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I. INTRODUCTION

We will focus on simple connected graphs, which are
graphs without loops and multiple edges. Let G be a
connected graph of order n with vertex set V. We can denote
di as the degree of a vertex v;, which is the number of edges
incident on it. d(v;, v;) or djj represents the distance between
two vertices v; and vj, which is defined as the length of the
shortest path joining them. The Schultz Index introduced by
Schultz [14] is defined as,

n
S(G) = Z[dl + dj]d”
i, j=1

For detailed work, see [15-18].
Motivated by previous research related to degree and
distance in a graph such as distance energy [1, 2], degree
sum energy [3, 4], degree square sum polynomial [8],
complementary distance energy [5], degree exponent energy
[6, 7], degree exponent sum energy [9], in order to upgrade,
we now introduce the concept of degree sum distance energy
of a connected graph. The purpose of this paper is to
compute the characteristic polynomial, eigenvalues and
energy of degree sum distance matrix of a graph. Also, we
compute bounds for degree sum distance energy.
The degree sum distance matrix of a connected graph G is

defined as, DSD(G)= [deij] , where

i 2 J(@()+d(v)dy) ifix w1
o ifi=j

We note that,

(1) Sum of the all elements in DSD(G)=2S(G).

(2) DSD(G) is real symmetric, so that the eigenvalues of
DSD(G) are real.
@) If «,a,,..., «, are the eigenvalues of DSD(G) then,

they can be arranged in a non-increasing order as

az2a,z22a,-
(4) 3" o =0 since trace [DSD(G)]=0.

(5) If we replace dij =1 for all i#, we get the degree sum
matrix.

Analogous to the energy of a graph defined by
I.Gutman with respect to adjacency matrix, we define the
degree sum distance energy of a graph as,

Epsp(G) = D |a-
=

Example:
0 4 6 6
4 0 5 5
DSD(G)= :
6 50 4
6 5 40

Degree sum distance eigenvalues of graph G are 01=15.0263,
0= -3.8669, 03= -4 and au=-7.1594. E_ (G) =30.0526
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Il. PRELIMINARIES

We state some useful Lemmas for the derivations.
Lemma 2.1. Let G be a graph of order n, and a1, a2, .. .,0n
be the eigenvalues of DSD(G) Then zi“:lai =0 and

iaiz =2M °
i=1

Where

M = D" ([d; +djldy)

i, j=1
i<j

Lemma 2.2. The Cauchy-Schwartz inequality states that, if
(8, 8,,...a,) and (b, h,,...., b)) are real p-vectors then,

o] () )

Lemma 2.3 [10]. Suppose that a;j and b; , 1< i< n, are
positive real numbers. Then,

(Z—l') z_lbi (\/172:'22 \/W) "

where M, =max,..., (&) M, =max,;., (b) .

m, = min 1<i<n (ai)’ m, = min 1<i<n (bi)

Lemma 2.4 [11]. Let a; and b; , /< i< n, be non-negative
real numbers. Then,
2

[ ?Zlaiz)(zin:lblz) _(Zin:lai 'bijz < nT(MlMZ —mymp 2,

where, l\/l1 =maX,., (ai) ) Mz =MaX ., (bl) !
m, =min, ., (&), m, =min,,(b)

Lemma 2.5 [12]. Let aj and bi , 1<i<n, be non-negative real
number. Then,

(zinﬂ bizj * rR(Zin:l aiz) <(r+ R)Zin:lai -by,

where r and R are real constants, such that for each
i,1<i<n, ra <b <Ra, hold.

Lemma 2.6 [1]. If G is a r-regular graph of diameter two,
then D(G)=2J,-2l1,-A(G) and thus the D- eigenvalues

(eigenvalues of distance matrix) of G are 2n-r-2,

-a,,-2,...,—2, arranged in a non-increasing order.

