International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 10 October 2023, Page no. – 3809-3812

Index Copernicus ICV: 57.55, Impact Factor: 7.362

DOI: [10.47191/ijmcr/v11i10.04](https://doi.org/10.47191/ijmcr/v11i10.04)

Multiplicative (Generalized)- (σ, τ) **-Reverse Derivations in Prime Rings**

M. Sri Kameswara Rao¹ , K. Subbarayudu² , A. Vidhyullatha³ , C. Jaya Subba Reddy⁴

¹Research Scholar, Department of Mathematics, S.V.University, Tirupati-517502, A.P., India.

²Lecturer in Mathematics, Government Polytechnic, Simhadripuram, Andhra Pradesh, India.

³Department of Mathematics, SPW Degree & PG College TTD, Tirupati-517502, A.P., India.

⁴Department of Mathematics, S. V. University, Tirupati-517502, Andhra Pradesh, India.

(Generalized)-(σ, τ)-reverse derivation.

1. INTRODUCTION

In 1991, the concept of derivation was extended to generalized derivation by Bresar [3]. In 1991, Daif [5] introduced the concept of multiplicative derivation. In 1997, Daif and Tammam EL-Sagid [6] extended the concept of multiplicative derivation to multiplicative generalized derivation. In 2013, Dhara and Ali [7] introduced the concept of multiplicative (generalized)-derivation. In 1957, the concept of reverse derivation was first time introduced by Herstein [8]. Further Bresar and Vukman [4] studied the reverse derivations. In 2015, Aboubakr and Gonzalez [1] studied the relationship between generalized reverse derivation and generalized derivation on an ideal in semi prime rings. In 2017, Tiwari et.al [11] defined multiplicative (generalized) reverse derivation. In 2011, the concepts of $(\theta,$ φ)-reverse derivation and generalized (θ, φ)-reverse derivation has been introduced by Anwar Khaleel Faraj in [2]. In 2019, Nadeem ur Rehman et.al [10] proved some results on a note on multiplicative (generalized)- (α, β) -reverse derivations in prime rings. In 2022, Jaya Subba Reddy et.al [9] proved some results on a note on multiplicative (generalized)- (α, β) -reverse derivations on left ideals in prime rings. In this paper, we proved some results on multiplicative (generalized) (σ, τ) -reverse derivations in prime rings.

2. PRELIMINARIES

Throughout this paper R denote an associative ring with center Z. Recall that a ring R is prime if $xRy = \{0\}$ implies $x = 0$ or $y = 0$. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $xy - yx$ and the symbol (xoy) denotes the anti-commutator $xy + yx$. A mapping $d: R \to R$ (not necessarily additive) is called a multiplicative derivation if $d(xy) = d(x)y + xd(y)$, for all $x, y \in R$. An additive mapping $d: R \to R$ is called a reverse derivation if $d(xy) =$ $d(y)x +\gamma d(x)$, for all $x, y \in R$. A mapping $d: R \to R$ (not necessarily additive) is called a multiplicative reverse derivation if $d(xy) = d(y)x + yd(x)$, for all $x, y \in R$. An additive mapping $d: R \to R$ is called a (σ, τ) -reverse derivation if $d(xy) = d(y)\sigma(x) + \tau(y)d(x)$, for all $x, y \in$ R. A mapping $d: R \to R$ (not necessarily additive) is called a multiplicative (σ, τ) -reverse derivation if $d(xy) =$ $d(y)\sigma(x) + \tau(y)d(x)$, for all $x, y \in R$. An additive mapping $F: R \to R$ is called a generalized reverse derivation, if there exists a reverse derivation $d: R \to R$ such that $F(xy) =$ $F(y)x + yd(x)$, for all $x, y \in R$. A mapping $F: R \to R$ (not necessarily additive) is said to be a multiplicative (generalized)- reverse derivation of R , if there exists a map $d: R \to R$ (neither necessarily additive nor derivation) such that $F(xy) = F(y)x + yd(x)$, for all $x, y \in R$. A mapping $F: R \to R$ (not necessarily additive) is said to be a multiplicative (generalized)- (σ, τ) -derivation of R, if there

