International Journal of Mathematics and Computer Research ISSN: 2320-7167 Volume 11 Issue 09 September 2023, Page no. 3716-3720 Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i9.03



# A Polynomial Approximation for the Numerical Solution of First Order Volterra Integro-Differential Equations

# Ojo Olamiposi Aduroja<sup>1</sup>, Ganiyu Ajileye<sup>2\*</sup>, Lydia Adiku<sup>3</sup>, Ibrahim Salihu<sup>4</sup>

<sup>1</sup>Department of Mathematics, University of Ilesa, Ilesa, Osun State, Nigeria. <sup>2,3</sup>Department of Mathematics and Statistics, Federal University Wukari, Taraba State, Nigeria.

<sup>4</sup>Department of Mathematics and Statistics, Federal Oniversity wukari, Faraba

| ARTICLE INFO                                                                                  | ABSTRACT                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Published Online:                                                                             | In this study, we develop and implement a numerical approach for solving first-order Volterra                            |  |  |
| 05 September 2023                                                                             | integro-differential equations. We derive the integral form of the problem, which is then                                |  |  |
|                                                                                               | transformed into an algebraic equation system using standard collocation points. We established the                      |  |  |
| Corresponding Author:                                                                         | responding Author: approach's uniquenessas well as its convergence and numerical examples were used to test the method's |  |  |
| Ganiyu Ajileye                                                                                | efficiency which shows that the method competes favourably with existing methods.                                        |  |  |
| KEYWORDS: Collocation method; Volterra; Integro-differential equations; Approximate solution. |                                                                                                                          |  |  |

#### 1. INTRODUCTION

In 1926, Vito Volterra used integro-differential to explore population increase and focus on hereditary effects. Integro-differential equations are a powerful tool in pure and applied mathematics, engineering, and physics. Many mathematical formulations of physical phenomena incorporate integro-differential equations, which arise in a range of domains such as fluid dynamics, heat transfer, diffusion processes, neutron diffusion, biological models, nanohydrodynamics, economics, and population growthmodels.[1].

Some methods for determining the numerical solution of integro-differential equations include: Bernstein Method [14], Adomian decompositions method [2, 3], Finite difference-Simpson method [17], Collocation method by [4, 5, 6, 7, 21, 22], Hybrid linear multistep method [8, 9], Chebyshev-Galerkin method [10], Bernoulli matrix method [11], Differential transform method [12], Lagrange Interpolation [13], Differential Transformation [15], Block pulse functions operational matrices [19] Chebyshev polynomials[16], Optimal Auxiliary Function Method (OAFM) [18] and Spectral HomotopyAnalysis Method [20].

We consider first order Volterra integro-differential equation of the form

$$y'(x) = g(x) + \int_0^x k(x,t)y(t)dt$$
(1)  
with the initial condition  

$$y(0) = q$$
(2)  
where  $k(x,t)$  is the Volterra integral kernel function.  $g(x)$ 

is the known function and y(x) is an unknown function to be determined.

## 2. BASIC DEFINITIONS AND TERMS

We give certain definitions and fundamental notions in this section for the purpose of problemformulation.

Definition 1:[21] Let  $(a_m)$ ,  $m \leq 0$  be a sequence of real numbers. The power series in x with coefficients  $a_n$  is an expression.

$$y(x) = \sum_{m=0}^{\infty} a_m x^m = \phi(x) A \tag{3}$$
where  $\phi(x) = \begin{bmatrix} 1 & x & x^2 & \dots & x^N \end{bmatrix} A = \begin{bmatrix} a & a & \dots & a \end{bmatrix}$ 

where  $\emptyset(x) = \begin{bmatrix} 1 \ x \ x^2 & \cdots & x^N \end{bmatrix}$ ,  $A = \begin{bmatrix} a_0 \ a_1 & \cdots & a_N \end{bmatrix}^T$ 

Definition 2:[5] The desired collocation points within an interval are determined using this method.

i.e. [a,b] and is provided by

$$x_i = a + \frac{(b-a)i}{N}, i = 0, 1, 2 \dots N$$
 (4)

Definition 3:[22] Let p(s) be an integrable function, then

$${}_{0}I_{x}^{\beta}(p(s)) = \frac{1}{\Gamma(\beta)} \int_{0}^{x} (x-s)^{\beta-1} p(s) ds$$
(5)

Definition 4:[22] Let y(x) be a continuous function, then

$${}_{0}I_{x}^{\beta}({}_{x}^{C}D_{a}^{\alpha}y(x)) = y(x) - \sum_{k=0}^{N} \frac{y^{(k)}(0)}{k!} x^{k}$$
(6)
where  $m - 1 < \beta < 1$ 

