International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 11 Issue 10 October 2023, Page no. – 3805-3808

Index Copernicus ICV: 57.55, Impact Factor: 7.362

[DOI: 10.47191/ijmcr/v11i10.03](https://doi.org/10.47191/ijmcr/v11i10.03)

On Periodic Solutions of System of Generalized Rational Difference Equations

Rajiniganth Pandurangan¹ , Aparna T 2 , Oyedepo T 3 , Oluwayemi Matthew Olanrewaju⁴

^{1,2}Department of Mathematics, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Samayapuram, Tiruchirapalli, Tamilnadu, India-621112.

³Department of Mathematics and Statistics, School of Basic Science and Dental Technology and Therapy, Enugu, 400001, Nigeria.

⁴Department of Mathematics and Statistics, School of Basic Science and General Studies, Margaret Lawrence University, Delta State, Nigeria.

Rajiniganth Pandurangan

KEYWORDS : Generalized Difference Equations, Rational Difference Equations, Periodic Solutions.

I. INTRODUCTION

Our aim in this paper is to investigate the periodic nature of solutions of the following systems of generalized rational difference equations

$$
u(k+\ell) = \frac{1}{v(k)}, \quad v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)},
$$

$$
u(k+\ell) = \frac{1}{v(k)}, \quad v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)}, \quad w(k+\ell) = \frac{u(k-\ell)v(k-\ell)}{u(k-2\ell)v(k-2\ell)}.
$$

and

$$
u(k+\ell) = \frac{1}{v(k)},
$$

\n
$$
v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)},
$$

\n
$$
w(k+\ell) = \frac{u(k-\ell)v(k-\ell)}{u(k-2\ell)v(k-2\ell) w(k-2\ell)},
$$

\n
$$
z(k+\ell) = \frac{u(k-2\ell)v(k-2\ell) w(k-2\ell)}{u(k-3\ell)v(k-3\ell) w(k-3\ell) z(k-3\ell)},
$$

with a nonzero real numbers initial conditions. Also, the periodicity of the general k variable will be considered. The periodicity of the positive solutions of the system of rational difference equations

$$
x_{n+1} = \frac{m}{y_n}
$$
, $y_{n+1} = \frac{p y_n}{x_{n-1} y_{n-1}}$

was studied by Cinar in [3].

Also, Cinar [4] has obtained the positive solution of the difference equation system

$$
x_{n+1} = \frac{1}{z_n}
$$
, $y_{n+1} = \frac{y_n}{x_{n-1}y_{n-1}}$, $z_{n+1} = \frac{1}{x_{n-1}}$.

Elabbasy et al. [6] has obtained the solution of particular cases of the following general system of difference equations

$$
x_{n+1} = \frac{a_1 + a_2 y_n}{a_3 z_n + a_4 x_{n-1} z_n},
$$

$$
y_{n+1} = \frac{b_1 z_{n-1} + b_2 z_n}{b_3 x_n y_n + b_4 x_n y_{n-1}},
$$

$$
z_{n+1} = \frac{c_1 z_{n-1} + c_2 z_n}{c_3 x_{n-1} y_{n-1} + c_4 x_{n-1} y_n + c_5 x_n y_n}
$$

Ozban [8] has investigated the positive solutions of the system of rational difference equations

$$
x_{n+1} = \frac{1}{y_{n-k}}, \ y_{n+1} = \frac{y_n}{x_{n-m} y_{n-m-k}}.
$$

Ozban [9] has investigated the solutions of the following system

$$
x_{n+1} = \frac{a}{y_{n-3}}, y_{n+1} = \frac{by_{n-3}}{x_{n-q}y_{n-q}}.
$$

Yang [11] has investigated the positive solutions of the systems investigated see [1]-[11].

Definition (Periodicity): A Sequence $\{u(k)\}$ is said to be periodic with period T if $u(k+T)=u(k)$ for all T.

II. MAIN RESULTS

2.1 **First System**

In this section, we study the periodicity of the solutions of the system of two generalized rational difference equations

$$
u(k+\ell) = \frac{1}{v(k)}, \ v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)}, \quad (1)
$$

with a nonzero real numbers initial conditions.

Theorem 1. Suppose that $\{u(k), v(k)\}$ are solutions of system (1). Also, assume that $u(\ell), u(0), v(\ell)$, and $v(0)$ are arbitrary nonzero real numbers. Then all the solutions of generalized rational difference equation system (1) are periodic with period 40.

