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In this study, we develop and implement a numerical approach for solving first-order Volterra 

integro- differential equations. We derive the integral form of the problem, which is then 

transformed into an algebraic equation system using standard collocation points. We established the 

approach's uniqueness as well as its convergence and numerical examples were used to test the method's 

efficiency which shows that the method competes favourably with existing methods. 
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1. INTRODUCTION 

In 1926, Vito Volterra used integro-differential to 

explore population increase and focus on hereditary effects. 

Integro-differential equations are a powerful tool in pure and 

applied mathematics, engineering, and physics. Many 

mathematical formulations of physical phenomena incorporate 

integro-differential equations, which arise in a range of domains 

such as fluid dynamics, heat transfer, diffusion processes, 

neutron diffusion, biological models, nanohydrodynamics, 

economics, and population growth models.[1]. 

Some methods for determining the numerical solution 

of integro-differential equations include: Bernstein Method 

[14], Adomian decompositions method [2, 3], Finite difference-

Simpson method [17], Collocation method by [4, 5, 6, 7, 21, 

22], Hybrid linear multistep method [8, 9], Chebyshev-

Galerkin method [10], Bernoulli matrix method [11], 

Differential transform method [12], Lagrange Interpolation 

[13], Differential Transformation [15], Block pulse functions 

operational matrices [19] Chebyshev polynomials[16], 

Optimal Auxiliary Function Method (OAFM) [18] and 

Spectral Homotopy Analysis Method [20]. 

We consider first order Volterra integro-differential equation 

of the form 

 

𝑦′(𝑥) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
                                   (1) 

with the initial condition 

𝑦(0)  =  𝑞                                                                (2) 

where 𝑘 (𝑥, 𝑡) is the Volterra integral kernel function. 𝑔(𝑥) 

is the known function and 𝑦(𝑥) is an  unknown function to 

be determined. 

 

2. BASIC DEFINITIONS AND TERMS 

We give certain definitions and fundamental notions in 

this section for the purpose of problem formulation. 

Definition 1:[21] Let (𝑎𝑚) , 𝑚 ≤  0 be a sequence of real 

numbers. The power series in 𝑥 with coefficients 𝑎𝑛 is an 

expression. 

𝑦(𝑥) = ∑ 𝑎𝑚𝑥𝑚 = ∅(𝑥)𝑨∞
𝑚=0                                            (3)                     

where   ∅(𝑥)  =  [1  𝑥  𝑥2    · · ·    𝑥𝑁 ],   𝑨 = [𝑎0  𝑎1 · · ·

𝑎𝑁 ]𝑇   

Definition 2:[5] The desired collocation points within an 

interval are determined using this method. 

i.e. [a,b] and is provided by 

 

𝑥𝑖 = 𝑎 +
(𝑏−𝑎)𝑖

𝑁
, 𝑖 = 0, 1, 2 … … . 𝑁                                                (4) 

 

Definition 3:[22] Let 𝑝(𝑠) be an integrable function, then 

 

₀𝐼𝑥
𝛽

(𝑝(𝑠)) =
1

𝛤(𝛽)
∫ (𝑥 − 𝑠)𝛽−1𝑝(𝑠)𝑑𝑠

𝑥

0
                             (5) 

 

Definition 4:[22] Let 𝑦(𝑥) be a continuous function, then 

 

₀𝐼𝑥
𝛽

( 𝐷𝑎
𝛼

𝑥
𝐶 𝑦(𝑥)) = 𝑦(𝑥) − ∑

𝑦(𝑘)(0)

𝑘!

𝑁
𝑘=0 𝑥𝑘                        (6)    

    where 𝑚 − 1 < 𝛽 < 1 
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3.  METHODOLOGY 

Let the solution to (1) and (2) be approximated by 

𝑦(𝑥) = ∅(𝑥)𝑨 (7) 

∅(𝑥) is an interpolating polynomial and A are parameters 

to be determined substituting equation (3) into equation (1) 

gives

∅′(𝑥)𝑨 = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑡)∅(𝑡)𝑨 𝑑𝑡
𝑥

0
                                     (8) 

collecting the like terms 

(∅′(𝑥) − ∫ 𝑘(𝑥, 𝑡)∅(𝑡) 𝑑𝑡
𝑥

0
)𝑨 = 𝑔(𝑥)                                 (9) 

Equation (9) can be written in this form 

𝑈(𝑥)𝑨 = 𝑔(𝑥)                                                               (10) 

where 

𝑈(𝑥) = (∅′(𝑥) − ∫ 𝑘(𝑥, 𝑡)∅(𝑡) 𝑑𝑡
𝑥

0

)
1×[𝑁+1]

