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I. INTRODUCTION
The graph G= (V(G), E(G)), where V(G) be the vertex set

and E(G) be the edge set. dg (u) be the degree of a vertex

u. For undefined term and notation, we refer the books [1,
2].

Graph indices have their applications in various
disciplines of Science and Engineering. Recently some new
graph indices were studied, for example, in [3, 4, 5, 6, 7].

The domination degree dy (u) of a vertex u [8] ina

graph G is defined as the number of minimal dominating
sets of G which contains u.

In [9], Kulli introduced the first and second Gourava indices
of a graph and they are defined as

GO (G)= > [dg(u)+dg (V) +dg (u)dg (V)]

uveE(G)

GO,(G)= > (dg(u)+dg(V))(dg (udg (V).

uveE(G)
Recently some Gourava indices were studied, for example,
in [10, 11, 12].

Motivated by the work on Gourava indices, we
introduce the first and second Gourava domination indices
as follows:

The first and second Gourava domination indices of a

graph G are defined as

GOD,(G)= > [dg(u+dy(v)+dg(u)dy (V)]

uveE(G)

GOD,(G)= > (dg(u)+dy(v))(dg(wdg (v)).

uveE(G)

Considering the first and second Gourava domination
indices, we introduce the first and second Gourava
domination polynomials of a graph G and they are defined
as

GODl(G,X)Z Z de(u)+dd(v)+dd(u)dd(v).
uveE(G)

GOD, (G,X)= Z X(dd(u)+dd(v))(dd(u)dd(v))
uveE(G)

Ref. [8] was soon followed by a series of publications [13,
14, 15, 16, 17, 18, 19, 20, 21, 22]. . Recently some new
domination parameters were studied, for example, in [23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

In this paper, we determine the first and second
Gourava domination indices of some standard graphs,
French windmill graphs, friendship graphs and book graphs.

Il. RESULTS FOR SOME STANDARD GRAPHS
Proposition 1. If K,, is a complete graph with n vertices,
then

_3n(n-1)

0 GODy(K,) ="
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(i) GOD,(K,)=n(n-1).
Proof: If K, is a complete graph, then da(u) =1.
From definition, we have
() GOD;(K,)
= > [dgW)+dg (V) +dg(Wdg (V)]
uveE(K,)
B n(n—l) 3n(n-1)
2

[1+1+(@1xD]=

(i) GOD,

( n)
Z [(dd (u)+dy (V) (dg (Wdy (V)]

n(n 1) 2n(n— 1)

—Z[@+D)AxD]=—= 5

Proposmon 2. If S,,,; isastar graph with dg(u) =1, then
() GOD;(S,.)=3n

(i) GOD,(S,,)=2n.

Proposition 3. If S
=2, then

() GODy(Spiq:a)=8(P+a+1).
(i) GOD,(Spi1q:1)=16(p+0q+1).

p+Lg+L is a double star graph with dq(u)

Proposition 4. Let Knn be a complete bipartite graph with
2<m<n. Then

(i) GOD(Kp,)=mn(mn+2m+2n+3).

(i) GOD,(Kp,)=mn(m+n+2)(m+1)(n+1).
Proof: Let G=Knn, m, n>2 with
dd (U)= m+1

=n+l, forallueV(G).
From definition, we have

(i) GOD;(Kp )
= Y [dg+dg (V)+dg (wdg (V)]

uveE(K,,)
=mn[m+1+n+1+(M+)(n+1)]
=mn(mn+2m+2n+3).
(i)  GOD,(Kpn)
= Y [(dg(W+dy (W)(dg (Wdy (V)]

ueE(K, ,)
=mn[(m+1+n+)(m+1)(n+1)]

=mn(m+n+2)(m+1(n+1).