Proof: From Eq.(1) we have

$$
u(k+\ell) = \frac{1}{v(k)}, \ v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)},
$$

$$
u(k+2\ell) = \frac{1}{v(k+\ell)} = \frac{u(k-\ell)v(k-\ell)}{v(k)}, \ v(k+2\ell) = \frac{v(k+\ell)}{u(k)v(k)} = \frac{1}{u(k-\ell)v(k-\ell)u(k)},
$$

$$
u(k+3\ell) = \frac{1}{v(k+2\ell)} = u(k-\ell)v(k-\ell)u(k) \text{ , } v(k+3\ell) = \frac{v(k+2\ell)}{u(k+\ell) \ v(k+\ell)} = \frac{1}{u(k)},
$$

$$
u(k+4\ell) = \frac{1}{v(k+3\ell)} = u(k), v(k+4\ell) = \frac{v(k+3\ell)}{u(k+2\ell)v(k+2\ell)} = v(k).
$$

The proof is complete.

2.2 Second System

In this section, we deal with the solutions of the system of generalized difference equations

$$
u(k+\ell) = \frac{1}{v(k)}, \ v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)}, \ w(k+\ell) = \frac{u(k-\ell)v(k-\ell)}{u(k-2\ell)v(k-2\ell) w(k-2\ell)}, (2)
$$

With a nonzero real numbers initial conditions.

Theorem 2. Suppose that $\{u(k), v(k), w(k)\}$ are solutions of system (2). Also, assume that $u(-2\ell), u(-\ell), u(0), v(-2\ell), v(-\ell)$,

 $v(0), w(-2\ell), w(-\ell)$ and $w(0)$ are arbitrary nonzero real numbers. Then $\{u(k), v(k)\}$ are also periodic with period four and $\{w(k)\}$ is periodic with period 12 ℓ . Proof: It is easy to see that $\{u(k), v(k)\}$ are periodic with period four. So, to prove theorem we prove that $\{w(k)\}\)$ is periodic with period twelve. From the given equations we

see that
\n
$$
w(k+\ell) = \frac{u(k-\ell)v(k-\ell)}{u(k-2\ell)v(k-2\ell)w(k-2\ell)},
$$
\n
$$
w(k+3\ell) = \frac{u(k+\ell)v(k+\ell)}{u(k)v(k)w(k)} = \frac{\frac{1}{v(k)} \frac{v(k)}{u(k-\ell)v(k-\ell)}}{u(k)v(k)w(k)} = \frac{1}{u(k-\ell)v(k-\ell)u(k)v(k)w(k)},
$$

(²) (²) () () ¹ (⁴) () () () () () () () () () (2) (2) () (2) *^u k ^v k ^u k ^v k ^w k ^u k ^v k ^w k ^v k ^u k ^v k ^u k ^v k ^v k ^u k ^v k ^u k ^w k* (2) (2) (2) , () () *^u k ^v k ^w k ^u k ^v k* (3) (3) () () () (5) (2) (2) (2) () () 1 () () () () () () () () () () *v k u k v k u k u k v k w k u k v k u k v k u k w k u k v k w k u k v k u k v k u k*

$$
= [u(k-\ell)v(k-\ell)]^{2} w(k-\ell),
$$

\n
$$
w(k+6\ell) = \frac{u(k+4\ell)v(k+4\ell)}{u(k+3\ell)v(k+3\ell)w(k+3\ell)}
$$

\n
$$
= \frac{u(k)v(k)}{u(k-\ell)v(k-\ell)u(k)\frac{1}{u(k)}\frac{1}{u(k-\ell)v(k-\ell)u(k)v(k)w(k)}} = u_{2}(k)v_{2}(k)w(k),
$$

\n
$$
w(k+7\ell) = \frac{u(k+5\ell)v(k+5\ell)}{u(k+4\ell)v(k+4\ell)w(k+4\ell)}
$$

\n
$$
= \frac{v(k)}{v(k)u(k-\ell)v(k-\ell)u(k)v(k)\frac{u(k-2\ell)v(k-2\ell)w(k-2\ell)}{v(k)u(k)w(k)}} ,
$$

