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This study investigates the temperature viscosity and Hall effects of a Casson fluid flow through 

a porous medium of a viscous incompressible fluid bounded by two parallel porous plates under 

the influence of thermal radiation and chemical reaction. A uniform suction and injection are 

applied perpendicular to the plates while the fluid motion is subjected to variable pressure 

gradient. The transformed conservation equations are solved analytically subject to physically 

appropriate boundary conditions by using perturbation and Eigenfunction expansion techniques. 

The influence of a number of emerging non-dimensional parameters namely, variable pressure 

gradient parameter, suction parameter, radiation parameter and Hartman number are examined. 

It is observed that the primary velocity profile is increased with increasing temperature 

dependent viscosity while increase in Hall parameter leads to increase in secondary velocity 

profile of the flow. 
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1. INTRODUCTION  

Mathematical Models are used to examine different 

phenomena with each model representing a definite 

schematization of the phenomenon taken into consideration. 

In modeling, the researcher is always restricted by a finite 

number of parameters called the governing factors within the 

limits of which the investigation is being carried out. In fluid 

dynamics, Couette flow is the laminar flow of a viscous fluid 

in the space between two parallel plates one of which is 

moving at a velocity relative to the other. The flow is driven 

by the virtue of viscous drag force acting on the fluid and the 

applied pressure gradient parallel to the plates. The study of 

magnetohydrodynamic (MHD) Couette flow with heat 

transfer of an electrically conducting fluid through two 

parallel plates known as Hartman flow is a classical problem 

that has many applications in MHD power generators, MHD 

pumps, aerodynamic heating, nuclear reactors and 

geothermal energy extractions. Fluid flow through porous 

media has several engineering and geophysical applications 

such as in the field of chemical engineering for filtration and 

purification processes, in agricultural engineering to study the 

underground water resources, in petroleum industry to study 

the movement of natural gas, oil and water through the oil 

channels and reservoirs while in astrophysics it is applied to 

study the stellar and solar structures. The most important non-

Newtonian fluid possessing a yield value is the Casson fluid, 

which has significant applications in polymer processing 

industries and biomechanics. Casson fluid is shear thinning 

liquid which has an infinite velocity at a zero rate of strain. 

Cassons constitute equation represents a nonlinear 

relationship between the rates of stress and strain and has 

been noticed to be accurately applicable in silicon 

suspensions and lithographic varnishes used for printing inks.   

Ajibade and Bichi [1] investigated the variable fluid 

properties and thermal radiation effects on natural convection 

Couette flow through a vertical porous channel using the 

Adomian decomposition method (ADM) and maintained that 

both fluid velocity and its temperature within the channel 

were observed to increase with growing thermal radiation and 

decreases with increase in thermal conduction of the fluid. 

Yusuf et al. [2] examined the boundary layer flow of a 

nanofluid in an inclined wavy wall with convective boundary 

condition. They observed fluid flow back at the wavy wall. 

Anyanwu et al. [3] studied the radiative effects on unsteady 

MHD Couette flow through a parallel plate with constant 

pressure gradient.  Aiyesimi et al. [4] analytically 

investigated the convective boundary layer flow of a 

nanofluid past a stretching sheet with radiation. They solved 
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the governing equations using the Adomain decomposition 

