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1. INTRODUCTION

Graph Theory is the study of graphs, which are mathematical
structures used to model pairwise relations between objects,
a graph in this context is made up of vertices which are
connected by edges. Although graph theory is one of the
younger branches of mathematics, it is fundamental to a
number of applied fields, including operations research,
computer science, and social network analysis. Rosenfeld
introduced fuzzy graph in 1975. The operations of Cartesian
product, compositions of fuzzy graphs were defined by J.N.
Mordeson and C.S. Peng [1]. Developed the degree of a node

2. PRELIMINARIES
Definition 2.1.

A Neutrosophic Graph is of the form G = < N, L > Where,

in some fuzzy graphs, A. Nagoorgani and K. Radha [3]. The
degree of a Node in fuzzy graphs using these operations was
discussed by A. Nagoorgani and K. Radha. F.smarandache
Single Valued Neotrosophic Graphs and three regions: Truth
(or) acceptance (T), rejection (F), and (neutrality)
indeterminacy (I) degrees both to Nodes and Lines. In this
chapter we discuss the basic concepts of a- cut worthy
(Level) Graphs of Homomorphic, Box dot, Star
Product of Strong Neutrosophic Graphs. To explore
some propositions, theorems and examples of
Neutrosophic Graphs by level graphs.

(i) N = {ai, aj, a,... 8, such that A; : N —» [a,b],A; : N> [a,b] and
Ar : N - [a, b] denote the degree of membership, degree of membership and non- membership of the element a;

€ N, respectively, witha=0and b = 1.

0<Ar(a) +Ai(a;) + Ag(a;)) <3 foreverya; €N, (i=1,2,...n)

(i) L © NxN Where g : NxN - [a,b] ,n; : NxN - [a,b],and ng : NxN — [a, b], are such that

nr(aia;) < min| A7(a), Ar(a;), |
m(aiaj) < min[ll(ai),kl(aj)],
np(aiaj) < max[?\p(ai), ?\F(aj)], and

0< T]T(aiaj) + T]I(aia]-) + np(aia]-) < 3,for every (a;a;) € L (i,j = 1,2,...,n)
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Figure 1: Neutrosophic Graph

Definition 2.2.
A Neutrosophic Graph NG = < N, L > with the triplet (At A;, Ag) and (0, ny, g ) is called Strong Neutrosophic Graph

if
T]T(aia]') = mln[ AT(ai),}\T(aj)]
m(aiaj) = min[ll(ai),ll(aj)]
np(aiaj) = max[AF(ai),AF(aj)], for all (a;a;) € L.
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Figure 2: StrongNeutrosophic Graph

3. MAIN RESULT

Homomorphic product of Strong Neutrosophic Graphs

Definition 1. Let (SNG),; = (A1, ny) and (SNG),,; = (A, n2) be two Strong Neutrosophic Graphs corresponding to the crisp graph
((SNG)1 )" = (Ny, Ly) and ((SNG), ;)" = (N, L) . Then the Homomorphic Product of Strong Neutrosophic Graphs is defined
(SNG);,; and (SNG),,, is a pair of functions (4,0 A;,n;0 n,,) with underlying node set

A0 A, = {(aj,b;): a; € N; and b; € N, } and underlying line set

n:9n, = {((ai,b) (aj,b)): a; = aj, b;b; € L, or a;a; € Ly, bib; € L, } with

210 22) (a5, by) = min( (A;)7(@;), (A2)1(b;)), where a; € Ny and b; € N,

(19 n2)((a;, by (aj, b)) = min( (Ay)r (@), (M2)r(bib;)), if a; = ajand byb; € L,.

(M9 12)((a1, bi) (a5, b)) = min( (ny)r(ai, aj), A2)7(by), A2)1(b;)), if aja; € Ly and bib; & L, .

Boxdot Product of Strong Neutrosophic Graph:
Definition 2. Let (SNG){, = (A, ny) and (SNG),, = (A2, 7m,) be two Strong Neutrosophic Graphs corresponding to the crisp graph

((SNG);5)" = (N1, Ly) and ((SNG),5)" = (N3, L,) . Then the Box dot Product of Strong Neutrosophic Graphs is defined
(SNG), and (SNG),y, is a pair of functions
(A1 . A5, mq [ my,) with underlying node set
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M B A, = {(aj,bj): a; € N; and b; € N, } and underlying line set
Ny B mz = {((a;,b;))(aj,b))): a; = aj, b;b; € L, or a;a; € Ly, bib; € L, } with
(A B 2A2)r(ag, by) = min( (A)r(@y), (A)r(by), where a; € Ny and b; € N, .
(M & n2)7((@i, by (a;,b))) = min( (A)7(@;), A2)(by), A;)r(b;),if a; = ajand bib; & L, .
(M1 B n2)r((@ibi)(aj, b)) = min( ny (a;, aj)T' A, (b;), A, (b;)if aja; € Lyand b;b; € L, .

