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1  INTRODUCTION 

Williamson [1] proposed a fluid model known as Williamson 

fluid model to know the flow behaviour of pseudoplastic 

fluids. The heat transfer in viscoelastic flow caused by an 

exponentially stretched sheet is described by the Cattaneo-

Christov heat flux model. Using the Oldroyds’ upper-

convected derivative, Christov proposed the frame-

indifferent generalisation of Cattaneo’s law from which he 

derived a single temperature governing equation [2]. The 

upper-convected Maxwell model and Cattaneo–Christov heat 

flux model is used to investigate heat transfer and boundary 

layer flow of a viscoelastic fluid above a stretching plate with 

velocity slip boundary by Han et al. [3]. A modified version 

of Fourier’s law known as the Cattaneo-Christov heat flow 

model, is used to investigate the phenomenon of heat 

transport by Khan et al.[4]. The two-dimensional Oldroyd-B 

fluid over a stretching surface with gyrotactic microorganism 

using Cattaneo-Christov heat flux is investigated by Bashir et 

al. [5]. Recently Bilal et al. [6] analyzed the two-dimensional 

incompressible flow of Williamson nanofluid over an 

exponentially stretching surface with Cattaneo- Christov heat 

flux model and reported that fluid velocity decreases in 

relation to the Williamson fluid model parameter.  

 The steady flow of nanofluid with gyrotactic 

microorganism over a Riga plate using Cattaneo- Christov 

heat flux model is studied by Faizan et al. [7]. Alharbi et al. 

[8] used Tiwari-Das model and the Cattaneo-Christov model 

to examine the impact of Marangoni convection and volume 

fraction during heat transfer and divulged that Marangoni 

convection shortens skin friction. Mahabaleshwar et al. [9] 

compared the Cattaneo-Christov heat flux concept in the flow 

of two viscoelastic fluids to explore the heat transfer 

individualities with changing thermal conductivity using the 

characteristics of the Appell hypergeometric function. 

Shahzad et al. [10] explore the effect of gyrotactic 

microorganisms and convective thermal boundary conditions 

on the Darcy-Forchheimer in a micropolar nanofluid flow 

between two coaxial, parallel, and radially expanding disks 

and observed that the stretching ratio parameter of the disks 

accelerates the axial and micro rotational velocities of the 

nanofluid.  

 Reddy et al. [11] studied the two-dimensional 

viscous flow of Cassson nanofluid with Cattaneo–Christov 

model and used Spectral Homotopy Analysis Method 

(SHAM) to get the numerical solution. Ahmad et al. [12] 

investigated the Cattaneo-Christov heat flux model of 

second-grade nanofluid flow over a stretching sheet and used 

HAM to get analytic solution. Ahmed et al. [13] analyzed the 

Maxwell nanofluid flow in three-dimensional porous medium 

with the idea of Cattaneo-Christov and Buongiorno models 
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and the resultant non-linear ordinary differential equations 

are solved using Homotopy Analysis Method. Akinbo et al. 

[14] discussed the effect of viscous Walters B fluid flow of 

Cattaneo-Christov model over an exponentially stretching 

sheet and the results are compared using HAM and Galerkin 

Weighted Residual method. Amjad et al.[15] investigated the 

Cattaneo-Christov double diffusion (CCDD) heat flux model 

for Williamson nanofluid over an exponentially stretching 

surface with variable thermal conductivity.  

 Prasad et al. [16] observed that the distribution of 

temperature and concentration is decreased as a result of the 

Cattanneo-Christov heat flux model. The non-Newtonian 

fluid behavior of Casson fluid model over an Exponentially 

Stretching Sheet with Heat Source and Sink is studied by 

Prakash et al. [17]. Shehzad et al. [18, 19] analyzed Cattaneo-

Christov model for both third-grade fluid flow over an 

exponentially stretching sheet and for Darcy-Forchheimer 

flow of an Oldroyd-B fluid over a moving sheet. The 

influence of Cattaneo-Christov model of Williamson fluid 

over a permeable sheet is studied using HAM by Ray [20]. 

