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Abstract

The two-states Markovv-states-model of molecular dynamics is newly analyt-
ically studied. The total reward of the path integral of the reaction within a
crisp Markovv landscape is proven to be expressed as a Laplace integral (kernel)
after the opportune Radon measure. The evolution of the eigenvalues is newly
exactly analytical calculated; the corresponding relative error is newly analyt-
ically calculated. The problem of an m-states model is established within this
framework.
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1 Introduction

The Markovv-states models (MSM) is a chain-of states which are a sample over
large free-energy barriers.
The Markovv hierarchies depict ensembles of pathways and the kinetic networks
[19].
Within the independent Markovv decomposition a system is decomposed into
separable subsystems; the MSM for each subsystem can be later coupled to re-
produce the behaviour of the global system. Different decomposition strategies
allow one to describe complex systems [2].
In the Hidden Markovv states (HMM), the prescription is realazed, that states
correspond to a discrete partition of the states space . Accordingly, jump pro-
cesses over a finite number of states are allowed [3].
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In [11], the problem of the calculation of the evolution of the eigenvalues and
the relative error of a two-states Markovv-states model of molecular dynamics
is envisaged.
The present paper is devoted to analysisng the problem form an analytical
point of view; from the analysis, after the explanation of the mathematical
tools needed, the requested evolution of the eigenvalue is newly calculated an-
alytically, and the relative error is newly calculated as well, as requested from
[11].
In particular, the total reward of the path integral is proven to be reconducted
to a Laplace integral from the Radon measure when the dynamics of the crisp
Markovv landscape is taken into account.
The evolution of the chosen eigenvalue is newly calculated analytically; the rela-
tive error is calcualted analytically, rather than estimated as frm the inequality
[11]. The manuscript is organised as follows.
In Section 1, The Markovv models are introduced.
In Section 2, Markovv-states model is analysed; the two-states model is revised
within the framework of a crisp Markovv landscape.
In Section 3, the corresponding dynamics is revised.
In Section 4, the problem of the minimisation of the partition error is presented.
In Section 5, the path integral within the framework of the Markovv landscapes
is defined from a Radon measure; the corresponding total reward is set. Within
a crisp Markovv landscape, the total reward of the path integral is proven to
be written as a Laplace integral of the two-states model. In Section 5, the time
evolution of the chosen eigenvalue is newly analytically calculated fro the re-
sulting kernel; the relative error is newly calculated analytically.
In Section 8, the prospective studies are envisaged; more in detail, the problem
of a many-states model is framed.

2 Introductory material on Markovv models

The dynamical systems under the paradigm of a Markovv models is charac-
terised after the n× n square matrices named transition-probability matrices.
The state probability (of a conditional pairwise probability)encode the items of
kinetic information, i.e. the enumeration of possible paths between states.

2.1 Dynamical-systems characterization of Markovv-states
models

The dynamical-systems characterization within the framework of Markovv-states
models is achieved via the investigation of thermodynamical equilibrium, sym-
metry with respect to the equilibrium distribution, ergotic propoerty, and a-
periodicity: under these hypotheses, the transfer operators admit eigenfunctions
(for further description, the example of [4]) is here followed.
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Under the hypothesis of the detailed balance, from [11] the following two-
states model is described.

In the case of a ’crisp’ partitioning of the state space, it is the aim to find
eigen-functions approximated by step functions, which are constant within the
discrete states.
The crisp Markov landscape is defined after a partitioning of the states space
into n sets Sn; the functions χi(x⃗) express the probability of a point x⃗ to be
found in the i− th set; the functions χi are explicitely written as

χcrisp
i (x⃗) = 1, x⃗ ∈ Si (1)

and
χcrisp
i (x⃗) = 0, x⃗ ̸∈ Si (2)

The kinetics is described as the evolution according to the intrinsic time
scales of systems (measurable with spectroscopic techniques),

folding and activation free energies [5],
ultrarapid-mixing continuous-flow method: trapping misfolded structures

[6];

upper limit for the speed of formation of the first side-chain contacts (i.e.
during protein folding) [7];

constraints from small systems: requirements for high time resolution and
high spatial resolution have to be matched simultaneously [8].