Star Product of Strong Neutrosophic Graph:

Definition 3. Let (SNG);¢ = (A;,mp) and (SNG),4 = (A,,7,) be two Strong Neutrosophic Graphs corresponding to the crisp graph
((SNG)14)" = (N, Ly) and ((SNG),¢)* = (N, Ly) . Then the Star Product of Strong Neutrosophic Graphs is
define(SNG), sand (SNG), is a pair of functions

(A; * A3, My * My, ) with underlying node set

A * A, = {(a;,bj): a; € N; and b; € N, } and underlying line set

Ny * Nz = {((@i,b)) (a;,b)): a; = aj, b;b; & L, or a;a; € Ly, bib; € L, } with

(A1 * A2)r(ap b)) = min( (A1) (@), (Az)7(b;)), where a; € Ny and b; € N,.

(M1 * N2)r((@i b (@, b)) = min( (A)r(@p), ) (by), A2)r(b;), if a; = ajand byb; & L, .

(M1 * 12)1((ai, by (a;,by)) = min( (ny)r(ay,a;), M) r(bib;))if aja; € Lyand byb; & L.

and also for the indeterminancy, falsity.

Definition 4.

Let A = {< ¢,A1(C),M(C),Ar(C)>, ¢ € N}, The a- cut worthy set of a Neutrosophic set A of the set N is the
crisp set A IS given by

Ao ={C € N:either (Ar(C) = a, M(c) > a and Ae(c) < 1 — a}. where a € [0, 1].

Let n = {<ab,nr(cc"),ni(cc"),ne(cc)>}, The a- cut worthy set of a Neutrosophic set 1 of the set L € Nx N
is the crisp set 1 4 is given by

n«={ cc'eL: either (nr(cc") > a, mi(cc') > aand ne(cc’) <1 — a}.

where a €][0, 1].

Example: 1.
In the Neutrosophic Graph NG = (A,1) on non-empty set
N = {a, aj, ak}as shown in Figure 4.2.

a (0.3,0.3,0.2)

(0.3,0.7,0.3)

(0.4,0.3,0.3)

& (03,0303 &

Figure 3: Neutrosophic Graph NG = (A, 1)

Let o = 0.3. We have X3 = {ai, &, ak}, no.s = {aid;, ajax, akai}. Clearly, the 0.3 - cut worthy graph Gos = (Ao,
No.3)is a crisp graph G™ = (N, L).

Proposition 1. The cut worthy graph NG, = (A4, no) iS a crisp graph.