The flow of Williamson Sutterby nanofluid in Darcy–

Forchheimer sponge medium with Cattaneo-Christov heat 

flux is discussed by Yahya et al. [21]. The flow of Williamson 

and Casson fluid flows over a penetrable extending Sheet in 

a permeable medium using Runge-Kutta Fehlberg method 

together with Shooting method is studied by Mangathai et al. 

[22].  

 Jamshed et al. [23] applied Keller-box method in the 

analysis of engine oil-based Williamson hybrid nanofluid 

flow. Hayat et al. [24] surveyed the flow of thixotropic fluid 

over a stretching surface of Cattaneo-Christov heat flux 

model. The bioconvection nanofluid flow with temperature-

dependent variable viscosity by applying HAM is studied by 

Mondal et al. [25]. The MHD three-dimensional flow of 

Maxwell fluid over a bi-directional stretching surface with 

Cattaneo-Christov heat flux model by using HAM is analyzed 

by Rubab et al. [26]. Salahuddin et al. [27] analyzed the 

thermal relaxation time effect of MHD Williamson fluid flow 

using Cattaneeo-Christov heat flux model over a stretching 

sheet. Kumar et al. [28] utilized Cattaneo-Christov model for 

the flow over a wedge and a cone and the results are compared 

using R-K method and Newton’s method. Bhatti et al. [29] 

discussed the flow of Williamson nanofluid under the 

influence of thermal diffusion and thermal radiation over a 

porous stretching and shrinking sheet and the results are 

obtained using Successive linearization method (SLM) and 

Chebyshev spectral collocation method (CSC).  

 In this paper, we are analyzing Williamson fluid 

model in a boundary layer over an exponentially stretching 

surface in the presence of magnetic field, heat source and 

thermal radiation. The distribution of the paper is first section 

contains Introduction, second section contains Mathematical 

formulation, third section is Homotopy Analysis solution of 

the problem, fourth section is result and discussion and fifth 

section consists of graphs and tables.   

 

2  MATHEMATICAL FORMULATION 

The two-dimensional steady heat and mass transfer of 

incompressible Williamson fluid flow of uniform magnetic 

field over an exponentially stretching sheet is considered. By 

considering 𝑢 and 𝑣 as velocity components along 𝑥 and 𝑦 

directions and the fundamental equations for this model will 

be [4].  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

  

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2 + √2𝜈Γ
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2

𝜌
𝑢 +

𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞), (2) 

  

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 − 𝜆1 [𝑢2 (
𝜕2𝑇

𝜕𝑥2) +

2𝑢𝑣 (
𝜕2𝑇

𝜕𝑥𝜕𝑦
) + 𝑣2 (

𝜕2𝑇

𝜕𝑦2)] − 

 𝜆1 [(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) (

𝜕𝑇

𝜕𝑥
) + (𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) (

𝜕𝑇

𝜕𝑦
)] +

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇∞) +

𝜈

𝑐𝑝
(

𝜕𝑢

𝜕𝑦
)

2

−
1

𝜌𝑐𝑝
(

𝜕𝑞𝑟

𝜕𝑦
), (3) 

  

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 + 𝐷𝑇
𝜕2𝑇

𝜕𝑦2, (4) 

 with boundary conditions,  

 𝑢 = 𝑈𝑤(𝑥) = 𝑈0𝑒𝑥𝑝 (
𝑥

𝑙
) , 𝑣 = 0, −𝑘

𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑤 − 𝑇), 𝐶 =

𝐶𝑤   at  𝑦 = 0; 

  

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  as  𝑦 → ∞. (5) 

 