## 3. METHODOLOGY

Let the solution to (1) and (2) be approximated by  

$$y(x) = \phi(x)A (7)$$

$$\phi'(x)A = g(x) + \int_0^x k(x,t)\phi(t)A dt \qquad (8)$$
collecting the like terms
$$(\phi'(x) - \int_0^x k(x,t)\phi(t) dt)A = g(x) \qquad (9)$$
Equation (9) can be written in this form

U(x)A = g(x)(10)

where

$$U(x) = \left( \emptyset'(x) - \int_0^x k(x,t) \emptyset(t) \, dt \right)_{1 \times [N+1]}$$

Collocating (10) using the standard collocation points

$$x_i = a + \frac{(b-a)i}{N}$$

 $U(x_i)\mathbf{A} = g(x_i)$ where

$$U(x_i) = \begin{pmatrix} U_0 x_0 & U_1 x_0 & \dots & U_n x_0 \\ U_0 x_1 & U_2 x_1 & \dots & U_n x_1 \\ U_0 x_N & U_1 x_N & \dots & U_n x_N \end{pmatrix}$$

$$g(x_i) = [g(x_0) \quad g(x_1) \dots \quad g(x_N)]^T$$
  
Using the initial condition

#### Solution 1

The approximate solution of equation (15) at N=5

$$y(0) = q$$
(12)  
hence, (3.6) becomes  
$$\emptyset(0) = q$$
(13)  
Substituting equation (13) into equation (9) gives

 $U^*(x_i)A = g^*(x_i)$  (14) The unknown values are solved using matrix inversion. Substituting the values of  $a_i$  obtained in the approximate solution gives the numerical solution.

 $y(x) = \emptyset(x_i) U^{*-1}(x_i) g^*(x_i)$ 

#### **3.1 Numerical Examples**

In this section, we give numerical examples to evaluate the method's usefulness and accuracy. Let

 $y_n(x)$  and y(x) be the approximate and exact solutions respectively.  $Error_N = |y_N(x) - y(x)|$ 

**Example 1:** [17] Considering first order Volterra integrodifferential equation

$$y'(x) = 1 + sinx + \int_0^x y(t)dt$$
subject to initial condition
$$y(0) = 1$$
(15)

Exact solution  $y(x) = \frac{e^x}{4} - \frac{3e^{-x}}{4} - \frac{\cos x}{2}$ 

$$y_5(x) = -1.000000000184 + 1.000000507317x - 0.128181117e - 3x^2 + 0.167363479046x^3 - 0.43011129944e - 1x^4 + 0.9284810779e - 2$$

(11)

Table 1: Exact, approximate and absolute error values for example 1

| X      | Exact           | Our method <sub>N=5</sub> | error <sub>5</sub> | error [17] |
|--------|-----------------|---------------------------|--------------------|------------|
| 0.0625 | -0.937459937700 | -0.937460256200           | 3.185000e-7        | 3.28257e-2 |
| 0.125  | -0.874684397400 | -0.874685275100           | 8.777000e-7        | 6.37537e-3 |
| 0.1875 | -0.811450933000 | -0.811452193600           | 1.260600e-6        | 3.68533e-2 |
| 0.250  | -0.747550443900 | -0.747551775100           | 1.331200e-6        | 1.27946e-2 |
| 0.3125 | -0.682786210500 | -0.682787346500           | 1.136000e-6        | 4.04099e-2 |

Example 2: [17] Considering first order Volterra integro-differential equation

 $y'(x) = -\sin x - \cos x + 2 \int_0^x \cos(x - t)y(t)dt (16)$ subject to initial condition y(0) = 1Exact solution  $y(x) = \frac{e^x}{4} - \frac{3e^{-x}}{4} - \frac{\cos x}{2}$ 

#### Solution 2

The approximate solution of equation (16) at N = 5,7 and 10 gives

$$y_5(x) = 0.999999999417 - 0.9999999193495x + 0.499753750089x^2$$

 $-0.165229249724x^3 + 0.38466152158e - 1x^4 - 0.5113765043e - 2x^5$ 

 $y_7(x) = 1.0000000000 - 0.999999999782x + 0.499999117332x^2 - 0.166657457128x^3 + 0.41626608698e - 1x^4 - 0.8242412005e - 2x^5 + 0.1274753828e - 2x^6 - 0.121171994e - 3x^7$ 

