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Let 𝑅 be a prime ring, 𝐼 be a non-zero left ideal of 𝑅 and σ, τ be a anti-automorphisms of 𝑅. 

Suppose 𝐹 and 𝐻 are two multiplicative (generalized)-(σ, τ)-reverse derivation associated with 

the mappings 𝑑 and ℎ respectively, on 𝑅. In this paper, we proved the following identities in 

prime rings: If (i) 𝐹(𝑥𝑦) + 𝜎(𝑥𝑦) = 0;  (ii) 𝐹(𝑥𝑦) + 𝜎(𝑦𝑥) = 0; (iii) 𝐹(𝑥𝑦) + 𝐹(𝑦)𝐹(𝑥) = 0; 

(iv) 𝐹(𝑥𝑦) = 𝜎(𝑥)𝑜𝐻(𝑦);      (v) 𝐹(𝑥𝑦) = [𝜎(𝑥), 𝐻(𝑦)]; for all 𝑥, 𝑦 ∈ 𝐼, where 𝜎 and 𝜏 are anti 

automorphisms on 𝑅. 

KEYWORDS : Prime ring, (σ, τ)-reverse derivation, Multiplicative (Generalized) reverse derivation and Multiplicative 

(Generalized)-(σ, τ)-reverse derivation. 

 

1. INTRODUCTION 

In 1991, the concept of derivation was extended to 

generalized derivation by Bresar [3]. In 1991, Daif [5] 

introduced the concept of multiplicative derivation. In 1997, 

Daif and Tammam EL-Sagid [6] extended the concept of 

multiplicative derivation to multiplicative generalized 

derivation. In 2013, Dhara and Ali [7] introduced the concept 

of multiplicative (generalized)-derivation. In 1957, the 

concept of reverse derivation was first time introduced by 

Herstein [8]. Further Bresar and Vukman [4] studied the 

reverse derivations. In 2015, Aboubakr and Gonzalez [1] 

studied the relationship between generalized reverse 

derivation and generalized derivation on an ideal in semi 

prime rings. In 2017, Tiwari et.al [11] defined multiplicative 

(generalized) reverse derivation. In 2011, the concepts of (θ, 

φ)-reverse derivation and generalized (θ, φ)-reverse 

derivation has been introduced by Anwar Khaleel Faraj in [2]. 

In 2019, Nadeem ur Rehman et.al [10] proved some results 

on a note on multiplicative (generalized)- (𝛼, 𝛽)-reverse 

derivations in prime rings. In 2022,       Jaya Subba Reddy 

et.al [9] proved some results on a note on multiplicative 

(generalized)- (𝛼, 𝛽)-reverse derivations on left ideals in 

prime rings. In this paper, we proved some results on 

multiplicative (generalized) (𝜎, 𝜏)-reverse derivations in 

prime rings. 

 

 

2. PRELIMINARIES 

Throughout this paper 𝑅 denote an associative ring with 

center 𝑍. Recall that a ring 𝑅 is prime if 𝑥𝑅𝑦 = {0} implies 

𝑥 = 0 or 𝑦 = 0. For any 𝑥, 𝑦 ∈ 𝑅, the symbol [𝑥, 𝑦] stands 

for the commutator 𝑥𝑦 − 𝑦𝑥 and the symbol (𝑥𝑜𝑦) denotes 

the anti-commutator 𝑥𝑦 + 𝑦𝑥. A mapping 𝑑: 𝑅 → 𝑅 (not 

necessarily additive) is called a multiplicative derivation if 

𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦), for all 𝑥, 𝑦 ∈ 𝑅. An additive 

mapping 𝑑: 𝑅 → 𝑅 is called a reverse derivation if   𝑑(𝑥𝑦) =

𝑑(𝑦)𝑥 + 𝑦𝑑(𝑥), for all 𝑥, 𝑦 ∈ 𝑅. A mapping 𝑑: 𝑅 → 𝑅 (not 

necessarily additive) is called a multiplicative reverse 

derivation if 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝑦𝑑(𝑥), for all 𝑥, 𝑦 ∈ 𝑅. An 