Where 𝜈, the kinematic viscosity, 𝑘, thermal conductivity, 

Γ, time rate constant, 𝜌, density of the fluid, 𝜎, the electrical 

conductivity, 𝑔, gravitational force, 𝐵0 , uniform magnetic 

field, 𝛽 , thermal expansion coefficient, 𝛽∗ , concentration 

expansion coefficient, 𝑇, the temperature of the fluid, 𝐶, the 

concentration of the fluid, 𝑐𝑝 , specific heat, 𝜆1 , thermal 

relaxation time, 𝑄0 , heat source, 𝐷𝑚 , mass diffusion 

coefficient, 𝐷𝑇 , thermal diffusion coefficient, ℎ𝑓, convective 

heat transfer coefficient, 𝑙 , characteristic length, radiative 

heat flux 𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
, where 𝜎∗ , Stefan Boltzmann 

constant and 𝑘∗ , absorption coefficient. When temperature 

difference is small, 𝑞𝑟  can be linearized by expanding 𝑇4 

into Taylor’s series about 𝑇∞, takes the form after neglecting 

higher order terms by 𝑇4 ≅ 4𝑇∞
3 𝑇 − 3𝑇∞

4 . 

Here we consider similarity transformations as follows, 

 

𝜂 = 𝑦√
𝑈0

2𝜈𝑙
𝑒𝑥𝑝 (

𝑥

2𝑙
) , 𝑢 = 𝑈0𝑒𝑥𝑝 (

𝑥

𝑙
) 𝑓′(𝜂), 𝑣

= −√
𝜈𝑈0

2𝑙
𝑒𝑥𝑝 (

𝑥

2𝑙
) [𝑓(𝜂) + 𝜂𝑓′(𝜂)], 
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𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
. (6) 

 

 Equations (2) - (5) will get reduced to (7) - (10) by using (6)  

 𝑓′′′ + 𝑓𝑓′′ − 2(𝑓′)2 + 𝜆𝑓′′𝑓′′′ − 𝑀𝑓′ + 𝐺𝑟𝜃 +

𝐺𝑚𝜙 = 0, (7) 

  

 𝜃′′ −
1

2
𝑃𝑟𝛾𝑓2𝜃′′ + 𝑅𝜃′′ +

1

2
𝑃𝑟𝛾𝑓𝑓′𝜃′ + 𝑃𝑟𝑓𝜃′ +

2𝑄𝑃𝑟𝜃 + 𝑃𝑟𝐸𝑐(𝑓′′)2 = 0, (8) 

  

 𝜙′′ + 𝑆𝑐𝑓𝜙′ + 𝑆𝑜𝑆𝑐𝜃′′ = 0.

 (9) 

  

 𝑓 = 0, 𝑓′ = 1, 𝜃′ = −𝛾𝐵[1 − 𝜃], 𝜙 = 1,

𝑎𝑡  𝜂 = 0, 

      𝑓′ → 0, 𝜃 → 0, 𝜙 → 0, 𝑎𝑠  𝜂 →

∞. (10) 

 Where 𝑀 =
2𝜎𝐵0

2𝑙

𝜌𝑈𝑤
; Magnetic field parameter, 𝜆 = Γ

𝑈𝑤

3
2

√𝜈𝑙
; 

Williamson fluid parameter, 𝑃𝑟 =
𝜈𝜌𝑐𝑝

𝑘
; Prandtl number, 

𝐺𝑟 =
2𝑔𝛽(𝑇𝑤−𝑇∞)𝑙

𝑈𝑤
2 ;  Grashof number, 𝐺𝑚 =

2𝑔𝛽∗(𝐶𝑤−𝐶∞)𝑙

𝑈𝑤
2 ; 

modified Grashof number, 𝛾 =
𝜆1𝑈𝑤

𝑙
; Thermal relaxation 

time parameter, 𝛾𝐵 =
ℎ𝑓

𝑘
√

2𝜈𝑙

𝑈0
; Biot number, 𝑅 =

16

3

𝜎∗𝑇∞
3

𝑘𝑘∗  ; 

Radiation parameter, 𝑄 =
𝑄0

𝜌𝑐𝑝𝑈𝑤
; Heat source parameter 

𝐸𝑐 =
𝑈𝑤

2

𝑐𝑝(𝑇𝑤−𝑇∞)
; Eckert number, 𝑆𝑐 =

𝜈

𝐷𝑚
; Schmidt number, 

𝑆𝑜 =
𝐷𝑡(𝑇𝑤−𝑇∞)

𝜈(𝐶𝑤−𝐶∞)
; Soret number.  