In the following proposition, by using definition, we
obtain the first and second Gourava domination polynomials

of K, Spigs Spirger and K

Proposition 5. The first and second Gourava domination
polynomials of K, S,.;, Sp,1 441 and Knpn are given by

0] GODl(Kn,X)z Z xJs (Wd (V) (u)d, (v)
uveE(K,)

_N -1 v _NN-D) o3
2 2
(i) GOD(Sy.1,x)=nx%

(iii) Gool(spﬂ,qﬂ,x) =(p+q+1)x°

(iv) GODy ( K x) — mnx™+2m2n+3.

v GODZ(KH,X)= z X(dd(u)+dd(v))(dd(u)dd(v))
uveE(K,)

_n(n-1) () _ n(n-1) 2
2 2 '
(Vi) GOD, (Sp,q,X) =nx.

(vii) GOD, (Spu1.q:1:X)=(pP+q+1)x°.

(viii) GOD, (Km,n , X) — mnx(Mm++2)(mD(n+1)

I1l. RESULTS FOR FRENCH WINDMILL GRAPHS

The French windmill graph F" is the graph obtained by
taking m [ 3 copies of Ky, n [1 3 with a vertex in common.
The graph F" is presented in Figure 1. The French

windmill graph F," is called a friendship graph.

Figure 1. French windmill graph F"

Let F be a French windmill graph F," . Then
dy(u)=1, ifuisincenter

=(n-D™",  otherwise.
Theorem 1. Let F be a French windmill graph F," . Then

GoD, (F)=m(n-D[1+2(n-1™ "]
+H{(mn(n=1)/2)—m(n-1)]
(n _1)(m—1) [2 +(n _1)(m—1)]
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Proof: In F, there are two sets of edges. Let E; be the set of
all edges which are incident with the center vertex and E; be
the set of all edges of the complete graph. Then

GOD,(F)= Y [dg(w+dy(v)+dg(wdy (V)]

uveE(F)
= > [dg(W+dg (V) +dg (Wdy (V)]
uveE (F)
+ z( )[dd (u)+dg (V) +dg (Wdg (V)]
uvek,(F
—m(n-D[1+(n-)™? +1(n -]
+H(mn(n-1)/2)—m(n-1)]

(=D + (=™ +(n—)"™ Y (n—™

—m(n-D[1+2(n-1™ "]

+(mn(n—1)/2)-m(n-1]
(n _1)(m—1) [2+(n _1)(m—l)].

Corollary 1.1. Let F3m be a friendship graph. Then

GOD, (R,™)=2m(1+2™)+m2m (2.4 2m 1),
In the following theorem, by using definitions, we
obtain the first Gourava domination polynomials of F"

and F;".

Theorem 2. The first Gourava domination polynomials of
F" and F," are given by

i) GOD(FMx)= 3 x%(rd:d, @i,
uveE(F")

~m(n-1) X[1+2( n-)™" ]

(D) (D)
+[(mn(n-=1)/2)—m(n _1)]X(n—1) [2+(n-D)"]
(i) GODy(F",x)= o W)+, )+, (W), (v
uveE(F")

m m-1 m-1
(1+2)Jr 52 (242 )_

=2mx m

Theorem 3. Let F be a French windmill graph F," . Then

GOD, (F)=m(n-1)(n _1)(m—1) [1+(n _1)(m—1)]

H(mn(n-1)/2)-m(n-DJ2(n-*™ 2.

Proof: In F, there are two sets of edges. Let E; be the set of
all edges which are incident with the center vertex and E; be
the set of all edges of the complete graph. Then

GOD,(F)= 3 [(dg (W) +dg(v))(dg(Wdg (V)]

uveE(F)

=Y [(dg W+ dg W) (dy (W)dg (V)]
uveE,(F)

_ [(dd(u)+dd(v))(dd(U)dd(V))]

uveE,(F)

=m(n —1)[(1+ (n—p™? )1(n _1)(m—1):|
H(mn(n-1)/2)—m(n-1)]

(D™ +(n-0™)((n-D™ (-1 )]
~m(n-1(n-0™? [1+(n —1)(m71)]
H(mn(n=1)/2)~m(n-DJ2(n-1*™ .

Corollary 3.1. Let F," be a friendship graph. Then

GOD, (F,") =m2™ (14 2™ ) + m23™2,
In the following theorem, by using definitions, we
obtain the second Gourava domination polynomials of F"

and F" .