Theorem: 1.
If any two Homomorphic Product of Strong Neutrosophic Graphs implies a Strong Neutrosophic Graphs
Let SNG;: (A4, m1) and SNG,: (A,, n,) be two Neutrosophic Graphs corresponding to the crisp graph (SNG,)*: (N, ;) and
(SNG,)™: (N,, L,) respectively. Then SNG = (A,n) is the Homomorphic Product of Strong Neutrosophic Graphs SNG; and SNG;
for each o € [0, 1]. The a- cut worthy graph SNG, is the Homomorphic Product of Strong Neutrosophic Graphs (SNG1), and
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(SNG2)q.
Proof:
Let NG = (A,n) be the Homomorphic Product of Strong Neutrosophic Graphs SNG; and SNG; for each a € [0, 1], if
(ai,bi) € .
min{(A;)r (i), A)1(b)} = M)r(ay, by) = «
min{(A,); (a;), A)i(bi)} = (A)(a;, b) = «
max{(A,)r (a;), A)r(b)} = Mp(a, b)) <1 -«
ifa; € N;and b; €N,
s0, (ai) € (M)« and bi€ (A2). i.e,(ai,bi) EA1)a O (A2)o. Therefore Ay S (A1)a O (A2)o.
Let (ai,bi) €M)« O (A2).. then a; € (M), and bj € (A2).. It follows that,
min(A;)r (a;), A2)7(bi) = &, min(Ay); (@), (A2)i(by) = «,
max(A)r (@), A2)e(bi) < 1—a.
Since (A,n) is the Homomorphic Product of SNG1 and SNG;,
M@y b)) = o, A)1(ag, b)) = a, Mp(a; b)) <1—a.ie., (@) € M)
Therefore (M1)q ¢ (A2)e S g and SO (A1)q O (A2)o = A
To prove no..= L, L is a Line set of the Homomorphic Strong Neutrosophic graph
(SNG1)4 ¢ (SNG2)a V a € [0, 1]. Then (aj, b)) (aj, b)) € Ng.
Then(a;, b)) (aj, b;)) = «, (aj, bi)(a,bj)) = a, (a3, b)) (aj;, b)) <1 -«
Since (A,n) is the Homomorphic Product of NG; and NG..
nr(a;, b;)(aj, by)) = min{(ny)r (ai, 3;) , ()r(bi, b} = «
nr(a;, b;)(aj, by)) = min{(n,)r (a;, a;) , (M2)7(bi, b} = «
ne(a;, bp)(a;, b)) = min{(n)r (aj,aj), Me(bi, bj)} <1 —a
if a;aj € L, and b;b; € L.
Similarly, to the node set
(M19m2))r((ai, bi) (a5, bj)) = min {((A)r(a;). (A1) (@), (A2) (1)), (A)r(a5)}
if aja; € Liandbib, € Lo,
Similarly, the results also apply for the intermediate and falsity values.
Conversely,
Suppose that NG,: (A4, n4)is the Homomorphic Product of Neutrosophic Graphs
(NG o= (M) (M1)o ) and (SNG2)o = ((A2)q, (N2)q ) for each a € [0, 1].
min{(A;)r (a;), A2)(b)} = o, min{(A)r (ap), (A1 (b)} = «
max{(A)r (@), A)eb))} <1 -« ifa; e Njand b; €N, .
(a;) € (M)« and b; € (X2).., by hypothesis (a;, b;) € (M)
Mr(ay, b)) = a=min{(A)r (a;), (A;)7(b;)}
M1(ag, by) = a=min{(A)r (a;), (A;)r(b;)}
Mr(a;, b)) <1 —a=max{(A)r (a;), A)r(b;)}
Take (M)r(a;, b)) = B, Mr(a;, b)) = B, Me(ay, b)) =1 — P, then (ai,bi) €(M)p
Since (Ag, mg) is the Homomorphic Product of Neutrosophic Graphs
(SNGy)g= ((Ap, (1)) and (SNG2)p = ((A2)p, (M2)p)
Then (a;) € (\)p and b€ (A2)g.
Hence, (A)r(ap) = B,, A)i(@) = B,, Ae(a) <1 - B,and
A1) = B, A)i(bi) = B, (A)e(b) <1 - B,
It follows that
Mr(a, by) = min{(A,)r (@), (A)r(b)} = o, forall (a;, b;) € N1 ON;
ifa; € Njand b; €N,
Hence,O\l)T(ai, a]-) >a, (Al)l(ai,aj) >aq, (Al)F(ai, a]-) <1- aand
(A)r(bi,by) = o, A)i(bi, by) = a, A)e(bi b)) <1— a,
(s, aj) > B, (1)i(a, aj) > B, )k (a, aj) <1- B,and
(Mm2)r(bi, b)) = B, i(bi, by) = B, (n)e(bi,bj) <1— B,
min{(n)r (a;,a;), (Mz)7} = & min{(ny)1 (i, a;), ()1 (bi, by)} = «
max{(M,)r (a;,3;), M)r(bi, b))} =1 -«
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min{(n:)r (a5, 3)), ()7 (bs, bj)} = B, min{(ny); (@i, a)), Mi(bi, b))} =B max{(m)r (ai,3;), 2)e} = 1 =P

nr(aj, bi)(@j, bj)) = a = min{(ny)r (aj, ;) , M2)(bi, b}

ni(a;, b (@, b)) = a = min{(n,); (aj,a;), (N2)1(b;, bj)}
(@i, n) (@5, b)) <1 —a = max{(mr (aj,a;), (M2)r(b;, b}

if aja; € L, and b;b; € L,

nr(a, b (@, b)) = B = min{(my)r (aj, ;) , M2)r(bi, by}

ni(ai, bpay, b)) = B = min{(ny); (a;,a;), (M2)1(bs, bj)}
ne(ai, bi)(aj,by)) <1 —-B = max{(ny)r (aj,aj), M2)r(b;, bj)}.

if aaj € L, and bib]- €L,

nr(a;i, bi)(@;, b)) = min{(n)r (aj,a;5), (M2)(bi, b}
(@i, bi) (@, b)) = min{(n): (aj,a;), M2)i(bs, by)}
ne(aj, bi)(aj'b]’)) = max{(nr (aj, aj) » (M2)r(b;, bj)}
if aja; € Ly and b;b; € L,.