2.2 Long-time dynamics

An ergotic Markovv process is denoted as x⃗t, within the phase space Ω; the
phase space Ω reversible, endowed with a positive stationarity density µ(x⃗) of
measure dµ(x⃗).
By means of these tools, at time t, the ensemble is described after probability
distribution pt(x⃗): the equilibrium-weighted probability density ut(x⃗) is deifnes
as

ut(x⃗) ≡ pt(x⃗)µ
−1(x⃗) (3)

The evolution of pt(x⃗) after a time interval is therefore well-posed; it is obtained
after the transfer operators T (τ), which evolve the system of a time interval τ : in
particular, T (T ) lets the system evolve form the state ut(x⃗) to ut+T (x⃗): because
T bounded, and because T is self-adjoint, a scalar product can be defined as

< f, g > 0

∫
Ω

f(x⃗)g(x⃗)µ(x⃗)dx⃗. (4)

The evolution of the probability density according to the eigenfunction decom-
position with the eigenvalues λi of the equilibrium-weighted probability density
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ut(x⃗) is

ut+nτ = T n(τ)ut(x⃗) ≡
i=N∑
i=1

λni < ψi, ut(x) > ψi(x⃗), (5)

with N as needed, also N = ∞, and the chosen ordered eigenvalues with λ1 = 1,
λ1 < λ2 < ... < λN ( where this technique finds also applications in biomolecular
dynamics) [9].

3 About the dynamics

The hypothesys of the detailed balance is taken.
Be x(t) ∈ Ω a dynamical process; let x(t) be a discrete process in the full Ω,
with instantaneous (continuous) change.
The time evolution of an ensemble density is studied.

The transition probability density p(⃗x, y⃗; τ) is the change undergone by the
system at a time τ and is calculated from the Radon-Stieltjes integration [26].
The operator Q(τ) modifies the probability density as

pt+τ (y⃗) = Q(τ)pt(y⃗). (6)

u(t) is defined from the probability density as modified after the measure as

ut(x⃗) = µ−1(x⃗)pt(x⃗) (7)

so that
T (τ)ut = u(t+ τ) (8)

and
µut+τ = pt+τ (9)

One there defines the generators L of a continuous basis of rate matrices.
The composition law of iterations of Q is defined as

pt+kτ =| Q(τ) |k pt(τ). (10)

The composition law of iterations of T is defined as

ut+kτ =| T (τ) |k ut(τ). (11)

T (τ) can be approximated by a reversible transition matrix on a discrete state
space; its eigenfunctions are approximated by the eigenvectors; int he case of m
eigenvectors, m eigenvalues λi, i = 1, ...,m are considered.
In general, a continuous spectrum of eigenvalues is present.
In the Galerkin approximation, the generators L are chosen int he case of a
long-time τ > 0 as

T (τ) = eLτ , (12)
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so that the eigenvalues read
λi,τ = eΛi,τ (13)

with Λi the eigenvalues of L.
Approximation is possible in terms of density propagation.
From [10]

4 Minimisation of the partition error

Within the framework of high-metastability partions, the the trace of the tran-
sition matrix T (t) is calculated; if the system remains in each partition for
sufficiently long time in order to approximately lose memory, the discretized
dynamics must be approximately Markovv.
The discretisation error is minimised by the most metastable partition: let m
be metastable sets, with

λm >> λm+1; (14)

then the most metastable partition into n = m sets minimises the discretization
error. the model evolves with the Markovv transfer operators T (τ).
The focus of these topics is analysed in [11] after expanding the tools of the
techniques developped in [12]. The techinques are presented as in Subsection
4.1.

From [12], given a two-states system, the relative error Erel(τ, δ) with respect

to the eigenvalue λ̂ of the discrete-time process reads

Erel(τ, δ) =
| λ1,τ − λ̂1,τ |

λ1,τ
; (15)

more in particular, λ̂ is an eigenvalue of QTQ, where once ñ sets are chosen
in one-to-one correspondence with the choice of a basis of an ñ-dimensional
subspace D, the transition matrix of the Markovv-states-model, with T the
transfer operator of the original Markov process, and Q is the orthogonal pro-
jection on-to the subspace D, as analysed in [14]. Application of off-equilibrium
simulations are presented in [13]

4.1 Analytical expression of the minimisation of the Markovv-
model error

It was proposed it is necessary to look for an exploration of the extrema of
the transition probability density for the diffusion process of a small
partition of the phase space Ω after the choice of an opportune time interval
in order to

find a new implementation of Markovv-chain Monte-Carlo sampling of tran-
sition matrices which extremise the error δ in [11].
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Given t2 the slowest relaxation time of the system, it satisfies the error

| λj(τ)− Tδλj(τ) |
λj(τ)

≤ δ̄2. (16)

It is the aim of the next Section to evaluate δ̄ analytically instead.

