International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 09 September 2023, Page no. 3780-3781

Index Copernicus ICV: 57.55, Impact Factor: 7.362 DOI: 10.47191/ijmcr/v11i9.11

Goldbach's Problems

Khusid Mykhaylo

Pensioner, citizen of Ukraine, (Independent ResearcherWetzlar Germany.)

ARTICLE INFO	ABSTRACT	
Published Online:	The Goldbach-Euler binary problem is formulated as follows: Any evennumber, starting from	
22 September 2023	4, can be represented as the sum of two primes. The ternary Goldbach problem is formulated as	
	follows: Every odd number greater than 7 can be represented as the sum of three odd primes,	
Corresponding Author:	which was finally solved in 2013.[1]-[8].In 1995, Olivier Ramare proved that any even number	
Khusid Mykhaylo	is the sum of no more than 6primes.[9]	
KEYWORDS: solving, problems, in, number, theory		

THEOREM. Difference between any odd number and a prime odd number is equal to any even number and vice versa the difference of any even number and of a prime odd number is equal to any odd number.

Proof. 2 K+1-p=2 N (01)Where $K = K_1, K_1 + 1, ..., K_i = K_1 + i - 1, ... \infty$ $N = N_{1}, N_{1} + 1, ..., N_{i} = N_{1} + i - 1, ... \infty$

P is a prime odd number. J-serial number of a continuous series of natural numbers, startingaccordingly with K1. N1 K and N are an infinite, continuous series of integers that begin with

 K_1 , N $_1$, p -any prime number(fixed value, someconstant). Thus we have (01). And similarly: 2 N - p = 2 K + 1

(02)

the difference of any even and odd numbers and conversely allow to represent anyprime odd number.

Corollary.

If the sum of six primes is any even number, then the sum primes less than six if odd, any odd number, if even

any even number with corresponding initial values ^N1, ^K1. From the equality of the sum of six primes to any even number it follows:

p1+p2+p3+p4+p5+p6+2=p7+p8+	+ p9+ p10+ p11+ p12
	(03)

p1+p2+p3+p4+p5+p6-p12+2=p7+p8+p9+p10+ p11 (04) 2 $N-p_{12}+2=p_7+p_8+p_9+p_{10}+p_{11}$ (05)2 K+1= p_7 +...+ p_{11}

1 /		(00)
p7+p8+p9	$+p_{10}+p_{11}+2=p_{12}+p_{12}$	13 ⁺ P14 ⁺ P15 ⁺ P16

	(07)
(the index under p is not critical)	
p1+p2+p3+p4+2=p5+p6+p7+p8	(08)
p ₁ +p ₂ +p ₃ +p ₄ -p ₈ +2=p ₅ +p ₆ +p ₇	(09)
p5+p6+p7=2 K+1	(10)
where K=3,4,5, ∞	

weak Goldbach problem.	
$p_1+p_2+p_3+2=p_4+p_5+p_6$	(11)
p1+p2+p3-p4+2=p5+p6	(12)
$p_5 + p_6 = 2$ N	(13)
where N=2,3,, ∞	

strong Goldbach problem.

REFERENCES

- 1. Terence Tao Google+- Busy day in analytic number theory; - Harald. Helfgotthas...
- 2. Major arcs for Goldbach's, H.A. Helfgott // arxiv 1305.2897
- 3. Goldbach Variations// SciAm blogs, Evelyn Lamb, May 15, 2013.
- 4. Two Proofs Spark a Prime Week for Number Theory // Science 24 May, 2013.
- 5. Vol. 340 913. no. 6135 p. Doi:10.1126/Science.340.6135.913

W.

Goldbach

Eric

Weisstein,

6.

(06)

Conjecture(English.)on the site Wolfram MathWorld.

- 7. Yuri Matiyasevich. Hilbert's Tenth Problem: What was done and what is to bedone.
- 8. de Polignac A. Recherches nouvelles sur les nombres premiers. 1849.
- 9. en.wikipedia.org//wiki/Olivier_Ramar%C3%A9