Theorem: 2.
If any two Bot dot Product of Strong Neutrosophic Graphs implies a Strong Neutrosophic Graphs
Let SNG;:(A4,m;) and SNG,:(A,,m,) be two Strong Neutrosophic Graphs corresponding to the crisp graph
(SNG,)*: (N4, L;) and (SNG,)": (N,, L,) respectively. Then SNG = (A,n) is the bot dot Product of Strong Neutrosophic Graphs
SNG; and SNG; for each a € [0, 1]. The a- cut worthy graph SNG, is the box dot Product of Strong Neutrosophic Graphs
(SNG31), and (SNGy2),.
Proof:
Let SNG = (A,n) be the Box dot Product of Strong Neutrosophic Graphs SNG; and SNG; for each o € [0, 1], if (ai,bi)
€ Ao
min{(A,)r (a;), A)1(b)} = M)r(a;, by) = «
min{(A,); (a;), A)i(bp)} = (A)(a;, b) = «
max{(A,)r (ap), A)r(b)} = Mp(a, b)) <1 -«
ifa; € N;and b; €N,

S0, (ai) € (M)« and bi€ (X2).. i.e,(ai,bi) €(M1)o [ (A2)o. Therefore Ay € (A1)o O (A2)..
Let (ai,bi) €M)« [ (A2)e. then aj € (M)q and b € (A2).. It follows that,
min(A)r (a;), A2)r(b;) = a, min(Ay); (ap), A2)i(by) = a,
max(A;)g (a;), A)r(by) <1 -«
Since (A,n) is the Box dot Product of SNG1 and SNG2. (A)r(a;, by) = o, (A);(a;, by) = o, Mp(a;, b)) <1 —a.ie., (@) € M.
Therefore (M)o [ (A2)oa € e and SO (A1)q O (A2)o = A
To prove no.= L, L is a Line set of the Box dot Strong Neutrosophic Graph
(NG1)a [1 (NG2)o V a € [0, 1]. Then (a;, b;)(aj, b)) € ng.
Then(a;, bj)(aj, bj)) = «, (a;, bi)(a,b;)) = a, (a3, b)) (aj, b)) <1 -«
Since (A,n) is the Box dot Product of SNG; and SNG,.

nr(a;, bi)(aj, by)) = min{(ny)r (aj,a;), M)r(bi, bj)} = a

nr(a;i, bi)(@j, b)) = min{(ny)r (a;,a;), (M2)7(bi, by} = «

Nr(ai, bi)(a;, b)) = min{(n1)r (a1, 3;), (N2)r(bi, b))} <1 -«
ifaja; € Ly and b;b; € L.

Similarly, to the node set
(1 En2))((@i, b) (a5, b)) = min {((A)r(a), (A1) (@), A2)r(ai)), (A2)r(a)}
if a3, ¢ Liandbib, € Lo
Similarly, the results also apply for the intermediate and falsity values.
Conversely,
Suppose that SNG: (A4, N) is the Box dot Product of Strong Neutrosophic Graphs

((NGl)az ((}‘1)00 (nl)(x)and (NGZ)a = ((}\Z)ou (nz)oc) fOf eaCh a€ [O’ 1]
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min{(A)r (ap), A)r(b)} = a, min{(A)r (1), A)r(bi)} =

max{(A)r (@), A} <1 -« ifaj € Nyjand b; €N, .
(a;) € (M)« and b; € (A2)a., by hypothesis (aj, b;) € ()

(Mr(aj, b;) = a = min{(A))r (a)), A)r(b;)}

Mi(ag, by) = a=min{(A)r (a;), (A;)r(b;)}

Me(ay b)) =1 - a=max{(A)r (a;), (A)r(bi)}
Take (M) (aj, by) = B, M)(aj, by) = B, (Mg(aj, by) = 1 — B, then (ai,bi) E(M)p
Since (Ag,ng) is the box dot Product of Strong Neutrosophic Graphs
(SNG1)B: ((7\1)[5: (711)[5 )and (SNGZ)B = ((7\2)[3' (ﬂz)[})
Then (a;) € (\)p and b€ (A2)g.
Hence , (A)r(a) = B, A)i(a) = B, Ap(a) <1— B,and

A2)1(by) = B, A)i(by) = B,, (A2)e(by) <1 — B.