5 Analytical demonstrations

A kernel is Markovv when it is an (evolutionary) map which can therefore be
explained as a transition matrix in a finite state space [18].

From [9], given a measurable space, a measurable transformation T of the
measurable space can be defined, for which there associates a rpobability dis-
tribution ρ on the measurable space, and a positive kernel Q such that, ∀f, g
positive-measurable functions, the following evolution holds

ρ(f ⊙ T g) = ρ(fQg) : (17)

Q can be a Frobenius-Perron operator, ρ is Q−invariant, and ρ is T −invariant
when the kernel is Markovv. From [19], the transition operator which qualifies
transfer operators in ergotic context is studied in metric compact space.
Given the (transition) operators P , the series of its iterates is demonstrated
to be convergent itn hte Markovv case; furthermore, in the Markovv case, the
corresponding central limit theorem for the Markovv chain is proven to hold.
More in particular, the operators are transition operators of Markovv chains,
and they are transfer operators int eh case of ergodic theory. The coding of the
dynamical partitions is explained in [20]. The decay of correlations is studied
in [21]. In its formulation, the continuous-time Markovv chain X(t) is taken

within a partition of integers S = {0, 1, 2, ...}; A is a subset of S: the path
integral Γ is defined as

Γ =

∫ τ

0

fX(t)dt, (18)

with f an application which sends A to the interval [0,∞), and τ the first exit
time of A. If a Banach space is given, f qualifies a Radon measure, where a
Borel subset is obtained [9].
The path-integral Γ is therefore the ’total reward’ over the time the system
spends on A; (some further specific applications are proposed in [22], [23].)

From [10], be Q the matrix qi such that

qi =
∑
i ̸=j

qij <∞ (19)

(under the assumption that A contains no ’absorbing’ states), i.e. such that∑
i∈S

qijzj = θfizi, (20)
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with 0 < zi < 1.
For given i ∈ A and the total time the system spends in A, the Laplace transform
Ei(e

−θΓ) of the distribution of path integral Eq. (18) is written as

Ei(e
−θΓ) =

∫ ∞

0

∑
k ̸=i

e−θfiuEk(e
−θΓ)

qik
qi
qie

−qiudu (21)

6 Implementation to the two-states model: an-
alytical calculations

The evolution of the eigenvalue λ̂ is calculating after specifying the expression
of the ’reward’ Eq. (21) to the two-states systems as the Laplace integral

λ̃1,τ =

∫ ∞

0

e−θΛ(t+τ)e−θδ̃Λdθ =
1

Λ(t+ τ) + δ̃Λ
(22)

from Eq. (13), which descends form Eq. (12), where the (auxiliary) time variable
θ does not correspond to any exit time.
The time evlotoin of the chosen eigenvalue is therefore caluclated analytically
in the Garlenkin model.

7 Analytical calculation of the relative error

The error Eq. (16) is therefore newly exactly calculated anaytically within the
Galerkin model.
As a result, the relative error Erel Gal is newly analytically calculated as

Erel Gal(τ, δ) =
| λ1,τ − 1

Λ(t+τ)+δ̃Λ
|

λ1,τ
(23)

8 Outlook and Perspectives

The aim of the present work is to analyse some features of the two-states
Markovv model for a crisp Markovv landscape. The Markovv model is charac-
terised after a path integral on the crisp Markovv landscape, which is proven
to be rewritten ans the Laplace integral (kernel). The evolution of the chosen
eigenvalue is newly analytically calculated. The corresponding relative error is
newly analytically calculated in the Garlenkin model.

It is now possible to extend the results about the two-states system from
[11] to an n-states system without the problems if issuing the states.
It can be achieved after defining the opportune Markovv transfer operator Tδ(τ).
On therefore is provided with the new parameter(s) that controls the
discretization error
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maxj=1,...,m | λj(τ)− Tδλj(τ) |≤ (m− 1)λ2(τ)δ
2

of the m eigenfunctions.
From the obtained results, a comparison with the analysis of [25] will be

possible.
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