additive mapping 𝑑: 𝑅 → 𝑅 is called a (𝜎, 𝜏)-reverse 

derivation if 𝑑(𝑥𝑦) = 𝑑(𝑦)𝜎(𝑥) + 𝜏(𝑦)𝑑(𝑥), for all 𝑥, 𝑦 ∈

𝑅. A mapping 𝑑: 𝑅 → 𝑅 (not necessarily additive) is called a 

multiplicative (𝜎, 𝜏)-reverse derivation if 𝑑(𝑥𝑦) =

𝑑(𝑦)𝜎(𝑥) + 𝜏(𝑦)𝑑(𝑥), for all 𝑥, 𝑦 ∈ 𝑅. An additive mapping 

𝐹: 𝑅 → 𝑅 is called a generalized reverse derivation, if there 

exists a reverse derivation 𝑑: 𝑅 → 𝑅 such that 𝐹(𝑥𝑦) =

𝐹(𝑦)𝑥 + 𝑦𝑑(𝑥), for all 𝑥, 𝑦 ∈ 𝑅. A mapping 𝐹: 𝑅 → 𝑅 (not 

necessarily additive) is said to be a multiplicative 

(generalized)- reverse derivation of 𝑅, if there exists a map 

𝑑: 𝑅 → 𝑅 (neither necessarily additive nor derivation) such 

that 𝐹(𝑥𝑦) = 𝐹(𝑦)𝑥 + 𝑦𝑑(𝑥), for all     𝑥, 𝑦 ∈ 𝑅. A mapping 

𝐹: 𝑅 → 𝑅 (not necessarily additive) is said to be a 

multiplicative (generalized)-(𝜎, 𝜏)-derivation of 𝑅, if there 
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exists a map  𝑑: 𝑅 → 𝑅 (neither necessarily additive nor 

derivation) such that 𝐹(𝑥𝑦) = 𝐹(𝑥)𝜎(𝑦) + 𝜏(𝑥)𝑑(𝑦), for all 

𝑥, 𝑦 ∈ 𝑅. A mapping 𝐹: 𝑅 → 𝑅 (not necessarily additive) is 

said to be a multiplicative (generalized)-(𝜎, 𝜏)-reverse 

derivation of 𝑅, if there exists a map 𝑑: 𝑅 → 𝑅 (neither 

necessarily additive nor derivation) such that 𝐹(𝑥𝑦) =

𝐹(𝑦)𝜎(𝑥) + 𝜏(𝑦)𝑑(𝑥), for all 𝑥, 𝑦 ∈ 𝑅. Throughout this 

paper, we shall make use of the basic commutator identities: 

𝑥𝑜(𝑦𝑧) = (𝑥𝑜𝑦)𝑧 − 𝑦[𝑥, 𝑧] = 𝑦(𝑥𝑜𝑧) + [𝑥, 𝑦]𝑧; 

(𝑥𝑦)𝑜𝑧 = 𝑥(𝑦𝑜𝑧) − [𝑥, 𝑧]𝑦 = (𝑥𝑜𝑧)𝑦 + 𝑥[𝑦, 𝑧]; 

[𝑥, 𝑦𝑧] = 𝑦[𝑥, 𝑧] + [𝑥, 𝑦]𝑧;  [𝑥𝑦, 𝑧] = [𝑥, 𝑧]𝑦 + 𝑥[𝑦, 𝑧]; 

[𝑥𝑦, 𝑧]𝜎,𝜏 = 𝑥[𝑦, 𝑧]𝜎,𝜏 + [𝜎(𝑥), 𝑧]𝑦. 

 

3. MAIN RESULTS 

Theorem 3.1: Let 𝑅 be a prime ring and 𝐼 be a non-zero left 

ideal of 𝑅. Suppose 𝐹 is a multiplicative (generalized)-(σ, τ)-

reverse derivation on 𝑅 associated with the map 𝑑 on 𝑅. If  

𝐹(𝑥𝑦) + 𝜎(𝑥𝑦) = 0, for all 𝑥, 𝑦 ∈ 𝐼, then 𝐹(𝑥) = −𝜎(𝑥) for 

all 𝑥 ∈ 𝐼 and 𝜏(𝐼)𝑑(𝐼) = (0). 