\n
$$
= \frac{1}{u(k-\ell)v(k-\ell)u(k-2\ell)v(k-2\ell)w(k-2\ell)},
$$

$$
w(k+8\ell) = \frac{u(k+6\ell)v(k+6\ell)}{u(k+5\ell)v(k+5\ell)w(k+5\ell)}
$$

=
$$
\frac{u(k-\ell)v(k+5\ell)}{v(k)u(k-\ell)v(k-\ell)u(k)\frac{1}{v(k)}\frac{y_n}{u(k-\ell)v(k-\ell)}u_2(k-\ell)v_2(k-\ell)w(k-\ell)}
$$

=
$$
\frac{1}{u(k)v(k)u(k-\ell)v(k-\ell)v(k-\ell)},
$$

3806 **Rajiniganth Pandurangan¹ , IJMCR Volume 11 Issue 10 October 2023**

$$
w(k+9\ell) = \frac{u(k+7\ell)v(k+7\ell)}{u(k+6\ell)v(k+6\ell)w(k+6\ell)}
$$

$$
= \frac{u(k-\ell)v(k-\ell)u(k)}{u(k)\frac{u(k-\ell)v(k-\ell)}{v(k)}\frac{1}{u(k-\ell)v(k-\ell)u(k)}u_2(k)v_2(k)w(k)} = \frac{u(k-\ell)v(k-\ell)}{u(k)v(k)z(k)},
$$

$$
w(k+10\ell) = \frac{u(k+8\ell)v(k+8\ell)}{u(k+7\ell)v(k+7\ell)w(k+7\ell)}
$$

$$
= \frac{u(k)v(k)}{u(k-\ell)v(k-\ell)u(k)\frac{1}{u(k)}\frac{1}{u(k-\ell)v(k-\ell)u(k-2\ell)v(k-2\ell)w(k-2\ell)} \\
=u(k)v(k)u(k-2\ell)v(k-2\ell)w(k-2\ell),
$$

$$
w(k+11\ell) = \frac{u(k+9\ell)v(k+9\ell)}{u(k+8\ell)v(k+8\ell)w(k+8\ell)}
$$

$$
=\frac{v(k)}{v(k)u(k-\ell)v(k-\ell)u(k)v(k)\frac{1}{u(k)v(k)u(k-\ell)v(k-\ell)w(k-\ell)}}=w(k-\ell),
$$

$$
w(k+12\ell) = \frac{u(k+10\ell)v(k+10\ell)}{u(k+9\ell)v(k+9\ell)w(k+9\ell)}
$$

=
$$
\frac{u(k-\ell)v(k-\ell)}{v(k)u(k-\ell)v(k-\ell)u(k)\frac{1}{v(k)}\frac{v(k)}{u(k-\ell)v(k-\ell)}\frac{u(k-\ell)v(k-\ell)}{u(k)v(k)v(k)}} = w(k).
$$

The proof is complete.

2.3 Generalized Third System

In this section, we obtain the solutions of the system of the generalized difference equations

$$
u(k+\ell) = \frac{1}{v(k)}, \ v(k+\ell) = \frac{v(k)}{u(k-\ell)v(k-\ell)}, \qquad w(k+\ell) = \frac{u(k-\ell)v(k-\ell)}{u(k-2\ell)v(k-2\ell)w(k-2\ell)},
$$

$$
z(k+\ell) = \frac{u(k-2\ell)v(k-2\ell)w(k-2\ell)}{u(k-3\ell)v(k-3\ell)w(k-3\ell)},
$$
\n(3)

With a nonzero real numbers initial conditions.

Theorem 3. Suppose that $\{u(k), v(k), w(k)\}$ are solutions of system (3). Also assume that $u(-3\ell), u(-2\ell), u(-\ell), u(0), u(-3\ell)$, *v*(-2 ℓ), *v*(- ℓ), *v*(0), *w*(-3 ℓ), *w*(-2 ℓ), *z*(- ℓ), *z*(-3 ℓ), *z*(- ℓ), *z*(- ℓ) and *z*(0) are arbitrary nonzero. Then $\{u(k), v(k)\}$ are also periodic with period four, $\{w(k)\}\$ is periodic with period twelve,

and $\{z(k)\}\$ is periodic with period 24*l*. Proof: As the proof of Theorem 2.