 

3. HOMOTOPY ANALYSIS SOLUTION 

Shijun Liao (1992) [31, 32, 33, 34, 35, 36, 37, 38, 39, 40] 

explained Homotopy Analysis Method (HAM) to solve non-

linear differential equations analytically. Using this method 

[41, 42] we solve coupled nonlinear equations of this 

problem. The steps of the method are,  

 

𝑁[𝑓(𝜂)] = 𝑓′′′ + 𝑓𝑓′′ − 2(𝑓′)2 + 𝜆𝑓′′𝑓′′′ − 𝑀𝑓′ + 𝐺𝑟𝜃 +

𝐺𝑚𝜙, (11) 

  

𝑁[𝜃(𝜂)] = 𝜃′′ −
1

2
𝑃𝑟𝛾𝑓2𝜃′′ + 𝑅𝜃′′ +

1

2
𝑃𝑟𝛾𝑓𝑓′𝜃′ +

𝑃𝑟𝑓𝜃′ + 2𝑄𝑃𝑟𝜃 + 𝑃𝑟𝐸𝑐(𝑓′′)2, (12) 

  

𝑁[𝜙(𝜂)] = 𝜙′′ + 𝑆𝑐𝑓𝜙′ + 𝑆𝑜𝑆𝑐𝜃′′. (13) 

 

Linear operators considered are as follows,  

𝐿(𝑓) =
𝜕3𝑓

𝜕𝜂3 +
𝜕2𝑓

𝜕𝜂2, (14) 

 

𝐿(𝜃) =
𝜕2𝜃

𝜕𝜂2 +
𝜕𝜃

𝜕𝜂
, (15) 

 

𝐿(𝜙) =
𝜕2𝜙

𝜕𝜂2 +
𝜕𝜙

𝜕𝜂
, (16) 

 

which gives initial approximations as,  

𝑓0 = 1 − 𝑒−𝜂 , (17) 

 

𝜃0 = (
𝛾𝐵

1+𝛾𝐵
) 𝑒−𝜂, (18) 

 

𝜙0 = 𝑒−𝜂. (19) 

 

The nonlinear equations for approximate solutions are,  

 

 (1 − 𝑝)𝐿[𝑓(𝜂, 𝑝) − 𝑓0(𝜂)] = 

ℎ𝑝 [
𝜕3𝑓

𝜕𝜂3 + 𝑓
𝜕2𝑓

𝜕𝜂2 − 2 (
𝜕𝑓

𝜕𝜂
)

2

+ 𝜆
𝜕2𝑓

𝜕𝜂2

𝜕3𝑓

𝜕𝜂3 − 𝑀
𝜕𝑓

𝜕𝜂
+ 𝐺𝑟𝜃 +

𝐺𝑚𝜙], (20) 

  (1 − 𝑝)𝐿[𝜃(𝜂, 𝑝) − 𝜃0(𝜂)] = ℎ𝑝[
𝜕2𝜃

𝜕𝜂2 −
1

2
𝑃𝑟𝛾𝑓2 𝜕2𝜃

𝜕𝜂2 +

𝑅
𝜕2𝜃

𝜕𝜂2 +
1

2
𝑃𝑟𝛾𝑓

𝜕𝑓

𝜕𝜂

𝜕𝜃

𝜕𝜂
+ 

 𝑃𝑟𝑓
𝜕𝜃

𝜕𝜂
+ 2𝑄𝑃𝑟𝜃 + 𝑃𝑟𝐸𝑐 (

𝜕2𝑓

𝜕𝜂2)
2

], (21) 

 (1 − 𝑝)𝐿[𝜙(𝜂, 𝑝) − 𝜙0(𝜂)] = ℎ𝑝[
𝜕2𝜙

𝜕𝜂2 + 𝑆𝑐𝑓
𝜕𝜙

𝜕𝜂
+

𝑆𝑜𝑆𝑐
𝜕2𝜃

𝜕𝜂2], (22) 