 $y_{10}(x) = 1.0000000000 - 1.0000000001x + 0.499999938009x^{2} - 0.166665705852x^{3} + 0.41661627591e - 1x^{4} - 0.8319467306e - 2x^{5} + 0.1362442970e - 2x^{6} - 0.170111656e - 3x^{7} + 0.6675720e - 5x^{8} + 0.3516674e - 5x^{9} - 3.352761268616 \times 10^{-7}x^{1}$ 

| Х   | Exact          | N = 5          | N = 7          | N = 10         |
|-----|----------------|----------------|----------------|----------------|
| 0.2 | 0.818730753100 | 0.818728386100 | 0.818730750000 | 0.818730753300 |
| 0.4 | 0.670320046000 | 0.670318618500 | 0.670320043400 | 0.670320038500 |
| 0.6 | 0.548811636100 | 0.548809882300 | 0.548811633000 | 0.548811636300 |
| 0.8 | 0.449328964100 | 0.449325726200 | 0.449328960100 | 0.449328964200 |
| 1.0 | 0.367879441200 | 0.367877693500 | 0.367879438900 | 0.367879441700 |

 Table 3: Absolute Error for example 2

| x   | error <sub>5</sub> | error <sub>7</sub> | error 10    |
|-----|--------------------|--------------------|-------------|
| 0.2 | 2.367000E-6        | 3.100000e-9        | 2.00000e-10 |
| 0.4 | 1.427500e-6        | 2.600000e-9        | 7.50000e-9  |
| 0.6 | 1.753800e-6        | 3.100000e-9        | 7.62000e-10 |
| 0.8 | 3.237900e-6        | 4.00000e-9         | 3.28300e-10 |
| 1.0 | 1.747700e-6        | 2.300000e-9        | 1.38800e-10 |
|     |                    |                    |             |

Example 3: [17] Considering first order Volterra integro-differential equation

 $y'(x) = 1 - \int_0^x y(t)dt \ (17)$ subject to initial condition y(0) = 0Exact solution y(x) = sinx

## Solution 3

The approximate solution of equation (17) at N = 7 gives

```
y_7(x) = -4.091778999000 \times 10^{-16} + 1.00000000165x - 5.712718121000 \times 10^{-7}x^2 - 0.166660841322x^3 - 0.24197157e - 4x^4 + 0.8384018671e - 2x^5 - 0.54626726e - 4x^6 - 0.172795088e - 3x^7
```

Table 4: Exact and approximate values for example 3

| Х   | Exact          | N = 7          | error <sub>7</sub> | error [17] |
|-----|----------------|----------------|--------------------|------------|
| 0.2 | 0.198669330800 | 0.198669328900 | 1.90000e-9         | 2.293e-3   |
| 0.4 | 0.389418342300 | 0.389418340900 | 1.400000e-9        | 2.051e-2   |
| 0.6 | 0.564642473400 | 0.564642472000 | 1.40000e-9         | 7.061e-2   |
| 0.8 | 0.717356090900 | 0.717356089700 | 1.20000e-9         | 1.686e-1   |
| 1.0 | 0.841470984800 | 0.841470987100 | 2.30000e-9         | 3.307e-1   |

#### 4. RESULTS AND DISCUSSIONS

The numerical results obtained from the solved examples using the derived numerical method are discussed in this section.

The approximate solution obtained for Example 1 as shown in Table1 for N = 5 gives  $y_5 =$ 

- 1.00000000184

- +  $1.00000507317x 0.128181117e 3x^2$
- +  $0.167363479046x^3$

- 0.43011129944e - 1 $x^4$  + 0.9284810779e - 2x5. The numerical result gives a smaller errors and consistent across all values of x. This confirmed that our method performed better

than the method proposed by [17].

The results of the numerical Example 2 shown in Tables 2 and 3 show that the approximate solutionat N = 5 gives  $y_5 = 0.999999999417 - 0.9999999193495x +$ 

 $0.499753750089x^2$ 

 $- 0.165229249724x^3 +$ 

 $0.38466152158e - 1x^4 - 0.5113765043e - 2x^5$ . Solving for N = 7 and 10, the numerical results converge o an exact solution as the value of N increases. This shows that the numerical method developed is

consistent and accurate.

The approximate solution obtained in Example 3 shown in

Table 4, for the value of N gives

*y*<sub>7</sub>

- $= -4.091778999000 \times 10^{-16}$
- + 1.00000000165x 5.712718121000×  $10 - 7x^2 - 0.166660841322x^3 - 0.24197157e - 4x^4$
- $+ 0.8384018671e 2x^5$

 $-0.54626726e - 4x^6 - 0.172795088e - 3x^7$ . This also confirmed that our method performed better than the method proposed by [17].

# 5. CONCLUSION

In this work, the collocation approach was examined for the numerical solution of first-order Volterra integrodifferential equations. This method is reliable, effective and straightforward to compute. Maple 18 is used for all of the computations in this work.