exists a map $d: R \to R$ (neither necessarily additive nor derivation) such that $F(xy) = F(x)\sigma(y) + \tau(x)d(y)$, for all $x, y \in R$. A mapping $F: R \to R$ (not necessarily additive) is said to be a multiplicative (generalized)- (σ, τ) -reverse derivation of R, if there exists a map $d: R \to R$ (neither necessarily additive nor derivation) such that $F(xy) =$ $F(y)\sigma(x) + \tau(y)d(x)$, for all $x, y \in R$. Throughout this paper, we shall make use of the basic commutator identities: $xo(yz) = (xoy)z - y[x, z] = y(xoz) + [x, y]z;$ $(xy)oz = x(yoz) - [x, z]y = (xoz)y + x[y, z];$ $[x, yz] = y[x, z] + [x, y]z; [xy, z] = [x, z]y + x[y, z];$

 $[xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [\sigma(x), z]y.$

3. MAIN RESULTS

Theorem 3.1: Let R be a prime ring and I be a non-zero left ideal of R. Suppose F is a multiplicative (generalized)-(σ , τ)reverse derivation on R associated with the map d on R . If $F(xy) + \sigma(xy) = 0$, for all $x, y \in I$, then $F(x) = -\sigma(x)$ for all $x \in I$ and $\tau(I)d(I) = (0)$.

Proof: We have $F(xy) + \sigma(xy) = 0$, for all $x, y \in I$. (3.1)

Replacing x by zx in equation (3.1), we obtain

 $(F(xy) + \sigma(xy))\sigma(z) + \tau(y)\tau(x)d(z) = 0$, for all $x, y, z \in I$.

Using equation (3.1), it reduces to $\tau(y)\tau(x)d(z) = 0$, for all $x, y, z \in I.$ (3.2)

Replacing x by $xr, r \in R$ in equation (3.2), we get

 $\tau(y)\tau(r)\tau(x)d(z) = 0$, for all $x, y, z \in I$ and

 $r \in R$. (3.3) Replacing r by $\tau^{-1}(rd(z))$, $r \in R$ in equation (3.3), we get $\tau(y)d(z)r\tau(x)d(z) = 0$, for all $x, y, z \in I$ and $r \in R$. $\tau(y)d(z)R\tau(x)d(z) = 0$, for all $x, y, z \in I$.

Thus, by primeness of R, we get either $\tau(I)d(I) = (0)$. (3.4)

Thus, equation (3.1) becomes $(F(y) + \sigma(y))\sigma(x) +$ $\tau(y)d(x) = 0$, for all $x, y \in I$. Using equation (3.4), it reduces to $(F(y) + \sigma(y))\sigma(x) = 0$, for all $x, y \in I$. (3.5) Replacing x by $xr, r \in R$ in equation (3.5), we get $(F(y) + \sigma(y))\sigma(r)\sigma(x) = 0$, for all $x, y \in I$ and $r \in R$. Replacing r by $\sigma^{-1}(r)$ in the above equation, we get $(F(y) + \sigma(y))R\sigma(x) = 0$, for all $x, y \in I$.

Using primeness of R, we get $F(x) = -\sigma(x)$ for all $x \in I.$ (3.6)

Theorem 3.2: Let R be a prime ring and I be a non-zero left ideal of R. Suppose F is a multiplicative (generalized)- (σ, τ) reverse derivation on R associated with the map d on R . If $F(xy) + \sigma(yx) = 0$, for all $x, y \in I$, then R is commutative, $F(x) = -\sigma(x)$ for all $x \in I$ and $\tau(I)d(I) = (0)$. **Proof:** We have $F(xy) + \sigma(yx) = 0$, for all $x, y \in I.$ (3.7) Replacing x by x^2 in equation (3.7), we obtain