Lemma 2.7 [2]. Let G be a r-regular graph of diameter 2,
and let its spectrum (ordinary) be

spec(G)=(r, a,, ... a,) -
Then the D-spectrum of G is,

specp(G) = ((2n —r = 2), —(ap + 2), ..., —(oty + 2)).

Lemma 2.8 [2]. Let G be a r-regular graph of diameter 1 or
2 with an adjacency matrix A and spec(G)= (o, @,, ..., a, ).

Then H =GxK, is (r+1)-regular and of diameter 2 or 3

with,
5n-2(r+2) -2(aj+2) -n 0

specp(H) = :
1 1 1 n-1

where i=2,.....n.

Lemma 2.9 [13]. Suppose that [0, b,, by, ..., b ] is the first

row of the adjacency matrix of a circulant graph G. Then the
eigenvalues of G are,

n
j-1
WP ijw(l )P
j=2
where p=0,1,...,(n-1) and @ is n" root of unity.

Lemma 2.10 [7]. If a, b, ¢ and d are real numbers, then the
determinant of the form,

(0“ + a) Inl - a‘]nl _C‘]nlxnz
~dJ (et +b) 1, — by,

of order n, +n, can be expressed in the simplified form as,

Ny <My

(o + @) (o +b)"2 7 ([ou — (my —D)a] [ — (np —1)b] - ynyed ).
Lemma 2.11. If A= (a=b)1+bJ then the characteristic

~A|=[A-a+b][A-a—(n-1)b]
where a and b are arbitrary constants, 1 is the identity
matrix of order nand Jis nxn matrix with all entries 1’s

I1l. BOUNDS ON DEGREE SUM DISTANCE
ENERGY

In this section, we obtain some bounds on degree sum
distance energy of any graph.

Proposition 3.1. Let G be a graph of order n and size m.
Then,

2
n 2
Epsp(G) = \/ZMn -7 (o - ),
where a1, an are maximum and minimum of a; ‘s

Proof. Suppose o, a,,....,a, are the eigenvalues of

DSD(G). We assume that a;=1 and b; = a; then, by
Lemma 2.4, we have,

n n

D el —[Za. j s%ml—an)

i=1 i=1

2Mn - (Epsp (G))° < %(al —an)?

Hence,

2
n 2
EDSD(G) > \/ZMn - T(Ol,l - ()Ln) .
Proposition 3.2. Let G be a graph of order n and suppose
zero is not an eigenvalue of DSD(G).Then,
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v2Mn Joyo,

Epsp(G) 2 2 oy + 0

where ai,a, are maximum and minimum of o; ‘s.
Proof. Suppose ¢, a,,...., a,are the eigenvalues of
DSD(G). Let us assume that a, =|a; | and b =1, by
Lemma 2.3 we have,

Zn] o |2§1 < %(\/3:2 ; \/Z:ijz[gl y IJZ

i=1

2Mn < i[w](EmD(e))z.

0i10n
Hence, EDSD (G) > 2—‘2Mn N %%
(241 + a,

Proposition 3.3. Let G be a graph of order n and size m. Let
a,>a,>--->a, be a non-increasing sequence of

eigenvalues of DSD(G) .Then,

Epsp(G) > 0 - oph + 2M

o + Op
where o1,0n are maximum and minimum eigenvalues of
DSD(G) .
Proof. Suppose a1, a2, ..., an are the eigenvalues of DSD(G) .
We assume that by =|¢; |, 8, =1, r=q,=b and R=¢, then

by Lemma 2.5, we have,

n n n
D of [+ agan Y 1< (og + o) |,
i=1 i=1 i=1

Since,
n

Epsp(G) = Z\ o |, Z\ of | = 2M,

i=1 i=1

IV. DEGREE SUM DISTANCE ENERGY OF SOME
GRAPHS
In this section, we obtain the degree sum distance energy

of some graphs. Prior to it we discuss the connection
between distance spectra and adjacency  spectra,
subsequently connecting degree sum distance spectra with
adjacency spectra in case of regular graphs. The distance
matrix D(G) of a connected graph G is defined as,

1 ifi#j
di ={ L

0, ifi=].
The collection of eigenvalues of a distance matrix of a graph
G along with their multiplicity form the distance spectrum
or D spectrum of G denoted by spec, (G) . The following

gives the relation between distance spectra and adjacency
spectra for r regular graph.