Proof: We have 𝐹(𝑥𝑦) + 𝜎(𝑥𝑦) = 0, for all 𝑥, 𝑦 ∈ 𝐼.                                              

(3.1)                                          

Replacing 𝑥 by 𝑧𝑥 in equation (3.1), we obtain 

(𝐹(𝑥𝑦) + 𝜎(𝑥𝑦))𝜎(𝑧) + 𝜏(𝑦)𝜏(𝑥)𝑑(𝑧) = 0, for all 

 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Using equation (3.1), it reduces to 𝜏(𝑦)𝜏(𝑥)𝑑(𝑧) = 0, for all 

𝑥, 𝑦, 𝑧 ∈ 𝐼.                 (3.2) 

Replacing 𝑥 by 𝑥𝑟, 𝑟 ∈ 𝑅 in equation (3.2), we get 

𝜏(𝑦)𝜏(𝑟)𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼 and 

 𝑟 ∈ 𝑅.                                                 (3.3) 

Replacing 𝑟 by 𝜏−1(𝑟𝑑(𝑧)), 𝑟 ∈ 𝑅 in equation (3.3), we get 

𝜏(𝑦)𝑑(𝑧)𝑟𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼 and 𝑟 ∈ 𝑅.     

𝜏(𝑦)𝑑(𝑧)𝑅𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼.  

                

Thus, by primeness of  𝑅, we get either 𝜏(𝐼)𝑑(𝐼) = (0).      

                         (3.4) 

Thus, equation (3.1) becomes (𝐹(𝑦) + 𝜎(𝑦))𝜎(𝑥) +

𝜏(𝑦)𝑑(𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼. 

Using equation (3.4), it reduces to (𝐹(𝑦) + 𝜎(𝑦))𝜎(𝑥) = 0, 

for all 𝑥, 𝑦 ∈ 𝐼.           (3.5) 

Replacing 𝑥 by 𝑥𝑟, 𝑟 ∈ 𝑅 in equation (3.5), we get 

(𝐹(𝑦) + 𝜎(𝑦))𝜎(𝑟)𝜎(𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼 and 𝑟 ∈ 𝑅. 

Replacing 𝑟 by 𝜎−1(𝑟) in the above equation, we get 

(𝐹(𝑦) + 𝜎(𝑦))𝑅𝜎(𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼. 

Using primeness of 𝑅, we get 𝐹(𝑥) = −𝜎(𝑥) for all 

 𝑥 ∈ 𝐼.                             (3.6) 

Theorem 3.2: Let 𝑅 be a prime ring and 𝐼 be a non-zero left 

ideal of 𝑅. Suppose 𝐹 is a multiplicative (generalized)-(σ, τ)-

reverse derivation on 𝑅 associated with the map 𝑑 on 𝑅. If 

𝐹(𝑥𝑦) + 𝜎(𝑦𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼, then 𝑅 is commutative,              

𝐹(𝑥) = −𝜎(𝑥) for all 𝑥 ∈ 𝐼 and 𝜏(𝐼)𝑑(𝐼) = (0). 

Proof: We have 𝐹(𝑥𝑦) + 𝜎(𝑦𝑥) = 0, for all 

 𝑥, 𝑦 ∈ 𝐼.                                              (3.7)                                          

Replacing 𝑥 by 𝑥2 in equation (3.7), we obtain 

𝐹(𝑥𝑦)𝜎(𝑥) + 𝜏(𝑥𝑦)𝑑(𝑥) + 𝜎(𝑥)𝜎(𝑦𝑥) = 0, for all 

 𝑥, 𝑦 ∈ 𝐼.                              (3.8) 

Replacing 𝑦 by 𝑥𝑦 in equation (3.7), we get 

𝐹(𝑥𝑦)𝜎(𝑥) + 𝜏(𝑥𝑦)𝑑(𝑥) + 𝜎(𝑥)𝜎(𝑥𝑦) = 0, for all 

 𝑥, 𝑦 ∈ 𝐼.                              (3.9) 

Subtracting equation (3.8) from equation (3.9), we get 

𝜎(𝑥)𝜎[𝑥, 𝑦] = 0, for all 𝑥, 𝑦 ∈ 𝐼.            