method (ADM). They observed that both thermal and 

concentration Grashof numbers enhance the velocity, 

temperature and concentration profiles of the fluid. Laila and 

Marwat [5] examined the nanofliud flow in a converging and 

diverging channel of rectangular heated walls. They deduced 

that both the temperature and concentration profiles are 

enhanced with increase in thermophoretic forces. Recently, 

Jiya et al. [6] studied using the Adomain decomposition 

method the solutions of a boundary layer flow past a 

stretching plate with heat transfer, viscous dissipation and 

Grashof number. They observed that ADM provides highly 

precise numerical solution for non-linear differential 

equations. Chutia et al. [7] numerically studied the solution 

of unsteady hydromagnetic Couette flow in a rotating system 

bounded by two porous plates with Hall effects. The 

governing equations were solved using the finite difference 

method. Jana et al. [8] investigated Couette flow through a 

porous medium in a rotating system and observed that a thin 

boundary layer which increases in thickness as porosity 

parameter increases is formed near the moving plate. In 

another related work, Seth et al. [9] studied using Laplace 

transform technique, the effects of rotation and magnetic field 

on unsteady Couette flow in a porous channel. They observed 

that magnetic field retards the fluid flow in both primary and 

secondary flow directions. Seth et al. [10] studied the 

unsteady hydromagnetic Couette flow within porous plates in 

a rotating system. They observed that suction has a retarding 

influence on both the primary and secondary flow where as 

injection and time have accelerating influence on the flow 

velocities. Casson fluid as an example of non-Newtonian 

fluid is a shear thinning liquid with an infinite viscosity at a 

zero rate of strain. It is an important fluid in mechanics due 

to its practical applications such as in silicon suspension and 

suspensions of bentonic in water. Pramanik [11] focused on 

Casson fluid flow and heat transfer past an exponentially 

porous stretching surface in the presence of thermal radiation. 

Afikuzzaman et al. [12] have investigated an unsteady MHD 

Casson fluid flow through a parallel plate with hall current 

using an explicit finite difference technique. In another 

related research, hydrodynamic impulsive lid driven flow and 

heat transfer of a Casson fluid was studied by Attia & Sayed-

Ahmed (2006). Sayed-Ahmed et al. [13] investigated time 

dependent pressure gradient effect on unsteady MHD Couette 

flow of an electrically conducting, viscous, incompressible 

fluid bounded by two parallel non-conducting porous plates 

with heat transfer under exponential decaying pressure 

gradient. Olayiwola [14] investigated the modeling and 

simulation of combustion fronts in porous media. Jana et al. 

[15] examined Couette flow through a porous medium in a 

rotating system. In another related work, Seth et al. [16] 

studied the effects of rotation and magnetic field on unsteady 

Couette flow in a porous channel. Seth et al. [17] studied the 

unsteady hydromagnetic Couette flow within porous plates in 

a rotating system. Recently, Sharma & Yadav [18] considered 

Heat transfer through three dimensional Couette flow 

between a stationary porous plate bounded by porous medium 

and moving porous plates. Sharma et al. [19] investigated the 

steady laminar flow and heat transfer of a non-Newtonian 

fluid through a straight horizontal porous channel in the 

presence of heat source.  

 

2. MATHEMATICAL FORMULATION 

Following Anyanwu et al. [3] while they analyzed the flow 

under constant pressure gradient, the unsteady flow of a 

viscous, incompressible, non-conducting fluid through a 

channel with chemical reaction and thermal radiation in the 

presence of magnetic field is investigated under a 

time/temperature dependent pressure gradient. The flow is 

assumed to be laminar, incompressible and flows between 

two infinite horizontal plates located at y h  which 

extends from x    to  and from z    to  . 

The upper plate is suddenly set into motion and moves with a 

uniform velocity 0U  while the lower plate is kept stationary 

as shown in the diagram below. The upper plate is 

simultaneously subjected to a step change in temperature 

from 1T  to 2T . The upper and lower plates are kept at two 

constant temperatures 2T  and 1T  respectively with 2 1T T . 

The fluid flows between the two plates under the influence of 

an exponential decaying with time pressure gradient in the x-

direction which is a generalization of a constant pressure 

gradient. A uniform suction from above and injection from 

below with constant velocity 0 which are all applied at 

0t  . The system is subjected to a uniform magnetic field 

0B in the positive y-direction and is assumed undisturbed as 

the induced magnetic field is neglected by assuming a small 

magnetic Reynolds number. The Hall effect is taken into 

consideration and consequently a z-component of the velocity 

is expected to arise.  

 

 

                                          

 

 

 

 



“Viscosity and Hall Effects on Unsteady MHD Casson Fluid Flow through a Parallel Porous Plate” 

3767 E.O. Anyanwu1, IJMCR Volume 11 Issue 09 September 2023 

 

 

           0,y h u U 
 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the problem 

 

Based on the above assumptions, 

wkjvuiv  0           (1) 

Introducing a Chapman-Rubesin viscosity law, with 1w  as shown in Olayiwola (2016) and using the condition at the lower 

plate, results in: 
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Where 1  is the Casson coefficient of viscosity. 