It follows that
Mr(a;, by) = min{(A)r (ap), A)7(by)} = o, forall (a;, by) € N1 1N
ifa; € N;and b; € N,

Hence , (A )r(ai, a;) = o, Ay)i(ai,35) = o, (A)e(aj,a) <1 — aand

(A)r(biby) = o, A)(bi, by) = a, Ae(by, b)) < 1— a,

(m)r(ana;) = B, (s, a5) = B, (My)e(asa) < 1 - B, and

(m2)1(bi, by) = B, m2)i(bi, by) = B, (m2)e(by, by) <1 - B,

min{(n)r (a5, a;), M2)1} = & min{(n,); (a3, ;) , )i (by, by)} = «

max{(n)r (a3, 3;), M2)r(b;, bj)} = 1 —«

min{(n:)r (@5, 3;), M2)r(bs, b;)} = B, min{(my); (a5, 3;), Mi(bi, b))} =B max{(m)r (a1, a;), M)r} =1 - P

nr(a;, b;)(aj, by)) = a = min{(ny)r (as, a;), (2)7(bs, by}
ni(ai, bi)(aj, b)) = a = min{(n1)r (ai, ;) , M2)1(bi, by}
ne(a;,n)(@;,by)) <1 —a =max{(ny)r (ai,a;) , M2)r(bi, by)}-
if a;a; € Ly and bib]- €L,
nr(@i, bi)(aj, b)) = B = min{(ny)r (aj, ;) , ()7 (bs, by)}
nl(ai:bi)aj:bj)) = B = min{(ny); (ai’aj)'(nz)l(bi'bj)}
ne(ai, b)) (@, b)) <1 —B = max{(n)r (ai,a;), (2)r(bs, by}
if a;a; € Ly and bib]- €L,
nT(ai:bi)(aj:b]‘)) = min{(my)r (a;, aj) ’ (T]Z)T(bi'bj)}
ni(ai, b (aj, by)) = min{(ny); (a;, ;) , (N2)1(bs, by}
ne(ai, bi)(aj, by)) = max{(n)r (aj,aj), M2)r(bi, bj)}
if aja; € Ly and b;b; € L,.

Theorem: 3.
If any two Star Product of Strong Neutrosophic Graphs implies a Strong Neutrosophic Graphs
Let SNGq:(A{,m;) and SNG,:(A,,m,) be two Strong Neutrosophic Graphs corresponding to the crisp graph
(SNG,)*: (N4, L) and (SNG,)": (N, L,) respectively. Then SNG = (A,n) is the Star Product of Strong Neutrosophic Graphs SNG;
and SNG; for each a € [0, 1]. The a- cut worthy graph SNG, is the Star Product of Strong Neutrosophic Graphs (SNG1), and
(SNG2)..
Proof:
Let SNG = (A,n) be the Star Product of Strong Neutrosophic Graphs SNG; and SNG; for each a. € [0, 1], if (ai,bi) € A
min{(A,)r (a;), A)r(b)} = Mr(a;, b)) = a
min{(A,); (a;), A1 (b))} = (A)(a;, b) = «
max{(A)r (ai), A)r(b)} = Mg(ayb) <1 -«
ifa; € N;and b; €N,
S0, (ai) € (A)q and bi€ (A2). i.€,(ai,bi) E(A1)a * (A2)o. Therefore Ay € (A1) ¢ (A2)a.
Let (ai,bi) EA1)a * (A2)o.. then ai € (A1)q and bi € (A2),. It follows that,

3726 | Balasubramanian K R, IIMCR Volume 11 Issue 09 September 2023




“Some Contribution to Product of Strong Neutrosophic Graphs’