Proposition 4.1. For any r-regular graph G,
DSD(G) = 2rD(G) , where D(G) is distance matrix of G.

Proposition 4.2. From Lemma 2.6, if G is r-regular graph G
of diameter 2 with eigenvalues (r, @,, ...., , ) then degree

sum distance spectra of G is, specy, (G)=

(2r(2n-r-2),-2r(a, +2), -2r(a; +2), ..., —2r (at, +2)).

Proposition 4.3. If G be a r-regular graph of order n and
diameter 1 or 2then H =G xK, is (r+1) -regular
2(r+1)(5n-2r-4) —-4(r+1)(ej+2) -2n(r+1) O ]

specpsp(H) = :
1 1 1 n-1

wherei=2,...,n.

From the above Proposition we have,

o specDSD(Kn){z(nn__ll) —2r5r1 11)] .

Hence, EDSD(KH)=4(n—1)2.

2n(3n—2) 2n(n—2) —4n
1 1 2n-2

Hence, E, (K, ,)=16n(n-1).

(3)specDSD(CP(”))=[8“(“—1) -8(n-1) 0 j

n n-1

(2) specosy (K, 0 )

1
Hence, E,, (CP(n))=16n(n-1) -

Theorem 3.10. The degree sum distance energy of even and
odd cycle are given by,

Epso (Con)=8n% @nd E o (C,,.;)=8n(n+1) respectively.
Proof. (1) Consider an even cycle c, . Here the degree sum

distance  matrix is circulant  with  first  row,
[04812..4n-1)4n 4n-1).. 4]
By Lemma 2.9, extracting eigenvalues and adding their
magnitudes, we get E g, (C,,)=8n".

(2) For an odd cycle C the degree sum distance matrix

2n+1?

is circulant with first row, [04812....4n4n....4]. By

Lemma 2.9 extracting eigenvalues and adding their
magnitudes, we get,

Epsp(Cans1) = 8n(n +1).

Theorem 3.11. The degree sum distance energy of wheel
graph Wh1 s,

Epsp(W,.,) = 144(n— 2)° + 4n(n +3f +12(n—2).

Proof. Let Wh+1 be a wheel graph of order (n+1).Starting
with central vertex as first vertex (for 1 row/column),

suitable labeling gives the degree sum distance matrix of
Wh+1 a5,

0 (n +'3)J1xn
(n+3)Jq MDSD(C,))

where J represents matrix of all 7’s, MDSD(C,) represents
circulant matrix corresponding to C, with first row

050t -

3854 | Sudhir R. Jog?, IIMCR Volume 11 Issue 11 November 2023



“Degree Sum Distance Spectra and Energy of Graphs”

[061212...126] - The degree sum distance polynomial of
DSD(Wh-+1) is then given by,

a —~(n+3)J,.,
~(n+3)J,, a,-MDSD(C,)
n+3
a-12(n-2)

|al -DSD\W, ;)| =

Adding to first column _ times addition of

remaining columns gives
|al -DSD(W, ;) |=

. n+3

a-12(n-2)
0,4 al,—~MDSD(C,)

which  gives the characteristic  polynomial as,

|l -DSD(W,,)| = [@* ~12(n—2)ar—n(n+3)’]x| al ~MDSD(C, )

al -MDSD(C,) ‘ is without the factor [a -12(n- 2)]

It can be shown that the eigenvalues of MDSD(C,) are

12(n-2) and remaining all are negative so that the energy of

MDSD(Cn) is 12(n-2).