             (3.10) 

Replacing 𝑦 by 𝑟𝑦, 𝑟 ∈ 𝑅 in equation (3.10), we get 

𝜎(𝑥)𝜎[𝑥, 𝑦]𝜎(𝑟) + 𝜎(𝑥)𝜎(𝑦)𝜎[𝑥, 𝑟] = 0, for all 𝑥, 𝑦 ∈ 𝐼 and 

𝑟 ∈ 𝑅. 

Using equation (3.10), it reduces to 𝜎(𝑦𝑥)𝜎[𝑥, 𝑟] = 0, for all 

𝑥, 𝑦 ∈ 𝐼 and 𝑟 ∈ 𝑅. 

Since 𝐼 is nonzero ideal, so by primeness of 𝑅, we get 

𝜎[𝑥, 𝑟] = 0, for all 𝑥 ∈ 𝐼 and 𝑟 ∈ 𝑅. [𝑥, 𝑟] = 0, for all 𝑥 ∈ 𝐼 

and 𝑟 ∈ 𝑅.                                  (3.11) 

Substituting 𝑥 by 𝑡𝑥, 𝑡 ∈ 𝑅 in equation (3.11), we get 

𝑡[𝑥, 𝑟] + [𝑡, 𝑟]𝑥 = 0, for all  𝑥 ∈ 𝐼 and 𝑟, 𝑡 ∈ 𝑅.  

Using equation (3.11), it reduces to [𝑡, 𝑟]𝑥 = 0, for all 𝑥 ∈ 𝐼 

and 𝑟, 𝑡 ∈ 𝑅. 

Since 𝐼 is nonzero ideal, so by primeness of 𝑅, we get 

 [𝑡, 𝑟] = 0, for all 𝑟, 𝑡 ∈ 𝑅.  

Thus 𝑅 is commutative.     

                                                                                       (3.12) 

9uTherefore 𝐹(𝑥𝑦) + 𝜎(𝑦𝑥) = 0 becomes 𝐹(𝑥𝑦) +

𝜎(𝑥𝑦) = 0, for all 𝑥, 𝑦 ∈ 𝐼. 

Thus, in view of theorem 3.1, we get 𝐹(𝑥) = −𝜎(𝑥) for all 

𝑥 ∈ 𝐼 and 𝜏(𝐼)𝑑(𝐼) = (0). 

Theorem 3.3: Let 𝑅 be a prime ring and 𝐼 be a non-zero left 

ideal of 𝑅. Suppose 𝐹 is a multiplicative (generalized)-(σ, τ)-

reverse derivation on 𝑅 associated with the map 𝑑 on 𝑅. If 

𝐹(𝑥𝑦) + 𝐹(𝑦)𝐹(𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼, then either 

𝜎(𝐼)[𝐹(𝑥), 𝜎(𝑥)] = (0) or 𝜏(𝐼)[𝐹(𝑥), 𝜏(𝑥)] = (0), for all 

𝑥 ∈ 𝐼. 

Proof: We have 𝐹(𝑥𝑦) + 𝐹(𝑦)𝐹(𝑥) = 0, for all 

 𝑥, 𝑦 ∈ 𝐼.                                       (3.13)                                          

Replacing 𝑥 by 𝑧𝑥 in equation (3.13), we obtain 

(𝐹(𝑥𝑦) + 𝐹(𝑦)𝐹(𝑥))𝜎(𝑥) + 𝜏(𝑥𝑦)𝑑(𝑧) + 𝐹(𝑦)𝜏(𝑥)𝑑(𝑧) =

0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Using equation (3.13), it reduces to 

𝜏(𝑥𝑦)𝑑(𝑧) + 𝐹(𝑦)𝜏(𝑥)𝑑(𝑧) = 0, for all 

 𝑥, 𝑦, 𝑧 ∈ 𝐼.                              (3.14) 

Replacing 𝑦 by 𝑤𝑦 in equation (3.14), we get 

𝜏(𝑥𝑤𝑦)𝑑(𝑧) + 𝐹(𝑦)𝜎(𝑤)𝜏(𝑥)𝑑(𝑧) +

𝜏(𝑦)𝑑(𝑤)𝜏(𝑥)𝑑(𝑧) = 0, ∀𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼.      (3.15) 

Replacing 𝑥 by 𝑥𝑤 in equation (3.14), we get 

𝜏(𝑥𝑤𝑦)𝑑(𝑧) + 𝐹(𝑦)𝜏(𝑤)𝜏(𝑥)𝑑(𝑧) = 0, for all 

 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼.                                 (3.16)                        

Subtracting equation (3.16) from equation (3.15), we get 

 (𝐹(𝑤𝑦) − 𝐹(𝑦)𝜏(𝑤))𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼.                      

