-1)^{m-1} \right) \left((n-1)^{m-1} (n-1)^{m-1} \right) \right] \\ = m(n-1)(n-1)^{(m-1)} \left[1 + (n-1)^{(m-1)} \right] \\ + \left[(mn(n-1)/2) - m(n-1) \right] 2(n-1)^{3(m-1)}.$$

Corollary 3.1. Let F_3^m be a friendship graph. Then

$$GOD_2(F_3^m) = m2^m(1+2^{m-1}) + m2^{3m-2}.$$

In the following theorem, by using definitions, we obtain the second Gourava domination polynomials of F_n^m and F_3^m .

Theorem 4. The second Gourava domination polynomials of F_n^m and F_3^m are given by

(i)
$$GOD_{2}(F_{n}^{m},x) = \sum_{uv \in E(F_{n}^{m})} x^{(d_{d}(u)+d_{d}(v))(d_{d}(u)d_{d}(v))}$$

 $= m(n-1)x^{(n-1)^{(m-1)}[1+(n-1)^{(m-1)}]}$
 $+[(mn(n-1)/2) - m(n-1)]x^{2(n-1)^{3(m-1)}}$
(ii) $GOD_{2}(F_{3}^{m},x) = \sum_{uv \in E(F_{3}^{m})} x^{(d_{d}(u)+d_{d}(v))(d_{d}(u)d_{d}(v))}$
 $= 2mx^{2^{m-1}(1+2^{m-1})} + mx^{2^{3m-2}}.$

IV. RESULTS FOR GoK_p

Theorem 5. Let $H=GoK_{p}$, where G is a connected graph with *n* vertices and *m* edges; and K_p is a complete graph. Then

(i)
$$GOD_1(H)$$

= $\frac{1}{2}(2m + np^2 + np)(p+1)^{n-1}[2 + (p+1)^{n-1}].$
(ii) $GOD_2(H) = \frac{1}{2}(2m + np^2 + np)2(p+1)^{3(n-1)}$

Proof: If $H = GoK_p$, then $d_d(u) = (p+1)^{n-1}$. In *F*, there are

$$\frac{p(p-1)}{2}$$
. edges. Thus *H* has $\frac{1}{2}(2m+np^2+np)$ edges. Thus

(i)
$$GOD_1(H) = \sum_{uv \in E(H)} \left[d_d(u) + d_d(v) + d_d(u) d_d(v) \right]$$

$$= \frac{1}{2}(2m + np^{2} + np)$$

$$\left[(p+1)^{n-1} + (p+1)^{n-1} + (p+1)^{n-1} (p+1)^{n-1} \right]$$

$$= \frac{1}{2}(2m + np^{2} + np)(p+1)^{n-1} \left[2 + (p+1)^{n-1} \right].$$
(ii)
$$GOD_{2}(H) = \sum_{uv \in E(H)} \left[(d_{d}(u) + d_{d}(v))(d_{d}(u)d_{d}(v)) \right]$$

$$= \frac{1}{2}(2m + np^{2} + np)$$

$$\left[(p+1)^{n-1} + (p+1)^{n-1} \right] (p+1)^{n-1} (p+1)^{n-1}$$

$$= \frac{1}{2}(2m + np^{2} + np)2(p+1)^{3(n-1)}$$

In the following theorem, by using definitions, we obtain the first and second Gourava domination polynomials of H.

Theorem 6. The first and second Gourava domination Polynomials of *H* are given by

(i)
$$GOD_1(H, x) = \frac{1}{2}(2m + np^2 + np)x^{(p+1)^{n-1}[2+(p+1)^{n-1}]}$$

(i) $GOD_2(H, x) = \frac{1}{2}(2m + np^2 + np)x^{2(p+1)^{3(n-1)}}$.

V. RESULTS FOR B_n

The book graph B_{n_i} $n \ge 3$, is a cartesian product of star S_{n+1} and path P_{2} .

For $B_{n,n} \ge 3$, we have

 $d_d(u) = 3$, if *u* is the center vertex,

$$= 2^{n-1} + 1$$
, otherwise.