 

 

 

Collocating (10) using the standard collocation points 

𝑥𝑖 = 𝑎 +
(𝑏 − 𝑎)𝑖

𝑁
 

𝑈(𝑥𝑖)𝑨 = 𝑔(𝑥𝑖)                                               (11)                                                                                                        

where 

          𝑈(𝑥𝑖)  =  

















NNN xxx

xxx

xxx

n1o

1n1210

0n0100

U...UU

U...UU

U...UU

 

  

            𝑔(𝑥𝑖) = [𝑔(𝑥0) 𝑔(𝑥1) … 𝑔(𝑥𝑁)]𝑇 

Using the initial condition 

𝑦(0) = 𝑞                                                        (12) 

hence, (3.6) becomes 

∅(0) = 𝑞                                                      (13) 

Substituting equation (13) into equation (9) gives 

𝑈∗(𝑥𝑖)𝑨 = 𝑔∗(𝑥𝑖)                                         (14) 

The unknown values are solved using matrix inversion. 

Substituting the values of 𝑎𝑖 obtained in the approximate 

solution gives the numerical solution. 

 

𝑦(𝑥) = ∅(𝑥𝑖) 𝑈∗−1(𝑥𝑖) 𝑔∗(𝑥𝑖)           

3.1 Numerical Examples 

In this section, we give numerical examples to evaluate the 

method's usefulness and accuracy. Let 

𝑦𝑛(𝑥) and 𝑦(𝑥) be the approximate and exact solutions 

respectively. 𝐸𝑟𝑟𝑜𝑟𝑁  =  |𝑦𝑁(𝑥) —  𝑦(𝑥)| 

Example 1: [17] Considering first order Volterra integro-

differential equation 

𝑦′(𝑥) = 1 + 𝑠𝑖𝑛𝑥 + ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
       (15)  

subject to initial condition 

             𝑦(0) = 1 

 

Exact solution 𝑦(𝑥) =
𝑒𝑥

4
−

3𝑒−𝑥

4
−

𝑐𝑜𝑠𝑥

2
 

Solution 1 

The approximate solution of  equation (15) at N=5 

𝑦5(𝑥) = −1.000000000184 + 1.000000507317𝑥 − 0.128181117𝑒 − 3𝑥2 

+0.167363479046𝑥³ − 0.43011129944𝑒 − 1𝑥⁴ + 0.9284810779𝑒 − 2

Table 1: Exact, approximate and absolute error values for example 1 

X Exact Our methodN=5 error5 error [17] 

0.0625 -0.937459937700 -0.937460256200 3.185000e-7 3.28257e-2 

0.125 -0.874684397400 -0.874685275100 8.777000e-7 6.37537e-3 

0.1875 -0.811450933000 -0.811452193600 1.260600e-6 3.68533e-2 

0.250 -0.747550443900 -0.747551775100 1.331200e-6 1.27946e-2 

0.3125 -0.682786210500 -0.682787346500 1.136000e-6 4.04099e-2 

 

Example 2: [17] Considering first order Volterra integro-differential equation 

 

𝑦′(𝑥) = −𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥 + 2 ∫ 𝑐𝑜𝑥(𝑥 − 𝑡)𝑦(𝑡)𝑑𝑡
𝑥

0
 (16) 

 subject to initial condition 

             𝑦(0) = 1 

            Exact solution 𝑦(𝑥) =
𝑒𝑥

4
−

3𝑒−𝑥

4
−

𝑐𝑜𝑠𝑥

2
 

Solution 2 

The approximate solution of  equation (16) at 𝑁 = 5,7 𝑎𝑛𝑑 10 gives 

𝑦5(𝑥) = 0.999999999417 − 0.999999193495𝑥 + 0.499753750089𝑥² 

−0.165229249724𝑥³ + 0.38466152158𝑒 − 1𝑥⁴ − 0.5113765043𝑒 − 2𝑥⁵ 

𝑦7(𝑥) = 1.000000000000 − 0.999999999782𝑥 + 0.499999117332𝑥² − 0.166657457128𝑥³ + 0.41626608698𝑒 − 1𝑥⁴

− 0.8242412005𝑒 − 2𝑥⁵ + 0.1274753828𝑒 − 2𝑥⁶ − 0.121171994𝑒 − 3𝑥⁷ 
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𝑦10(𝑥) = 1.000000000000 − 1.000000000001𝑥 + 0.499999938009𝑥² − 0.166665705852𝑥³ + 0.41661627591𝑒 − 1𝑥⁴