Replacing 𝑥 by 𝑥𝑟, 𝑟 ∈ 𝑅 in the above equation, we get 

(𝐹(𝑤𝑦) − 𝐹(𝑦)𝜏(𝑤))𝜏(𝑟)𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈

𝐼.  

(𝐹(𝑤𝑦) − 𝐹(𝑦)𝜏(𝑤))𝑅𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼. 
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Using primeness of 𝑅, we get either 

 𝐹(𝑤𝑦) − 𝐹(𝑦)𝜏(𝑤) = 0 or 𝜏(𝑥)𝑑(𝑧) = 0  

First case, we have 𝐹(𝑤𝑦) − 𝐹(𝑦)𝜏(𝑤) = 0, for all 𝑦, 𝑤 ∈ 𝐼.                                

(3.17) 

Using equation (3.13), we have 𝐹(𝑥𝑦𝑧) = −𝐹(𝑧)𝐹(𝑥𝑦) =

−𝐹(𝑦𝑧)𝐹(𝑥) 

𝐹(𝑧)𝐹(𝑥𝑦) − 𝐹(𝑦𝑧)𝐹(𝑥) = 0, for all  

𝑥, 𝑦, 𝑧 ∈ 𝐼.                                                     (3.18) 

Using equation (3.17) in equation (3.18), we get 

𝐹(𝑧)(𝐹(𝑦)𝜏(𝑥) − 𝜏(𝑦)𝐹(𝑥)) = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Replacing 𝑧 by 𝑤𝑟𝑧, 𝑟 ∈ 𝑅 and  using equation (3.17) in the 

above equation, we get 

𝐹(𝑧)𝜏(𝑟)𝜏(𝑤)(𝐹(𝑦)𝜏(𝑥) − 𝜏(𝑦)𝐹(𝑥)) = 0 , for all 

𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼. 

𝐹(𝑧)𝑅𝜏(𝑤)(𝐹(𝑦)𝜏(𝑥) − 𝜏(𝑦)𝐹(𝑥)) = 0, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈

𝐼. 

Since 𝑅 is a prime ring, we get 𝜏(𝐼)[𝐹(𝑥), 𝜏(𝑥)] = 0, for all 

𝑥 ∈ 𝐼.                                     

Second case, we have 𝜏(𝑥)𝑑(𝑧) = 0, for all 

 𝑥, 𝑧 ∈ 𝐼.                         (3.19) 

Equation (3.18), we have 𝐹(𝑧)𝐹(𝑥𝑦) − 𝐹(𝑦𝑧)𝐹(𝑥) = 0, for 

all 𝑥, 𝑦, 𝑧 ∈ 𝐼.   

𝐹(𝑧)(𝐹(𝑦)𝜎(𝑥) + 𝜏(𝑦)𝑑(𝑥)) − (𝐹(𝑧)𝜎(𝑦) +

𝜏(𝑧)𝑑(𝑦))𝐹(𝑥) = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Using equation (3.19), it reduces to  

𝐹(𝑧)(𝐹(𝑦)𝜎(𝑥) − 𝜎(𝑦)𝐹(𝑥)) = 0, for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Replacing 𝑧 by 𝑤𝑟𝑧, 𝑟 ∈ 𝑅 and in the above equation, we get 

 (𝐹(𝑧)𝜎(𝑤𝑟) + 𝜏(𝑤𝑟)𝑑(𝑧))(𝐹(𝑦)𝜎(𝑥) − 𝜎(𝑦)𝐹(𝑥)) = 0, 

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼 and 𝑟 ∈ 𝑅. 

Using equation (3.19), it reduces to 

𝐹(𝑧)𝜎(𝑟)𝜎(𝑤)(𝐹(𝑦)𝜎(𝑥) − 𝜎(𝑦)𝐹(𝑥)) = 0.  

𝐹(𝑧)𝑅𝜎(𝑤)(𝐹(𝑦)𝜎(𝑥) − 𝜎(𝑦)𝐹(𝑥)) = 0, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈

𝐼. 