Theorem 4. The second Gourava domination polynomials
of F" and F," are given by

. _ (dy (w+dy (W)(dg (u)dy (v))
(i) GOD, ( F, X) = > X
uveE(F")
=m(n-1) X(n—l)(mfl) [1+(n-D"™"]

3(m-1)

+[(mn(n -1/ 2)— m(n _1)]X2(n—1)
(i) GOD, ( R, X) = > y(da (W-+d, (V)(dy (W), (V)
weE(F)

2m—1(1+2m—1) 23m-2

=2mx + mXx

IV. RESULTS FOR GoK,

Theorem 5. Let H=GoK,, where G is a connected graph
with n vertices and m edges; and K, is a complete graph.
Then

(i) GOD,(H)
=%(2m+np2+np)(p+1)"_1[2+(p+1)”‘1}
(i) GOD,(H) =2 (2m+p? +np)2(p+1)"

Proof: If H=GoKy, then d (u)=(p+1)"". In F, there are
p(p-1)

. edges. Thus H has %(2m+np2 +np) edges.

Thus
(GOD,(H)= > [dg(w)+dy(V)+dy (u)dy (V)]

uveE(H)
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=%(2m+ np? +np)

[(p+)™ +(p+)" +(p+1)" (p+1)" ]

:%(2m+np2+np)(p+1)n_1[2+(p+1)”_1}
(i)
GOD,(H)= Y [(dg(u)+dy (V))(dg (W)dy (V)]

uveE(H)

= %(Zm +np? +np)

[(p+D"™ (1) J(p+1)™* (p+2)™

= %(2m +np® +np)2(p +1)3(”_1)

In the following theorem, by using definitions, we
obtain the first and second Gourava domination polynomials
of H.

Theorem 6. The first and second Gourava domination
Polynomials of H are given by

(i) GOD, (H, x) = %(Zm 1 np? 1 np)x(PY [2(p0]

3(n-1)

(i) GOD, (H,x) = %(Zm +np? +np)x2PH

V. RESULTS FOR B,

The book graph Bn, n>3, is a cartesian product of star Sp+1
and path P,

For By, n>3, we have

dy (u)=3, ifuisthe center vertex,

= 2141, otherwise.

Theorem 7. If By, n>3, is a book graph, then
(i) GOD,(B,)

=15+2n(7+4x2"%)+n(27 2 +1)(2" 1 4 3).
(i) GOD,(B,)

—54+6n(2"1+4) (2" +1) 4 2n(27 1 +1)’.
Proof: In By, there are three types of edges as follow:

E1 = {uv [ E(B.) | da(u)=da(v)=3}, | Ed = 1.
Ex={uv (1 E(B) | do(u) = 3, da(v)= 2" 1 +1},| Eo| = 2r.
Es={uv [ E(By) | do(u) = dg(v)= 2" +1}, |Eg=r.

(i) By definition, we have
GOD,(B,)= > [dgq)+dg(v)+dg(u)dy (V)]

uveE(B,)

~1[3+3+(3x3)]+2n[3+ (2" +1) +3(2" +1) ]

(2 41)+ (2" 1)+ (2 4 1) (2L 41) ]
—15+2n(7+4x2"1) +n(2"t +1) (2" +3).

(i)

By definition, we have

GOD,(B,)= Y. [(dg(W)+dy())dg(wdy (V)]

uveE(B,)

~1[(3+3)(3x3)]+2n[ (3+ (271 +1))3(2" 1 +1) |

+n[((2”’1 +1)+ (2" 42) (2"t 4 1) (22 +1)]

=54+6n(2"*+4)(2"* +1) + 2n(27 1 +1)
By using definitions, we obtain the first and second

3

Gourava domination polynomials of B.

Theorem 8. The first and second Gourava domination
polynomials of B, are given by

W GOD; (B, x) =X + ox (7427 | o (274127 43)

() GOD, (B, x) = x% + 2m32" #4120 | pya2)

VI. CONCLUSION

In this study, we have defined the first and second Gourava
domination indices and their corresponding polynomials of a
graph. Also the first and second Gourava domination indices
and their corresponding polynomials of some standard
graphs, windmill graphs, book graphs are computed.
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