− 0.8319467306𝑒 − 2𝑥⁵ + 0.1362442970𝑒 − 2𝑥⁶ − 0.170111656𝑒 − 3𝑥⁷ + 0.6675720𝑒 − 5𝑥⁸

+ 0.3516674𝑒 − 5𝑥⁹ − 3.352761268616 × 10⁻⁷𝑥¹

 

Table 2: Exact and approximate values for example 2  

x Exact N = 5 N = 7 N = 10 

 
0.2 0.818730753100 0.818728386100 0.818730750000 0.818730753300 

0.4 0.670320046000 0.670318618500 0.670320043400 0.670320038500 

0.6 0.548811636100 0.548809882300 0.548811633000 0.548811636300 

0.8 0.449328964100 0.449325726200 0.449328960100 0.449328964200 

1.0 0.367879441200 0.367877693500 0.367879438900 0.367879441700 

 

Table 3: Absolute Error for example 2 

 
x error5 error7 error 1O 

0.2 2.367000E-6 3.1000000e-9 2.00000e-10 

0.4 1.427500e-6 2.600000e-9 7.50000e-9 

0.6 1.753800e-6 3.100000e-9 7.62000e-10 

0.8 3.237900e-6 4.000000e-9 3.28300e-10 

1.0 1.747700e-6 2.300000e-9 1.38800e-10 

 
 

Example 3: [17] Considering first order Volterra integro-differential equation 

 

𝑦′(𝑥) = 1 − ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
 (17) 

 subject to initial condition 

             𝑦(0) = 0 

            Exact solution 𝑦(𝑥) = 𝑠𝑖𝑛𝑥 

Solution 3 

The approximate solution of  equation (17) at 𝑁 = 7  gives 

𝑦7(𝑥) = −4.091778999000 × 10⁻¹⁶ + 1.000000000165𝑥 − 5.712718121000 × 10⁻⁷𝑥² 

−0.166660841322𝑥³ − 0.24197157𝑒 − 4𝑥⁴ + 0.8384018671𝑒 − 2𝑥⁵ − 0.54626726𝑒 − 4𝑥⁶ − 0.172795088𝑒 − 3𝑥⁷ 

 

Table 4: Exact and approximate values for example 3 

x Exact N = 7 error7 error [17] 

0.2 0.198669330800 0.198669328900 1.900000e-9 2.293e-3 

0.4 0.389418342300 0.389418340900 1.400000e-9 2.051e-2 

0.6 0.564642473400 0.564642472000 1.40000e-9 7.061e-2 

0.8 0.717356090900 0.717356089700 1.20000e-9 1.686e-1 

1.0 0.841470984800 0.841470987100 2.30000e-9 3.307e-1 

 

4. RESULTS AND DISCUSSIONS 

The numerical results obtained from the solved examples 

using the derived numerical method are discussed in this 

section. 

The approximate solution obtained for Example 1 as shown 

in Table1 for N = 5 𝑔𝑖𝑣𝑒𝑠 𝑦5  = 

— 1.000000000184 

+  1.000000507317𝑥 —  0.128181117𝑒 — 3𝑥2  

+  0.167363479046𝑥3 

 —  0.43011129944𝑒 — 1𝑥4  +  0.9284810779𝑒 —  2𝑥5. The 

numerical result gives a smaller errors and consistent across all 

values of 𝑥. This confirmed that our method performed better 

than the method proposed by [17]. 

The results of the numerical Example 2 shown in Tables 2 and 

3 show that the approximate solution at N = 5 gives 𝑦5  =

 0.999999999417 —  0.999999193495𝑥 +

 0.499753750089𝑥2  

—  0.165229249724𝑥3 +

0.38466152158𝑒— 1𝑥4— 0.5113765043𝑒— 2𝑥5. Solving for N 

= 7 and 10, the numerical results converge to an exact solution as 

the value of N increases. This shows that the numerical 

method developed is 

consistent and accurate. 

The approximate solution obtained in Example 3 shown in 
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Table 4, for the value of N gives 

𝑦7

= — 4.091778999000 × 10−16  

+  1.000000000165𝑥 —  5.712718121000 

×  10— 7𝑥2 —  0.166660841322𝑥3— 0.24197157𝑒— 4𝑥4  

+ 0.8384018671𝑒— 2𝑥5 

 — 0.54626726𝑒— 4𝑥6 — 0.172795088𝑒— 3𝑥7. This also 

confirmed that our method performed better than the method 

proposed by [17]. 

 

5. CONCLUSION 

In this work, the collocation approach was examined 

for the numerical solution of first-order Volterra integro-

differential equations. This method is reliable, effective and 

straightforward to compute. Maple 18 is used for all of the 

computations in this work. 
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