Theorem 7. If B_n , $n \ge 3$, is a book graph, then (i) $GOD_1(B_n)$

$$= 15 + 2n(7 + 4 \times 2^{n-1}) + n(2^{n-1} + 1)(2^{n-1} + 3).$$

(ii)
$$GOD_2(B_n)$$

 $= 54 + 6n(2^{n-1} + 4)(2^{n-1} + 1) + 2n(2^{n-1} + 1)^{3}.$ **Proof:** In *B_n*, there are three types of edges as follow:

$$E_{1} = \{uv \square E(B_{n}) \mid d_{d}(u) = d_{d}(v) = 3\}, \qquad |E_{1}| = 1.$$

$$E_{2} = \{uv \square E(B_{n}) \mid d_{d}(u) = 3, d_{d}(v) = 2^{n-1} + 1\}, |E_{2}| = 2n$$

$$E_{3} = \{uv \square E(B_{n}) \mid d_{d}(u) = d_{d}(v) = 2^{n-1} + 1\}, \qquad |E_{3}| = n.$$

(i) By definition, we have

$$GOD_{1}(B_{n}) = \sum_{uv \in E(B_{n})} \left[d_{d}(u) + d_{d}(v) + d_{d}(u) d_{d}(v) \right]$$

= 1[3 + 3 + (3 × 3)] + 2n [3 + (2ⁿ⁻¹ + 1) + 3(2ⁿ⁻¹ + 1)]

$$+n\left[(2^{n-1}+1)+(2^{n-1}+1)+(2^{n-1}+1)(2^{n-1}+1)\right]$$

=15+2n(7+4×2ⁿ⁻¹)+n(2ⁿ⁻¹+1)(2ⁿ⁻¹+3).
(ii) By definition, we have
$$GOD_{2}(B_{n}) = \sum_{uv \in E(B_{n})} \left[(d_{d}(u)+d_{d}(v))d_{d}(u)d_{d}(v) \right]$$

=1[(3+3)(3×3)]+2n\left[(3+(2^{n-1}+1))3(2^{n-1}+1) \right]
+n[((2ⁿ⁻¹+1)+(2ⁿ⁻¹+1))(2ⁿ⁻¹+1)(2ⁿ⁻¹+1)]
=54+6n(2ⁿ⁻¹+4)(2ⁿ⁻¹+1)+2n(2ⁿ⁻¹+1)^{3}.
By using definitions, we obtain the first and second

By using definitions, we obtain the first and second Gourava domination polynomials of B_n .

Theorem 8. The first and second Gourava domination polynomials of B_n are given by

⁽ⁱ⁾
$$GOD_1(B_n, x) = x^{15} + 2nx^{(7+4\times2^{n-1})} + nx^{(2^{n-1}+1)(2^{n-1}+3)}.$$

⁽ⁱ⁾ $GOD_2(B_n, x) = x^{54} + 2nx^{3(2^{n-1}+4)(2^{n-1}+1)} + nx^{2(2^{n-1}+1)^3}.$

VI. CONCLUSION

In this study, we have defined the first and second Gourava domination indices and their corresponding polynomials of a graph. Also the first and second Gourava domination indices and their corresponding polynomials of some standard graphs, windmill graphs, book graphs are computed.

REFERENCES

- 1. V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India (2010).
- V.R.Kulli, K-edge index of some nanostructures, Journal of Computer and Mathematical Sciences, 7(7) (2016) 373-378.
- V.R.Kulli, Some KV-indices of certain dendrimers, Earthline Journal of Mathematical Sciences, 2(1) (2019) 69-86.
- V.R.Kulli, New Kulli-Basava indices of graphs, International Research Journal of Pure Algebra, 9(7) (2019) 58-63.
- V.R.Kulli, Some new temperature indices of oxide and honeycomb networks, Annals of Pure and Applied Mathematics, 21(2) (2020) 129-133.
- V.R.Kulli, Computation of some new status neighborhood indices of graphs, International Research Journal of Pure Algebra, 10(6) (2020) 6-13.
- A.M.H.Ahmed, A.Alwardi and M.Ruby Salestina, On domination topological indices of graphs,

International Journal of Analysis and Applications, 19(1) (2021) 47-64.