Since 𝑅 is a prime ring, we get 𝜎(𝐼)[𝐹(𝑥), 𝜎(𝑥)] = 0, for all 

𝑥 ∈ 𝐼.  

Hence, we get the required result.      

Theorem 3.4: Let 𝑅 be a prime ring and 𝐼 be a non-zero left 

ideal of 𝑅. Suppose 𝐹 and 𝐻 are two multiplicative 

(generalized)-(σ, τ)-reverse derivation on 𝑅 associated with 

the maps 𝑑 and ℎ on 𝑅, respectively. If 𝐹(𝑥𝑦) = 𝜎(𝑥)𝑜𝐻(𝑦), 

for all 𝑥, 𝑦 ∈ 𝐼, then either 𝑅 is commutative or 

𝜎(𝐼)[𝜎(𝐼), 𝐻(𝐼)] = (0). 

Proof: We have 𝐹(𝑥𝑦) = 𝜎(𝑥)𝑜𝐻(𝑦), for all 𝑥, 𝑦 ∈ 𝐼.                                           

(3.20)                                          

Replacing 𝑥 by 𝑧𝑥 in equation (20), we get 

𝐹(𝑥𝑦)𝜎(𝑧) + 𝜏(𝑥𝑦)𝑑(𝑧) = (𝜎(𝑥)𝑜𝐻(𝑦))𝜎(𝑧) +

𝜎(𝑥)[𝜎(𝑧), 𝐻(𝑦)] for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Using equation (3.20), it reduces to 

𝜏(𝑥𝑦)𝑑(𝑧) = 𝜎(𝑥)[𝜎(𝑧), 𝐻(𝑦)], for all  

𝑥, 𝑦, 𝑧 ∈ 𝐼.                               (3.21) 

Replacing 𝑥 by 𝑥𝑤 in equation (3.21), we get 

𝜏(𝑦)𝜏(𝑤)𝜏(𝑥)𝑑(𝑧) = 𝜎(𝑤)𝜎(𝑥)[𝜎(𝑧), 𝐻(𝑦)], for all 

𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼.                        (3.22) 

Left multiplying equation (3.21) by 𝜎(𝑤), we get 

𝜎(𝑤)𝜏(𝑦)𝜏(𝑥)𝑑(𝑧) = 𝜎(𝑤)𝜎(𝑥)[𝜎(𝑧), 𝐻(𝑦)], for all 

𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼.                  (3.23) 

Subtracting equation (3.23) from equation (3.22), we get 

(𝜏(𝑦)𝜏(𝑤) − 𝜎(𝑤)𝜏(𝑦))𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼. 

Replacing 𝑥 by 𝑥𝑟, 𝑟 ∈ 𝑅 in the above equation, we get  

(𝜏(𝑦)𝜏(𝑤) − 𝜎(𝑤)𝜏(𝑦))𝑅𝜏(𝑥)𝑑(𝑧) = 0, for all 

 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐼. 

Since 𝑅 is a prime, we get either 𝜏(𝑦)𝜏(𝑤) − 𝜎(𝑤)𝜏(𝑦) = 0 

or 𝜏(𝑥)𝑑(𝑧) = 0 

First case, we have 𝜏(𝑦)𝜏(𝑥) − 𝜎(𝑥)𝜏(𝑦) = 0, for all 

 𝑥, 𝑦 ∈ 𝐼.                              (3.24) 

Substituting 𝑥 by 𝑥𝑟, 𝑟 ∈ 𝑅 in equation (3.24), we get 

𝜏(𝑦)𝜏(𝑟)𝜏(𝑥) − 𝜎(𝑟)𝜎(𝑥)𝜏(𝑦) = 0, for all  

𝑥, 𝑦 ∈ 𝐼.                                               (3.25) 

Left multiplying equation (3.21) by 𝜎(𝑟), we get 

𝜎(𝑟)𝜏(𝑦)𝜏(𝑥) − 𝜎(𝑟)𝜎(𝑥)𝜏(𝑦) = 0, for all 𝑥, 𝑦 ∈ 𝐼.                                               

(3.26) 

Subtracting equation (3.26) from equation (3.25), we get 

 (𝜏(𝑦)𝜏(𝑟) − 𝜎(𝑟)𝜏(𝑦))𝜏(𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼 and 𝑟 ∈ 𝑅. 