Thus, the two components of the governing momentum equation in dimensional form are as follows: 
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The energy equation in dimensional form is given as      
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The concentration equation in dimensional form is given as:  
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Subject to the initial and boundary conditions; 
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Where   and  are respectively the density and apparent viscosity of the fluid,   is electric conductivity,  is Hall factor, Bi  

is ion slip parameter, 0Be B  is Hall parameter, c  and k  are respectively the specific heat capacity and thermal conductivity 

of the fluid. Where u  and w  are components of velocities along and perpendicular to the plate in x  and y  directions respectively, 

σ is the electrical conductivity, T  is the coefficient of volume expansion of the moving fluid, C  is the coefficient of volumetric 

expansion with concentration, v  is the kinematic viscosity, T  is the temperature of the fluid, C  is the concentration of the fluid, 

1C  is concentration at infinity, 1D  the thermal diffusivity, 2D  the chemical reaction rate constant, PC is the specific heat capacity 

at constant pressure. t  is time, g  is gravitational force, e  
is magnetic permeability of the fluid, K  is the porous media 

permeability coefficient, q  is radiative heat flux, 0H  is intensity of magnetic field, 0 0eB H  is electromagnetic induction, 0  

is yield stress,  is coefficient of volume expansion due to temperature and   is mean radiation absorption coefficient. 

 

To write the governing dimensional equations (3)-(6) with their corresponding boundary conditions (7) in non-dimensional form, 

we use the following dimensionless variables:  
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and we obtain 

When the pressure gradient is a function of time: 
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In this case, equations (3) - (6) reduce to; 

 
  

  

 

2
2 2

2 2
1 1

2 4Re Re 1

1
Re

tu S u c u Ha
e BiBe u Be w

t z z z BiBe Be

cP
u Gr Gr



 

 

  

    
         

      

  
       

(10) 

 
  

  

 

2
2 2

2 2
1 1

2 4Re Re 1

1
Re

w S w c w Ha
BiBe w Be u

t z z z BiBe Be

cP
w





    
       

      


            

(11) 

   

 
 

2 2

2
2 2 2

2 2

1 1
2 4Re Pr 4Re

Re (1 )

S c cEc u w

t z z z z z

EcHa
u w Ra

BiBe Be

  
 



           
                        

 
 

                  (12) 



“Viscosity and Hall Effects on Unsteady MHD Casson Fluid Flow through a Parallel Porous Plate” 

3769 E.O. Anyanwu1, IJMCR Volume 11 Issue 09 September 2023 

 

 
2

2
1

2 4 Re 4

D
r

TS c
K

t z Sc z z z

   
 

     
     

     
                    (13) 

Subject to the initial and boundary conditions 
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3.  METHOD OF SOLUTION 

Since the boundary conditions are from -1 to 1, we first transform the boundary conditions to 0 to 1 using the transformation: 
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Therefore, the equations for 0 0 0 0 1 1 1 1, , , , , ,u w u w and     together with their initial and boundary conditions are given by
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Eigenfunction Expansion Technique

 Now, consider the problem (see Myint-U and Debnath, (1987)) 

2
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For 

problem (25) above, we assume a solution of the form 
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Comparing equation (17) – (24) with the (25) we obtain the solutions to the velocity (primary and secondary), temperature, and 

concentration distributions as  
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Therefore the solutions to the governing equations are given as: 
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4. RESULTS AND DISCUSSIONS 

The system of partial differential equations describing unsteady Couette flow of an electrically conducting incompressible fluid 

bounded by two parallel non conducting porous plates  are solved analytically using eigenfunction expansion method. The analytical 

solutions of the governing equations are computed and presented graphically with the aid of a computer symbolic algebraic package 

MAPLE 17 for the values of the following parameters: 

2 2Re 1, 1, 0.1, Pr 0.71, 1, 0.5, 0.22,

1, 1, 0.1, 0.2, 1, 0, 0.01,

Gr 0.2, 0.2, 2

D

Ra S Ha Kr Sc

Bi Be c P T Ec

Gr 





      

      

  

 

The figure 2-12 explains the graphs of primary and secondary velocities, temperature and concentration profiles against different 

dimensionless parameters. 

 

Figure 2: Effect of radiation parameter  Ra  on temperature profile  ,y t  
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Figure 3: Effect of suction parameter  S  on primary velocity profile  ,u y t  

 

Figure 4: Effect of suction parameter  S  on concentration profile  ,y t  along distance y and time t. S=0.2(red), 

S=0.4(green) and S=0.6(blue) 

 

Figure 5: Effect of Prandtl number  Pr  on temperature profile  ,y t  



“Viscosity and Hall Effects on Unsteady MHD Casson Fluid Flow through a Parallel Porous Plate” 

3775 E.O. Anyanwu1, IJMCR Volume 11 Issue 09 September 2023 

 

 

Figure 6: Effect of ion slip parameter  Bi  on secondary velocity profile  ,w y t  

 

Figure 7: Effect of ion slip parameter  Bi  on secondary velocity profile  ,w y t  along distance y and time t. Bi=1(red), 

Bi=2(green) and Bi=3(blue) 
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Figure 8: Effect of temperature dependent viscosity    on primary velocity profile  ,u y t  

 

Figure 9: Effect of temperature dependent viscosity    on primary velocity profile  ,u y t
 

 

Figure 10: Effect of temperature dependent viscosity    on primary velocity profile  ,u y t  along distance y and time t. 