 

with following boundary conditions, 

𝑓(0, 𝑝) = 0, 𝑓𝜂(0, 𝑝) = 1, 𝑓𝜂(∞, 𝑝) = 0, (23) 

 

𝜃𝜂(0, 𝑝) = −𝛾𝐵[1 − 𝜃(0, 𝑝)], 𝜃(∞, 𝑝) = 0, (24) 

 

𝜙(0, 𝑝) = 1, 𝜙(∞, 𝑝) = 0. (25) 

 

Varying the values of 𝑝 from 0 to 1 we get the solution 

from first approximation to required solution. Using 

Maclaurin’s series expansion and applying Leibnitz theorem 

we get the series solution. The convergence of the series 

solution is derived by calculating the convergence parameter 

ℎ. 

𝐿[𝑓𝑚 − 𝜒𝑚𝑓𝑚−1] = ℎ𝑟𝑚(𝜂), (26) 

 

𝐿[𝜃𝑚 − 𝜒𝑚𝜃𝑚−1] = ℎ𝑠𝑚(𝜂), (27) 

 

𝐿[𝜙𝑚 − 𝜒𝑚𝜙𝑚−1] = ℎ𝑡𝑚(𝜂), (28) 

 

where    𝜒𝑚 = {
0, when  𝑚 ≤ 1
1, when  𝑚 > 1        and    

 (29) 

 

𝑟𝑚(𝜂) = 𝑓𝑚−1
′′′ (𝜂) + ∑

𝑚−1

𝑘=0

𝑓𝑚−1−𝑘(𝜂)𝑓𝑘
′′(𝜂)

− 2 ∑

𝑚−1

𝑘=0

𝑓𝑚−1−𝑘
′ (𝜂)𝑓𝑘

′(𝜂) − 𝑀𝑓𝑚−1
′ (𝜂) 

+𝜆 ∑𝑚−1
𝑘=0 𝑓𝑚−1−𝑘

′′ (𝜂)𝑓𝑘
′′′(𝜂) + 𝐺𝑟𝜃𝑚−1(𝜂) +
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𝐺𝑚𝜙𝑚−1(𝜂), (30) 

 

 

𝑠𝑚(𝜂)

= 𝜃𝑚−1
′′ (𝜂) −

1

2
𝑃𝑟𝛾 ∑

𝑚−1

𝑘=0

𝑓𝑚−1−𝑘(𝜂) ∑

𝑘

𝑗=0

𝑓𝑘−𝑗(𝜂)𝜃𝑗
′′(𝜂) + 

𝑅𝜃𝑚−1
′′ (𝜂) +

1

2
𝑃𝑟𝛾 ∑

𝑚−1

𝑘=0

𝑓𝑚−1−𝑘(𝜂) ∑

𝑘

𝑗=0

𝑓𝑘−𝑗
′ (𝜂)𝜃𝑗

′(𝜂) + 

𝑃𝑟 ∑𝑚−1
𝑘=0 𝑓𝑚−1−𝑘(𝜂)𝜃𝑘

′ (𝜂) + 2𝑄𝑃𝑟𝜃𝑚−1(𝜂) +

𝑃𝑟𝐸𝑐 ∑𝑚−1
𝑘=0 𝑓𝑚−1−𝑘

′′ (𝜂)𝑓𝑘
′′(𝜂), (31) 

 

𝑡𝑚(𝜂) = 𝜙𝑚−1
′′ (𝜂) + 𝑆𝑐 ∑𝑚−1

𝑘=0 𝑓𝑚−1−𝑘(𝜂)𝜙𝑘
′ (𝜂) +

𝑆𝑜𝑆𝑐𝜃𝑚−1
′′ (𝜂), (32) 

 

with boundary conditions, 

𝑓𝑚(0) = 0, 𝑓𝑚
′ (0) = 0, 𝑓𝑚

′ (∞) = 0, (33) 

 

𝜃′
𝑚(0) − 𝛾𝐵𝜃𝑚(0) = 0, 𝜃𝑚(∞) = 0, (34) 

 

𝜙𝑚(0) = 0, 𝜙𝑚(∞) = 0. (35) 