# REFERENCES

- V. Volterra, "Theory of Functional and of Integral and Integro-differential Equations," *Dover Publications*. (2005).
- R. H. Khan and H. O. Bakodah, "Adomian decomposition method and its modification for nonlinear Abel's integral equations," *Computers and Mathematics with Applications*, vol.7, pp. 2349-2358, 2013.
- R. C. Mittal and R. Nigam, "Solution of fractional integro-differential equations by Adomian decomposition method," *The International Journal of Applied Mathematics and Mechanics*, vol.2, pp. 87-94, 2008.
- 4. G. Ajileye and F. A. Aminu, "A Numerical Method using collocation approach for the solution of Volterra–Fredholm Integro–differential Equations," *African Scientific Reports 1*, pp. 205–211, 2022.
- 5. A. O. Agbolade and T. A. Anake, "Solution of first order Volterra linear integro differential equations by collocation method," *J. Appl. Math.*, 2017.
- S. Nemati, P. Lima and Y. Ordokhani, "Numerical method for the mixed Volterra–Fredholm integral equations using hybrid Legendre function," *Conference Application of Mathematics,*, vol. 4, pp.184-192, 2015.
- G. Ajileye and F. A. Aminu, "Approximate Solution to First–Order Integro–differential Equations Using Polynomial Collocation Approach," *J Appl Computat Math.*, vol.1, pp. 486, 2022.
- G, Mehdiyera, M. Imanova and V. Ibrahim, "Solving Volterra integro differential equation by second derivative methods," *43<sup>rd</sup> Appl. Math. Inf. Sci.* vol. 9, pp. 2521-2527, 2015.
- G. Mehdiyeva, V. Ibrahimov and M. Imanova, "On the Construction of the Multistep Methods to Solving the Initial–Value Problem for ODE and the Volterra

Integro–Differential Equations," *IAPE,Oxford, United Kingdom*, 2019. ISBN: 978-1-912532-05-6.

- K.Issa and F. Saleh, "Approximate solution of perturbed Volterra Fredholm integro differential equation by Ghebyshev–Galerkin method," *Journal of Mathematics*, 2017. doi:10,1155/2017/8213932.
- 11. A. H. Bhraway, E. Tohidi and F. Soleymani, "A new Bernoulli matrix method for solving high order linear and nonlinear Fredholm integro–differential equations with piecewise interval," *Appl. Math. Comput*, vol. 219, pp.482-497, 2012.
- 12. C. Ercan and T. Kharerah, "Solving a class of Volterra integral system by the differential transform method," *Int. J. Nonlinear Sci.*, vol. 16, pp.87-91, 2013.
- 13. A. Shahsavaran and A. Shahsavaran, "Application of Lagrange Interpolation for Nonlinear Integro Differential Equations," *Applied Mathematical Sciences*, vol.6 no.18, pp.887 892, 2012.
- 14. N. Irfan, S. Kumar and S. Kapoor, "Bernstein Operational Matrix Approach for Integro–Differential Equation Arising in Control theory," *Nonlinear Engineering* vol.3, pp.117-123, 2014.
- 15. P. Darania and A. Ebadian, "A method for the numerical solution of the integro–differential equations," *Applied Mathematics and Computation*, vol.188, pp.657–668, 2007.
- A. Maadadi and A. Rahmoune, "Numerical solution of nonlinear Fredholm integro-differential equations using Chebyshev polynomials," *International Journal of Advanced Scientific and Technical Research*, vol.8, no.4, 2018. https://dx.doi.org/10.26808/rs.st.i8v4.09
- B. H. Garba and S. L. Bichi, "A hybrid method for solution of linear Volterra integro-differential equations (GVIDES) via finite difference and Simpsons' numerical methods (FDSM)," *Open J. Math Anal.* vol.5, no.1, 2021.
- L. Zada, M. Al-Hamami, R. Nawaz, S. Jehanzeb, A. Morsy, A. Abdel-Aty and K.S. Nisar, "A New Approach for Solving Fredholm Integro–Differential Equations," *Information Sciences Letters*. vol.10, no2 2021.
- L. Rahmani, B. Rahimi and M. Mordad, "Numerical Solution of Volterra–Fredholm Integro–Differential Equation by Block Pulse Functions and Operational Matrices," *Gen. Math. Notes*, vol.4, no.2, pp. 37-48, 2011.
- Z. P. Atabakan, A. K. Nasab, A. Kiliçman and Z. K. Eshkuvatov, "Numerical Solution of Nonlinear Fredholm Integro–Differential Equations Using Spectral Homotopy Analysis Method," Mathematical Problems in Engineering, vol. 9 no. 7, 2013. http://dx.doi.org/10.1155/2013/674364
- 21. G. Ajileye and S. A Amoo, "Numerical solution to Volterra integro-differential equations using

collocation approximation. Mathematics and Computational Sciences. 4(1) 2023. 1-8

 G. Ajileye, A. A. James, A. M. Ayinde, T. Oyedepo, Collocation Approach for the ComputationalSolution Of Fredholm–Volterra Fractional Order of Integro–Differential Equations," J. Nig. Soc. Phys. Sci., vol.4, pp.834, 2022.