  =0.0(red),   =0.1(green) and   =0.3(blue) 
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Figure 11: Effect of temperature dependent viscosity    on secondary velocity profile  ,w y t
 

 

Figure 12: Effect of temperature dependent viscosity    on temperature profile  ,y t
 

 

DISCUSSION OF RESULTS 

Figure 2 displays the graph of temperature profile  ,y t  

for different values of radiation parameter  Ra . It is 

observed that temperature decreases as radiation parameter 

increases. Also, the temperature profile is observed to 

increase along distance. 

Figure 3 shows the graph of primary velocity  ,u y t  for 

different values of suction parameter  S . It is evident that 

increase in suction parameter leads to decrease in primary 

velocity. It is also seen that primary velocity increases along 

distance y. 

Figure 4 illustrates the effect of suction parameter  S  on 

the concentration profile  ,y t  of the flow along distance 

and with time t. It is observed that concentration increases 

with time while increase in suction parameter leads to 

decrease in the fluid concentration. 

Figure 5 presents the graph of temperature  ,y t  for 

different values of Prandtl number  Pr . It is observed 

temperature increases along distance y and increase in Prandtl 

number leads to decrease in temperature. 

Figure 6 depicts the effect of ion slip parameter  Bi  on 

secondary velocity  ,w y t  along y. it is seen that the 
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secondary velocity oscillates along distance y and increase in 

ion slip parameter leads to increase in secondary velocity. 

Figure 7 displays the graph of secondary velocity  ,w y t  

along distance and time for different values of ion slip 

parameter  Bi . It is observed that secondary velocity 

increases with time and oscillates along distance while 

increase in ion slip parameter leads to increase in secondary 

velocity. 

Figure 8 depicts the graph of primary velocity  ,u y t  for 

different values of temperature dependent viscosity ( ) . It is 

observed that primary velocity is maximum when viscosity is 

temperature dependent as compared to when it is independent 

on temperature. Also, increase in temperature dependent 

viscosity leads to oscillation in primary velocity along 

distance y. 

Figure 9 depicts the graph of primary velocity  ,u y t  for 

different values of temperature dependent viscosity ( ) . It is 

observed that primary velocity is maximum when viscosity is 

temperature dependent as compared to when it is independent 

on temperature. Also, increase in temperature dependent 

viscosity leads to oscillation in primary velocity along 

distance y. 

Figure 10 presents the graph of primary velocity  ,u y t  for 

different values of temperature viscosity parameter    

along distance and with time t. It is observed that primary 

velocity oscillates along distance y and increases with time. 

Figure 11 depicts the graph of secondary velocity  ,w y t  

for different values of temperature dependent viscosity ( ) . 

It is observed that primary velocity is maximum when 

viscosity is temperature dependent as compared to when it is 

independent on temperature. Also, increase in temperature 

dependent viscosity leads to oscillation in secondary velocity 

along distance y. 

Figure 12 depicts the graph of temperature profile  ,y t  

for different values of temperature dependent viscosity ( ) . 

It is observed that temperature increases with increase in 

viscosity. Also, increase in temperature dependent viscosity 

leads to increase in temperature along distance y. 

 

CONCLUSION 

We have solved the equations governing the unsteady 

Couette flow of an electrically conducting incompressible 

fluid bounded by two parallel non conducting porous plates 

using the parameter expansion method and eigenfunction 

expansion technique. The effects of the dimensionless 

parameters as shown on the graphs were analyzed. From the 

results obtained, all the parameters have appreciable impact 

on the system since: 

I. Reynolds number is observed to reduced primary 

velocity and temperature profiles respectively while 

secondary velocity profile is enhanced. 

II. Hall parameter retards both primary and secondary 

velocities profiles while it enhances secondary 

velocity profile for unsteady state flow. 

III. Temperature dependent viscosity enhances both 

temperature and primary velocity profiles 

respectively while variable pressure gradient is 

observed to reduce both primary and secondary 

velocities. 
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