 

The required solution is 

𝑓 = 𝑓0 + 𝑓1 + 𝑓2+. . ., (36) 

  

𝜃 = 𝜃0 + 𝜃1 + 𝜃2+. . ., (37) 

 𝜙 = 𝜙0 + 𝜙1 + 𝜙2+. . .. (38) 

 

Soving equtions (26)-(28) by using MATHEMATICA we get  

 𝑓1 =

−
−ℎ+4𝐺𝑚ℎ−4ℎ𝑀−ℎλ−ℎγB+4𝐺𝑚ℎγB+4𝐺𝑟ℎγB−4ℎ𝑀γB−ℎλγB

4(1+γB)
+ 

 
1

4(1+γB)
(𝑒−2𝜂)(−2𝑒𝜂(ℎ + 2𝐺𝑚ℎ − 2ℎ𝑀 + ℎλ +

ℎγB + 2𝐺𝑚ℎγB + 2𝐺𝑟ℎγB − 2ℎ𝑀γB + ℎλγ B) +  ℎ((1 +

λ)(1 + γB) + 4𝑒𝜂(𝐺𝑟γB + 𝐺𝑚(1 + γB) − 𝑀(1 + γB))(2 +

𝜂))), . .. (39) 

  𝜃1 =
1

4(1+γB)
(𝑒−2𝜂)(ℎ𝑃𝑟(2 + 𝛾)γB + 2𝐸𝑐ℎ𝑃𝑟(1 + γB) −

2𝑒𝜂(
1

2
(2𝐸𝑐ℎ𝑃𝑟 − 4ℎγB + 6ℎ𝑃𝑟γB +  2𝐸𝑐ℎ𝑃𝑟γB −

8ℎ𝑃𝑟𝑄γB − 4ℎ𝑅γB + 3ℎ𝑃𝑟𝛾γB) + ℎ(2(1 + 𝑅) + 𝑃𝑟(−2 +

4𝑄 − 𝛾))γB(1 + 𝜂))), . ..                                                      

(40)                                                  

𝜙1 =
1

2(1+γB)
(𝑒−2𝜂)(ℎ𝑆𝑐(1 + γB) − 2𝑒𝜂(

1

2
(−2ℎ + 3ℎ𝑆𝑐 −

2ℎγB + 3ℎ𝑆𝑐γB − 2ℎ𝑆𝑜𝑆𝑐γB) + 

 ℎ(1 + γB + 𝑆𝑐(−1 + (−1 +

𝑆𝑜)γB))(1 + 𝜂))), . .. (41) 

 

4. RESULTS AND DISCUSSION 

The semi-analytical solutions of non-dimensional equations 

(7)-(9) are obtained by homotopy Analysis Method and 

numerical solution is obtained by Runge-Kutta method. The 

calculations were done using MATHEMATICA to derive the 

Williamson fluid’s flow, heat, and mass transfer 

characteristics. The auxiliary non-zero parameters ℎ𝑓 , ℎ𝜃 

and ℎ𝜙 have significant influence on convergence of HAM 

solution. In figure 1 it can be seen convergence range for 

velocity profile is −1.5 < ℎ𝑓 < 0.5, for temperature profile 

is −1.5 < ℎ𝜃 < 1.2 and for concentration profile is −2.5 <

ℎ𝜙 < 0.5.  

Figures 2 - 13 delineates the effect of various parameters like 

Magnetic parameter 𝑀 , Williamson parameter 𝜆 , Grashof 

number 𝐺𝑟, modified Grashof number 𝐺𝑚, Prandtl number 

𝑃𝑟 , Thermal relaxation time parameter 𝛾 , Heat source 

parameter 𝑄 , Biot number 𝛾𝐵 , Radiation parameter 𝑅 , 

Eckert number 𝐸𝑐, Schmidt number 𝑆𝑐 and Soret number 

𝑆𝑜  on velocity, temperature and concentration profiles. 

Figure 2 illustrates that the velocity of Williamson fluid 

drastically decreases as the effect of magnetic field increases. 