2.1. GENERAL SYSTEM

In this section, we investigate the solutions of the system of the generalized difference equations

$$
u_4(k+\ell) = \frac{u_1(k-2\ell)u_2(k-2\ell)u_3(k-2\ell)}{u_1(k-3\ell)u_2(k-3\ell)u_3(k-3\ell)u_4(k-3\ell)}, \dots, u_j(k+\ell) = \frac{\prod_{i=1}^{j-1}u_i(k-(j-2\ell))}{\prod_{i=1}^{j}u_i(k-(j-\ell))}, \dots, u_n(k+\ell) = \frac{\prod_{i=1}^{k-1}u_i(k-(n-2\ell))}{\prod_{i=1}^{k}u_i(k-(n-\ell))}. \quad (4)
$$

Theorem 4. Suppose that $\{u_1(k), u_2(k), u_3(k), \dots, u_n(k)\}$ are solutions of system (4). Then $\{u_1(k), u_2(k)\}$ are periodic with period four and $u_j(k)$ is periodic with period $P(u_{j-1}(k)) + 4(j-1)$, where $P(u_j(k))$ period of $(u_{j-1}(k))$, $j = 3, 4, 5...$

REFERENCES

1. E. Camouzis and G. C. Papaschinopoulos, Global asymptotic behavior of positive solutions on the system of rational difference equations

$$
x_{n+1} = 1 + \frac{x_n}{y_{n-m}}, y_{n+1} = 1 + \frac{y_n}{x_{n-m}},
$$
 Appl. Math. Lett., 17,
2004, 733–737.

2. C. Cinar, On the positive solutions of the difference

equation system $1 = \frac{1}{y_n}$, $y_{n+1} = 1 + \frac{y_n}{x_{n-1}y_{n-1}}$ $x_{n+1} = \frac{1}{y_n}$, $y_{n+1} = 1 + \frac{y_n}{x_{n-1}y_n}$ $+1=\frac{1}{y_n}, y_{n+1}=\frac{1}{x_{n-1}y_{n-1}}, \quad \text{Appl.}$ Math. Comp., 158, 2004, 303-305.

3. C. Cinar, I. Yal¸ cinkaya and R. Karatas, On the positive solutions of the difference equation system

$$
x_{n+1} = \frac{m}{y_n}, y_{n+1} = 1 + \frac{py_n}{x_{n-1}y_{n-1}},
$$
 J. Inst. Math. Comp. Sci., 18, 2005, 135, 136

18, 2005, 135-136.

4. C. Cinar, I. Yal¸ cinkaya, On the positive solutions of the difference equation system

$$
x_{n+1} = \frac{1}{z_n}
$$
, $y_{n+1} = \frac{y_n}{x_{n-1}y_{n-1}}$, $z_{n+1} = \frac{1}{x_{n-1}}$, J. Inst. Math.

Comp. Sci., 18, 2005, 91-93.

5. D. Clark and M. R. S. Kulenovic, A coupled system of rational difference equations, Comput. Math. Appl., 43, 2002, 849-867.

- 6. E. M. Elabbasy , H. El-Metwally and E. M. Elsayed, On the Solutions of a Class of Difference Equations Systems, Demonstratio Mathematica, 41(1), 2008, 109-122.
- 7. E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall, CRC Press, 2005.
- 8. A. Y. Ozban, On the positive solutions of the system of rational difference equations,

$$
x_{n+1} = \frac{1}{y_{n-k}}, y_{n+1} = \frac{y_n}{x_{n-m} y_{n-m-k}}, \quad \text{J. Math. Anal. Appl.,}
$$

323, 2006, 26-32.

9. A. Y. Ozban, On the system of rational difference

equations
$$
x_{n+1} = \frac{a}{y_{n-3}}, y_{n+1} = \frac{by_{n-3}}{x_{n-q}y_{n-q}}
$$
, Appl. Math.

Comp., 188(1), 2007, 833-837.

10. X. Yang, On the system of rational difference

equations
$$
x_n = A + \frac{y_{n-1}}{x_{n-p}y_{n-q}}, y_n = A + \frac{x_{n-1}}{x_{n-r}y_{n-s}}, J.
$$
 Math.

Anal. Appl., 307, 2005, 305–311.

11. X. Yang, Y. Liu and S. Bai, On the system of high order rational difference equations

$$
x_n = \frac{a}{y_{n-p}}, y_n = \frac{by_{n-p}}{x_{n-q}y_{n-q}}, \text{ Appl. Math. Comp.},
$$

171(2), 2005, 853-856.

12. Y. Zhang, X. Yang, G. M. Megson and D. J. Evans, On the system of rational difference equations

$$
x_n = A + \frac{1}{y_{n-p}}, y_n = A + \frac{by_{n-1}}{x_{n-t}y_{n-s}}, \quad \text{Appl. Math. Comp.,}
$$

176(2), 2006, 403-408.