By Lemma 2.9, we get,

Epsp(W,.)=144(n— 27 + 4n(n + 3 +12(n—2).

Hence the theorem.

a —(n+3)J,,

1

where,

n+l

Theorem 3.12. The degree sum distance energy of the
complete bipartite graph Kmn(m ,n >2) is,

Epsp(Km,n) = 8(2mn —m —n).

Proof. In Kmn, m vertices have degree n and n vertices have
degree m. The degree sum distance matrix is,

4nA(Ky) (M +n)Jdmen
(M +n)Jnem 4mA(Kp) J,
where J is matrix of all 1°s and A the adjacency matrix. The
degree sum distance polynomial is then given by,
al,—4nA(K,) —(m+n)J,,
—(m+n)J al,—4mA(K,)
Applying Lemma 2.10, the degree sum distance polynomial
of K is given by,
| al =DSD(K,,,) |= (a+4n)"" (a+4m)""[a* ~4(2mn-m-n)a

DSD(Km, n) = (

| al -DSD(K,,,) |=

nxm

+16(mn — m — n) — mn(m + n)?].
We get, spec,q, (K, ,) =

-4n  —4m 4mn—m—n4_r\/4(2mn—m—n)2 —(16(mn—m—n)—mn(m+n)z)
m-1 n-1 1

The theorem now follows by adding absolute eigenvalues.

On similar lines we state without proof, the following.

Theorem 3.13. The degree sum distance energy of the star
graph K is,

Epso(Kyn) = 4(n - 1) + 24(n -1 + n(n + 1%,

Theorem 3.14. The degree sum distance energy of the
crown graph S° is,

72 if n=3

Epsp(Sh) =
" len—1? if n> 4.

Proof. The crown graph S° is regular of degree n-1 So the
degree sum distance matrix of S? for n >4 is,
4(n -1 AK,) 6(n-1)1, +2(n—1)A(Kn)]

0y _
DSD(Sn)_[G(n—l)ln +2(n—1)AK,) 4(n -1 AK)

where J is matrix of all 1’s and A is the adjacency matrix.
The degree sum distance polynomial is then given by,

al,-4n-1)AK,)
-6(n-1)1, -2(n-1)A(K,)

-6(n-1)1, -2(n-1)AK,)

|al - DSD(S;)|= al, - 4n-1)AK,)

Applying Lemma 2.10, the degree sum distance polynomial
is given by,

| al — DSD(SY) |

= o" Yo +8(n = )" o - 6n(n —D)][a — 2(n —1)(n — 4)]

0 -8n-1) 6n(h-1) 2(n-1)(n- 4)}

specpsp(SY) =
n-1 n-1 1 1

0 16 36 -4
for n =3, using Matlab.specho(Sg):[z 2 1 1]

Hence the theorem.

Theorem 3.15.

Epsp(Kn +€)=(2n-2)(n=2) +| oy [+ oy |+ a3
where a1, a2 and as are roots of the equation,

[0 = 2(n—1)(n-2)a® — (N +2)* + (N —1)(8n? — 4n + 1))t
—2(n> =1)(3n® —n+2)] = 0.

Proof. In Ky+e there is one vertex with degree n, one vertex
with degree 1 and remaining n-1 vertices have degree n-1
so we get the degree sum distance matrix with suitable
labeling as,

0 n+1 (2n =1)J3n-3

DSD(Kp, +¢e) = n+1 0 2nJgn-3
(2n-1)Jn-ga 2nJy3q 2(n-1)A(K,_3)
The degree sum distance polynomial of Ky+e is then given

by,

a —(n+1) —(2n-1)J3,,,
|al —-DSD(K, +e)|=| —(n+1) a -2nd,.. .
7(2n 71)‘] nsa 2N g, al, - Z(FI - 1) A(Kn—s)

Applying Lemma 2.10, the degree sum distance polynomial
of K, +e isgiven by,
|al — DSD(K,, +€)|