 $x, y \in I.$ (3.8) Replacing y by xy in equation (3.7), we get $F(xy)\sigma(x) + \tau(xy)d(x) + \sigma(x)\sigma(xy) = 0$, for all $x, y \in I.$ (3.9) Subtracting equation (3.8) from equation (3.9), we get $\sigma(x)\sigma[x, y] = 0$, for all $x, y \in I$. (3.10) Replacing y by $ry, r \in R$ in equation (3.10), we get $\sigma(x)\sigma[x, y]\sigma(r) + \sigma(x)\sigma(y)\sigma[x, r] = 0$, for all $x, y \in I$ and $r \in R$. Using equation (3.10), it reduces to $\sigma(yx)\sigma[x, r] = 0$, for all $x, y \in I$ and $r \in R$. Since I is nonzero ideal, so by primeness of R , we get $\sigma[x, r] = 0$, for all $x \in I$ and $r \in R$. $[x, r] = 0$, for all $x \in I$ and $r \in R$. (3.11) Substituting x by tx , $t \in R$ in equation (3.11), we get $t[x, r] + [t, r]x = 0$, for all $x \in I$ and $r, t \in R$. Using equation (3.11), it reduces to $[t, r] x = 0$, for all $x \in I$ and $r, t \in R$. Since I is nonzero ideal, so by primeness of R , we get $[t, r] = 0$, for all $r, t \in R$. Thus R is commutative. (3.12) 9uTherefore $F(xy) + \sigma(yx) = 0$ becomes $F(xy) + F(xy) = 0$ $\sigma(xy) = 0$, for all $x, y \in I$. Thus, in view of theorem 3.1, we get $F(x) = -\sigma(x)$ for all $x \in I$ and $\tau(I)d(I) = (0)$. **Theorem 3.3:** Let R be a prime ring and I be a non-zero left ideal of R. Suppose F is a multiplicative (generalized)-(σ , τ)reverse derivation on R associated with the map d on R . If $F(xy) + F(y)F(x) = 0$, for all $x, y \in I$, then either $\sigma(I)[F(x), \sigma(x)] = (0)$ or $\tau(I)[F(x), \tau(x)] = (0)$, for all $x \in I$. **Proof:** We have $F(xy) + F(y)F(x) = 0$, for all $x, y \in I.$ (3.13) Replacing x by zx in equation (3.13), we obtain $(F(xy) + F(y)F(x))\sigma(x) + \tau(xy)d(z) + F(y)\tau(x)d(z) =$ 0, for all $x, y, z \in I$. Using equation (3.13), it reduces to $\tau(xy)d(z) + F(y)\tau(x)d(z) = 0$, for all $x, y, z \in I.$ (3.14) Replacing y by wy in equation (3.14), we get $\tau(xwy)d(z) + F(y)\sigma(w)\tau(x)d(z) +$ $\tau(y)d(w)\tau(x)d(z) = 0, \forall x, y, z, w \in I.$ (3.15) Replacing x by xw in equation (3.14), we get $\tau(xwy)d(z) + F(y)\tau(w)\tau(x)d(z) = 0$, for all $x, y, z, w \in I.$ (3.16) Subtracting equation (3.16) from equation (3.15), we get $(F(wy) - F(y)\tau(w))\tau(x)d(z) = 0$, for all $x, y, z, w \in I$.

 $F(xy)\sigma(x) + \tau(xy)d(x) + \sigma(x)\sigma(yx) = 0$, for all

Replacing x by $xr, r \in R$ in the above equation, we get $(F(wy) - F(y)\tau(w))\tau(r)\tau(x)d(z) = 0$, for all $x, y, z, w \in$ *I*.

 $(F(wy) - F(y)\tau(w))R\tau(x)d(z) = 0$, for all $x, y, z, w \in I$.

"Multiplicative (Generalized)- (σ, τ) -Reverse Derivations in Prime Rings"