min(A)r (a;), A2)r(b;) = a, min(A); (ap), A2)(b;) = a,
max (A (@), A)e(b) <1 -
Since (A,n) is the Star Product of SNG; and SNG2. (A)¢(a;, b;) = a, (A);(a;,by) = o, M)e(a;b) <1 —a.i.e., (a) € (M)
Therefore (A1)a * (A2)a € Ay and SO (A1)o O (A2)a = A
To prove .= L, L is a Line set of the Box dot Strong Neutrosophic Graph
(SNG1)a * (SNG2). V a € [0, 1]. Then (aj, b;)(aj, bj)) € ng.
Then(a;, b)) (aj, by)) = «, (a;, bi)(a,bj)) = a, (a3, b)) (aj, b)) <1 -«
Since (A,n) is the Box dot Product of SNG1 and SNG,.
nr(a;, bi)(aj:bj)) = min{(My)t (ai'aj) , (M2)r(by, bj)} =2a
nr(aj, bi)(@;, b)) = min{(ny)r (a3, a;), (M2)r(b;, by} = a
Nr(ai, bi)(a;, b)) = min{(n1)r (a1, 3;), 2)r(bi, b))} <1 -«
if aja; € Ly and b;b; € L.
Similarly, to the node set
(M1 *M2))1((@i, b)) (@5, b)) = min {((A)r(a;), A1), (A2)1(ai)), (A2) (@)}
if asa2 € Liandbib, & Lo
Similarly, the results also apply for the intermediate and falsity values.
Conversely,
Suppose that SNG,: (A4, 1)is the Box dot Product of Strong Neutrosophic Graphs
((SNG1)o= (M) (1)) and (SNG2)o = ((A2)q, (N2)q ) for each a € [0, 1].
min{(A)r (a;), A2)r(b))} = &, min{(A)r (a;), (A;)1(by)} =
max{(A)r (@), A)rb)} <1 -« ifa; € Njand b; €N, .
(a;) € (M)q and b; € (A2)o, by hypothesis (a;, b;) € (A)a
Mr(ay b)) = a=min{(A)r (a;), (A;)7(b;)}
M1(aj, by) = a =min{(A)r (ap), A)r(b;)}
Mr(a;,by) <1 —a=max{(A)r (a;), A)r(b;)}
Take (M)r(aj, b)) = B, (Mi(a;, by) = B, Mg(ay, b)) =1 — B, then (ai,bi) E(L)p
Since (Ag, mp) is the box dot Product of Strong Neutrosophic Graphs
(NGy)g= (Mg, (1)) and (NGz)g = ((A2)p (M2)p)
Then (a;) € (\)p and b€ (A2)g.
Hence, (A)r(ap) = B, A )i(@) = B, (A)e(a)) <1 — B, and
A)r(by) =B, (A)(by) = B,, (A)e(by) <1 - B,
It follows that
M (@, b)) = min{(A;)7 (@), A)r(bi)} = o, for all (aj, b;) € N1 = N>
ifa; € Njand b; €N,
Hence , A)r(a;, aj) = o, A)i(ai, 3) = o, 4)e(aj, a)) <1 - oand
(A2)r(bi, bj) = &, (A)i(by, by) = a, A)e(by,bj) < 1— o,
Mr(ai, 3]') > B, (i(as, aj) > B, ()e(ai, aj) <1- B,and
(Mm2)r(bi, b)) = B, (i(bi, by) = B, (n)e(bi,bj) <1-— B,
min{(,)r (a;,a;), (M)} = &, min{(n;); (a3, a;), M)i(by, by)} = «
max{(n,)r (a;,3;), M)e(bi, b))} =1—«a
min{(n)r (a;,a;), (n2)r(bs, by)} = B,min{(n:)r (@i ay), )b b))y =B max{(no)e (anay), (M)} = 1-B
nr(a;, bi)(aj, by)) = a = min{(ny)r (a;, ;) , (2) (b, by)}
(@i, b (aj, b)) = a = min{(ny); (a;, a;) , (M2)1(bs, bj)}
ne(a;, n)(@;,by)) <1 —a =max{(n)r (ai,a;5) , M2)r(bi, by)}-
if aja; € L, and b;b; € L,
nr(aj, bi)(aj:bj)) =B = min{(ny)r (ai'aj) , (nZ)T(bi'bj)}
nl(ai'bi)aj'bj)) = B = min{(ny); (ai'aj):(nz)l(bi:bj)}
T]F(ai:bi)(aj:bj)) <1-B =max{(M)r (airaj) ’ (le)F(bi;bj)}-
if aja; € Ly and bjb; € L,
nr(a;, bi)(a, b)) = min{(ny)r (aj,a;), (2)7(bi, by}
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nl(ai,bi)(aj:bj)) = min{(n,); (a;, aj) , (nz)l(bi:bj)}
ne(ai, bi)(aj, by)) = max{(ny)r (aj,a;), M2)r(bj, bj)}

CONCLUSION

In this paper, we have found the a- cut worthy (Level)
Graphs of Homomorphic, Box dot, Star Product of
Strong Neutrosophic Graphs. To explore some
propositions, theorems and examples of Strong
Neutrosophic Graphs by a- cut worthy (Level) graphs.
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