- V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017) 33-38.
- V.R.Kulli, Gourava Sombor indices, International Journal of Engineering Sciences and Research Technology, 11(11) (2022) 29-38.
- V.R.Kulli, Gourava Nirmala indices of certain nanostructures, International Journal of Mathematical Archive, 14(2) (2023) 1-9.
- V.R.Kulli, G.N.Adithya and N.D.Soner, Gourava indices of certain windmill graphs, International Journal of Mathematics Trends and Technology, 68(9) (2022) 51-59.
- 13. V.R.Kulli, Domination Nirmala indices of graphs, International Journal of Mathematics and Computer Research, 11(6) (2023) 3497-3502.
- 14. V.R.Kulli, Multiplicative domination Nirmala indices of graphs, International Journal of Mathematics And its Applications, (2023).
- 15. V.R.Kulli, Domination product connectivity indices of graphs, Annals of Pure and Applied Mathematics, 27(2) (2023) 73-78.
- V.R.Kulli, Domination augmented Banhatti, domination augmented Banhatti sum indices of certain chemical drugs, International Journal of Mathematics and Computer Research, 11(7) (2023) 3558-3564.
- V.R.Kulli, Irregularity domination Nirmala and domination Sombor indices of certain drugs, International Journal of Mathematical Archive, 14(8) (2023) 1-7.
- V.R.Kulli, Modified domination Sombor index and its exponential of a graph, International Journal of Mathematics and Computer Research, 11(8) (2023) 3639-3644.
- V.R.Kulli, Modified domination and domination Banhatti indices of some chemical drugs, International Journal of Mathematics Trends and Technology, 69 (2023).
- 20. V.R.Kulli, Domination atom bond sum connectivity indices of certain nanostructures, International Journal of Engineering Sciences and Research Technology, 12 (2023).
- 21. V.R.Kulli, Domination Dharwad indices of graphs, submitted.
- A.A.Shashidhar, H.Ahmed, N.D.Soner and M.Cancan, Domination version: Sombor index of graphs and its significance in predicting physicochemical properties of butane derivatives, Eurasian Chemical Communications, 5 (2023) 91-102.

- 23. V.R.Kulli, The disjoint total domination number of a graph, Annals of Pure and Applied Mathematics, 11(2) (2016) 33-38.
- 24. V.R.Kulli, Inverse and disjoint secure dominating sets in graphs, International Journal of Mathematical Archive, 7(8) (2016) 13-17.
- 25. V.R.Kulli, On entire domination transformation graphs and fuzzy transformation graphs, International Journal of Fuzzy Mathematical Archive, 8(1) (2015) 43-49.
- 26. V.R.Kulli and N.D.Soner, The connected total domination number of a graph, Journal of Analysis and Computation, 2(2) (2006) 183-189.
- 27. V.R.Kulli, Inverse and disjoint restrained domination in graphs, International Journal of Fuzzy Mathematical Archive, 11(1) (2016) 9-15
- 28. V.R.Kulli, Entire dominating graph, Advances in Domination Theory-I, (2012) 71-78.
- 29. V.R.Kulli and M.B.Kattimani, Connected maximal domination in graphs, Advances in Domination Theory-I, (2012) 79-85.
- V.R.Kulli and S.C.Sigarkanti, Total entire domination in graphs, Advances in Domination Theory-I, (2012) 53-62.
- 31. V.R.Kulli, The semientire edge dominating graph, Ultra Scientist, 25(3-A) @013) 431-434.
- 32. V.R.Kulli and S.C.Sigarkanti, The nm-domination number of a graph, Journal of Interdisciplinary Mathematics, 3(2-3) (2000) 191-194.
- V.R.Kulli, Inverse domination and inverse total domination in digraphs, International Journal of Advanced Research in Computer Science and Technology,2(1) (2014) 106-109.
- V.R.Kulli, Edge entire domination in graphs, International Journal of Mathematical Archive, 5(10) (2014) 275-278.