Using primeness of *, we get either* $F(wy) - F(y)\tau(w) = 0$ or $\tau(x)d(z) = 0$ First case, we have $F(wy) - F(y)\tau(w) = 0$, for all $y, w \in I$. (3.17) Using equation (3.13), we have $F(xyz) = -F(z)F(xy) =$ $-F(vz)F(x)$ $F(z)F(xy) - F(yz)F(x) = 0$, for all $x, y, z \in I.$ (3.18) Using equation (3.17) in equation (3.18), we get $F(z)(F(y)\tau(x) - \tau(y)F(x)) = 0$, for all $x, y, z \in I$. Replacing z by wrz , $r \in R$ and using equation (3.17) in the above equation, we get $F(z)\tau(r)\tau(w)(F(y)\tau(x)-\tau(y)F(x))=0$, for all $x, y, z, w \in I$. $F(z)R\tau(w)(F(y)\tau(x) - \tau(y)F(x)) = 0$, for all $x, y, z, w \in$ I. Since R is a prime ring, we get $\tau(I)[F(x), \tau(x)] = 0$, for all $x \in I$. Second case, we have $\tau(x)d(z) = 0$, for all $x, z \in I.$ (3.19) Equation (3.18), we have $F(z)F(xy) - F(yz)F(x) = 0$, for all $x, y, z \in I$. $F(z)(F(y)\sigma(x) + \tau(y)d(x)) - (F(z)\sigma(y) +$ $\tau(z)d(y)$) $F(x) = 0$, for all $x, y, z \in I$. Using equation (3.19), it reduces to $F(z)(F(y)\sigma(x) - \sigma(y)F(x)) = 0$, for all $x, y, z \in I$. Replacing z by wrz , $r \in R$ and in the above equation, we get $(F(z)\sigma(wr) + \tau(wr)d(z))(F(y)\sigma(x) - \sigma(y)F(x)) = 0,$ for all $x, y, z, w \in I$ and $r \in R$. Using equation (3.19), it reduces to $F(z)\sigma(r)\sigma(w)(F(y)\sigma(x) - \sigma(y)F(x)) = 0.$ $F(z)R\sigma(w)(F(y)\sigma(x) - \sigma(y)F(x)) = 0$, for all $x, y, z, w \in$ $I.$ Since R is a prime ring, we get $\sigma(I)[F(x), \sigma(x)] = 0$, for all $x \in I$. Hence, we get the required result. **Theorem 3.4:** Let R be a prime ring and I be a non-zero left ideal of R . Suppose F and H are two multiplicative (generalized)-(σ , τ)-reverse derivation on *R* associated with the maps d and h on R, respectively. If $F(xy) = \sigma(x) \circ H(y)$, for all $x, y \in I$, then either R is commutative or $\sigma(I)[\sigma(I), H(I)] = (0).$ **Proof:** We have $F(xy) = \sigma(x) \circ H(y)$, for all $x, y \in I$. (3.20) Replacing x by zx in equation (20), we get $F(xy)\sigma(z) + \tau(xy)d(z) = (\sigma(x)\circ H(y))\sigma(z) +$ $\sigma(x)[\sigma(z), H(y)]$ for all $x, y, z \in I$. Using equation (3.20), it reduces to $\tau(xy)d(z) = \sigma(x)[\sigma(z), H(y)],$ for all $x, y, z \in I.$ (3.21) Replacing x by xw in equation (3.21), we get $\tau(y)\tau(w)\tau(x)d(z) = \sigma(w)\sigma(x)[\sigma(z), H(y)],$ for all $x, y, z, w \in I.$ (3.22) Left multiplying equation (3.21) by $\sigma(w)$, we get