This is due to the Lorentz force which is dragging force in the 

presence of magnetic field. A similar pattern is observed in 

the case of Williamson parameter due to fluid relaxation time, 

shown in figure 3. From figures 4 and 5 we have observed 

that velocity profile increases with increase in Grashof 

number and modified Grashof number.  

 From figure 6, it is observed temperature profile 

decreases with increase in Prandtl number. The effect of 

Thermal relaxation parameter on the temperature field is 

shown in figure 7 and observed that temperature is seen to fall 

as a result of the relaxation parameter. In the absence of 

Thermal relaxation parameter, the Cattaneo-Christov heat 

flux model can be reduced to the Fourier’s law of heat 

conduction. Additionally, Cattaneo-Christov heat flux model 

has a lower temperature than the Fourier’s model. The 

temperature profile is clearly a function of the Heat source 

parameter in an increasing manner shown in figure 8. It is 

observed that the increase in values of Biot number, 

Radiation parameter and Eckert number increases the 

temperature profile seen in figures 9, 10 and 11.  

 The concentration profile increases with the 

increase in Williamson parameter and Soret number shown in 

figures 12 and 14, where as decreases with increase in 

Schmidt number and modified Grashof number shown in 

figures 13 and 15. Figures 16, 17 and 18 presents Domb-

Sykes plots of velocity, temperature and concentration 

through which we get the radius of convergence as 0.71145, 

0.12205 and 1.78374 respectively.  

 We have compared HAM solution with numerical 

solution for velocity, temperature and concentration profiles 

shown in figures 19, 20 and 21 and observed good agreement. 

We have also compared our solutions with the well known 

results of Elbashbeshy [30] shown in the table 1.  
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5. GRAPHS AND TABLES 

 
Figure 1: h-curves for the functions 𝒇, 𝜽 and 𝝓 

 

 

 

Figure 2: Effect of Magnetic parameter 𝑴                        Figure 3: Effect of Williamson parameter 𝝀 

on velocity profile                           on velocity profile 

 

 
Figure 4: Effect of Grashof number 𝑮𝒓            Figure 5: Effect of modified Grashof number                     on 

velocity profile                                  𝑮𝒎 on velocity profile 
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Figure 6: Effect of Prandtl number 𝑷𝒓            Figure 7: Effect of Thermal relaxation time                                   

on temperature profile                      parameter 𝜸 on temperature profile 

 

Figure 8: Effect of Heat source parameter          Figure 9: Effect of Biot number 𝜸𝑩 on 

𝑸 on temperature profile                       temperature profile 

 

 
Figure 10: Effect of Radiation parameter 𝑹  Figure 11: Effect of Eckert number 𝑬𝒄 on       on temperature profile                

temperature profile 
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Figure 12: Effect of Williamson parameter 𝝀      Figure 13: Effect of Schmidt number 𝑺𝒄 on 

on concentration profile                  concentration profile 

 

 

Figure 14: Effect of Soret number 𝑺𝒐          Figure 15: Effect of modified Grashof number             on 

concentration                        𝑮𝒎 on concentration profile 

 

 

 

Figure 16: Domb-Sykes velocity plot             Figure 17: Domb-Sykes temperature plot 
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Figure 18: Domb-Sykes concentration plot   Figure 19: Comparison of HAM and numerical 

solution for Magnetic parameter 𝑴 = 𝟎 

on velocity profile 

 
Figure 19: Comparison of HAM and numerical    Figure 20: Comparison of HAM and numerical 

solution for Magnetic parameter 𝑴 = 𝟎    solution for Magnetic parameter 𝑺𝒄 = 𝟏 

on temperature profile                    on concentration profile 

 

 

  Table 1: Comparision of −𝒇′′(𝟎) when 𝝀 = 𝑴 = 𝑮𝒓 = 𝑮𝒎 = 𝟎 and 𝒉 = −𝟎. 𝟓 

−𝑓′′(0) 

Elbashbeshy [30] Present work (HAM) Present work (R K Method) 

1.28181 1.28182 1.28182 
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