Replacing 𝑥 by 𝑥𝑠, 𝑠 ∈ 𝑅 in the above equation, we get 

 (𝜏(𝑦)𝜏(𝑟) − 𝜎(𝑟)𝜏(𝑦))𝑅𝜏(𝑥) = 0, for all 𝑥, 𝑦 ∈ 𝐼 and 𝑟 ∈

𝑅. 

Since 𝐼 is nonzero ideal, so by primeness of 𝑅, we get 

[𝜏(𝑦), 𝑟]𝜏,𝜎 = 0, for all 𝑦 ∈ 𝐼 and  

𝑟 ∈ 𝑅.                                                                  (3.27) 

Replacing 𝑦 by 𝑦𝑡, 𝑡 ∈ 𝑅 in equation (3.27), we get 

𝜏(𝑟)[𝜏(𝑦), 𝑟]𝜏,𝜎 + [𝜏(𝑡), 𝜏(𝑟)]𝜏(𝑦) = 0, for all 𝑦 ∈ 𝐼 and 

𝑟, 𝑡 ∈ 𝑅.  

Using equation (3.27), it reduces to [𝜏(𝑡), 𝜏(𝑟)]𝜏(𝑦) = 0, for 

all 𝑦 ∈ 𝐼 and 𝑟, 𝑡 ∈ 𝑅. 

Substituting 𝑦 by 𝑦𝑠, 𝑠 ∈ 𝑅 in the above equation, we get 

[𝜏(𝑡), 𝜏(𝑟)]𝑅𝜏(𝑦) = 0, for all 𝑦 ∈ 𝐼 and 𝑟, 𝑡 ∈ 𝑅. Since 𝐼 is 

nonzero ideal, so by primeness of 𝑅, we get 

[𝜏(𝑡), 𝜏(𝑟)] = 0, for all 𝑟, 𝑡 ∈ 𝑅. 

[𝑡, 𝑟] = 0, for all 𝑟, 𝑡 ∈ 𝑅. Therefore 𝑅 is a commutative. 

Second case, we have 𝜏(𝑥)𝑑(𝑧) = 0, for all 𝑥, 𝑧 ∈ 𝐼.                                              

(3.28)  

Substituting equation (3.28) in equation (3.21), we get 

𝜎(𝐼)[𝜎(𝐼), 𝐻(𝐼)] = (0). 

Theorem 3.5: Let 𝑅 be a prime ring and 𝐼 be a non-zero left 

ideal of 𝑅. Suppose 𝐹 and 𝐻 are two multiplicative 

(generalized)-(σ, τ)-reverse derivation on 𝑅 associated with 

the maps 𝑑 and ℎ on 𝑅, respectively. If 𝐹(𝑥𝑦) =

[𝜎(𝑥), 𝐻(𝑦)], for all 𝑥, 𝑦 ∈ 𝐼, then either 𝑅 is commutative or 

𝜎(𝐼)[𝜎(𝐼), 𝐻(𝐼)] = (0). 

Proof: We have 𝐹(𝑥𝑦) = [𝜎(𝑥), 𝐻(𝑦)], for all 𝑥, 𝑦 ∈ 𝐼.                                         

(3.29)                                          

Replacing 𝑥 by 𝑧𝑥 in equation (3.29), we get 

𝐹(𝑥𝑦)𝜎(𝑧) + 𝜏(𝑥𝑦)𝑑(𝑧) = [𝜎(𝑥), 𝐻(𝑦)]𝜎(𝑧) +

𝜎(𝑥)[𝜎(𝑧), 𝐻(𝑦)], for all 𝑥, 𝑦, 𝑧 ∈ 𝐼. 

Using equation (3.29), it reduces to 

𝜏(𝑥𝑦)𝑑(𝑧) = 𝜎(𝑥)[𝜎(𝑧), 𝐻(𝑦)], for all  

𝑥, 𝑦, 𝑧 ∈ 𝐼.                    (3.30) 
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The equation (3.30) is same as the equation (3.21) in theorem 

3.4, then proceeding in the same way as in theorem 3.4, we 

get the required result. 
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