 $\sigma(w)\tau(y)\tau(x)d(z) = \sigma(w)\sigma(x)[\sigma(z), H(y)],$ for all $x, y, z, w \in I.$ (3.23) Subtracting equation (3.23) from equation (3.22), we get $(\tau(y)\tau(w) - \sigma(w)\tau(y))\tau(x)d(z) = 0$, for all $x, y, z, w \in I$. Replacing x by $xr, r \in R$ in the above equation, we get $(\tau(y)\tau(w) - \sigma(w)\tau(y))R\tau(x)d(z) = 0$, for all $x, y, z, w \in I$. Since R is a prime, we get either $\tau(y)\tau(w) - \sigma(w)\tau(y) = 0$ or $\tau(x)d(z) = 0$ First case, we have $\tau(y)\tau(x) - \sigma(x)\tau(y) = 0$, for all $x, y \in I.$ (3.24) Substituting x by $xr, r \in R$ in equation (3.24), we get $\tau(y)\tau(r)\tau(x) - \sigma(r)\sigma(x)\tau(y) = 0$, for all $x, y \in I.$ (3.25) Left multiplying equation (3.21) by $\sigma(r)$, we get $\sigma(r)\tau(y)\tau(x) - \sigma(r)\sigma(x)\tau(y) = 0$, for all $x, y \in I$. (3.26) Subtracting equation (3.26) from equation (3.25), we get $(\tau(y)\tau(r) - \sigma(r)\tau(y))\tau(x) = 0$, for all $x, y \in I$ and $r \in R$. Replacing x by xs , $s \in R$ in the above equation, we get $(\tau(y)\tau(r) - \sigma(r)\tau(y))R\tau(x) = 0$, for all $x, y \in I$ and $r \in I$ R_{\odot} Since I is nonzero ideal, so by primeness of R , we get $[\tau(y), r]_{\tau, \sigma} = 0$, for all $y \in I$ and $r \in R$. (3.27) Replacing y by yt , $t \in R$ in equation (3.27), we get $\tau(r)[\tau(y), r]_{\tau,\sigma} + [\tau(t), \tau(r)]\tau(y) = 0$, for all $y \in I$ and $r, t \in R$. Using equation (3.27), it reduces to $[\tau(t), \tau(r)]\tau(y) = 0$, for all $y \in I$ and $r, t \in R$. Substituting y by ys, $s \in R$ in the above equation, we get $[\tau(t), \tau(r)]R\tau(y) = 0$, for all $y \in I$ and $r, t \in R$. Since I is nonzero ideal, so by primeness of R , we get $[\tau(t), \tau(r)] = 0$, for all $r, t \in R$. $[t, r] = 0$, for all $r, t \in R$. Therefore R is a commutative. Second case, we have $\tau(x)d(z) = 0$, for all $x, z \in I$. (3.28) Substituting equation (3.28) in equation (3.21), we get $\sigma(I)[\sigma(I), H(I)] = (0).$ **Theorem 3.5:** Let R be a prime ring and I be a non-zero left ideal of R . Suppose F and H are two multiplicative (generalized)-(σ , τ)-reverse derivation on R associated with the maps d and h on R, respectively. If $F(xy) =$ $[\sigma(x), H(y)]$, for all $x, y \in I$, then either R is commutative or $\sigma(I)[\sigma(I), H(I)] = (0).$ **Proof:** We have $F(xy) = [\sigma(x), H(y)]$, for all $x, y \in I$. (3.29) Replacing x by zx in equation (3.29), we get $F(xy)\sigma(z) + \tau(xy)d(z) = [\sigma(x), H(y)]\sigma(z) +$ $\sigma(x)[\sigma(z), H(y)]$, for all $x, y, z \in I$. Using equation (3.29), it reduces to $\tau(xy)d(z) = \sigma(x)[\sigma(z), H(y)]$, for all $x, y, z \in I.$ (3.30)

The equation (3.30) is same as the equation (3.21) in theorem 3.4, then proceeding in the same way as in theorem 3.4, we get the required result.

REFERENCES

- 1. Aboubakr, A. and Gonzalez, S.: "Generalized reverse derivation on semi prime rings", Siberian mathematical journal, 56(2) (2015), 199-205.
- 2. Anwar Khaleel Faraj.: "On Generalizd (θ,φ)- Reverse Derivations of Prime rings", Iraqi Journal of Science, 52(2) (2011), 218-224.
- 3. Bresar, M.: "On the distance of the composition of two derivations to the generalized Derivations", Glasgow Math. J., 33(1) (1991), 89-93.
- 4. Bresar, M. and Vukman, J.: "On some additive mappings in rings with involution", Aequations math., 38 (1989), 178-185.
- 5. Daif, M.N.: "When is a multiplicative derivation additive", Int. J. Math. Math. Sci., 14(3) (1991), 615-618.
- 6. Daif, M.N., and Tammam El-Sayiad, M.S.: "Multiplicative generalized derivations which are additive", East-west J. Math., 9(1) (1997), 31-37.
- 7. Dhara, B. and Ali, S.: "On multiplicative (generalized)-derivations in prime and semiprime rings", Aequat. Math., 86(1-2) (2013), 65-79.
- 8. Herstein, I.N.: "Jordan derivations of prime rings", Proc. Amer. Math. Soc., 8(1957), 1104-1110.
- 9. Jaya Subba Reddy, C., Subbarayudu, N., and Venkata Sai Raghavendra Reddy, C.: "A Note on Multiplicative (Generalized)- (α, β) -Reverse Derivations on Left Ideals in Prime Rings", Global Journal of Pure and Applied Mathematics, 18(2) (2022), 425-431.
- 10. Rehman, N., AI-Omary, R.M., and Muthana, N.H.: "A Note on Multiplicative (Generalized)- (α, β) -Derivations in Prime Rings", Annales Mathematicae Silesianae., 33 (2019), 266-275.
- 11. Tiwari, S.K., Sharma, R.K. and Dhara, B.: "Some theorems of commutativity on semiprime rings with mappings", Southeast Asian Bull. Math., 42 (2018), 579-592.