=[a+(2n-2)*x

[® —2(n-1)(n-2)a® = ((n+1) +(n-1)(8n* —4n+1))a —2(n* —1)(3n* —n +2)].

so that,
—(2n - 2) o O 03
specpsp (Kp +€) = ,
n-2 1 1 1

where a3, oz, and a3 are the roots of the equation,
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[0 = 2(n —1)(n - 2)a? — (N +1)? + (n —1)(8n? — 4n + 1))
—2(n> —1)(3n% —n+2)] = 0.
Hence the theorem.

On similar lines, we obtain the degree sum distance spectra
and energy of edge deleted complete graph K,— e, as in the
following theorem.

Theorem 3.16.
Epeo (K, —€) = 2n* —4n—2++/n‘ —4n® +10n ~18n +13,

Definition 3.17. Vertex Coalescence: If G; and G; are any
two graphs then the graph obtained by gluing G; and G; at a
point is v called vertex coalescence denoted by G10y G2,

Definition 3.18. Edge Coalescence: If G; and G; are any
two graphs then the graph obtained by merging G; and G;
on an edge e is called edge coalescence denoted by G10. G2
Let K, be a complete graph of order n then the vertex
coalescence of K, with K, will be denoted by K, Oy K and
the edge coalescence by KnO¢ K; . Ky Oy Ky has 2n-1 vertices

and 2x("C2) edges whereas KO K, has 2n-2 vertices and
2x("C2-1) gdges.

We now obtain DSD energy for . K, O, Ky and K,Oe Ky
Theorem 3.19.

Epsp (K.O,K, ) = 4(n-1)(n—2)+2n(n-1)+(n-1),/(16n-8)* +72(n-1).

Proof. The graph K, Oy K, has one vertex of degree 2(n-1)
and remaining 2(n-1) vertices of degree n-1.

With suitable labeling the degree sum distance matrix of

Kn Oy K, takes the form,

0 M- A -1

2(n =1 Jgun—2
3n-DIn_za 2n-DJp_2q 2(n-AKp_2)

DSD(K,O,Ky) =| 3(n-1) 0

The degree sum distance polynomial of K, Oy K, is,
| ol — DSD(KOyKp) |

o -3(n-1)
-3(n-1) o

=3(n = 1) Ipun-2
=2(n=1)Jpun-2

-3 -DJp2a —20-DIp 2a alyz—2(0-DAKy_2)
Using Lemma 2.10 we get the degree sum distance
polynomial of K, Oy K,
|l -DSD(K,0,K,)

[+2n-2]"*[a+2n(n-1)][a*-(6n-8)(n-1)a -18(n-1)’].
We get,

2n-4

(6n-8)(n—1)%(n—1)/(6n—8) +72(n-1)

Specyen(K,0,K, ) = ~(2n-2) -2n(n-1)

2
2n—-4 1 1

Hence the theorem.
On similar lines we state without proof the following.

Theorem 3.20.
Eoeo (K,0.K, )= (2n-2)(2n-6)+2(n-1)" +(4n~6)+| o, | +] a,

n~e" 'n

where

o 2(n-1)(3n—7)+(4n-6)+[2(0—1)3n—7)+ (4n—6)F — 4[2(n—1)(3n— 7)(4n—6)— 4(3n—4F (n—2)]
* 2

and

2n-1)(3n—7)+(4n—6)—[20-1)(3n—7)+ (4n—6)F — 4[2(n-1)(3n—7)(4n—6)— 4(3n— 4F (n—2)]

a, =

2

V. CONCLUSION

We discussed the degree sum distance energy of graphs.
Also, we discussed bounds on degree sum distance energy.
There is a scope to investigate degree sum distance energy
of graphs with higher diameter, trees, unicyclic graphs, line
graphs etc and also to construct degree sum distance equi-
energetic graphs.
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