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1. INTRODUCTION 

Let A denote the class of functions 𝑓  of the form  

                              𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛
∞
𝑛=2 𝑧𝑛                                                       

(1.1) 

which are analytic in the open unit disk 

𝐸 = {𝑧 ∈ ℂ: |𝑧| < 1}. 

     A function 𝑓  in the class 𝐴   is said to be in the class 𝑆𝑇(𝛼) 

of starlike functions of order 𝛼in E , if it  satisfy the inequality  

 

      𝑅𝑒 {
𝑧𝑓′(𝑧)

𝑓(𝑧)
} > 𝛼,     (0 ≤ 𝛼 < 1), (𝑧 ∈ 𝐸)                     (1.2) 

Note that  𝑆𝑇(0) = 𝑆𝑇 is the class of starlike functions. 

Denote by  T the subclass of 𝐴  consisting of functions  f  of 

the form  

   𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑛
∞
𝑛=2 𝑧𝑛 (𝑎𝑛 ≥ 0).                                        (1.3) 

This subclass  was introduced  and extensively studied by  

Silverman  [4]. 

 

Recently, Atshan and Buti [1 ] introduced a Rafid operator of 

𝑓 ∈ 𝑅 for 0 ≤ 𝜆 < 1 and 0 ≤ 𝑚 < 1. It is  

denoted by 𝐺𝜆
𝑚𝑓(𝑧) and defined as follows: 

 

𝐺𝜆
𝑚𝑓(𝑧) =

1

(1−𝜆)𝑚+1𝛤(𝑚+1)
∫

∞

0
𝑡𝜆−1𝑒−(

𝑡

1−𝜆
)𝑓(𝑧𝑡)𝑑𝑡      1.4) 

Thus, if 𝑓 ∈ 𝐴  has the form (1.1), then it follows  from (1.4) 

that 

 

𝐺𝜆
𝑚𝑓(𝑧) = 𝑧 + ∑ 𝜙𝑛(𝜆, 𝑚)𝑎𝑛

∞
𝑛=2 𝑧𝑛                                         (1.5) 

Where  𝜙𝑛(𝜆, 𝑚) = (1 − 𝜆)𝑚−1 𝛤(𝑛+𝑚)

𝛤(𝑚+1)
 

 In this paper, using the operator  𝐺𝜆
𝑚𝑓(𝑧), we define the 

following new class motivated by Murugusunderamoorthy 

and Magesh [ 3 ]. 

Definition 1. The function  𝑓(𝑧) of the form (1.1) is in the 

class  𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) if it satisfies the inequality 

𝑅𝑒 {
𝑧(𝐺𝜆

𝑚𝑓(𝑧))
′

(1−𝜇)𝑧+𝜇𝐺𝜆
𝑚𝑓(𝑧)

− 𝛾} > 𝜍 |
𝑧(𝐺𝜆

𝑚𝑓(𝑧))
′

(1−𝜇)𝑧+𝜇𝐺𝜆
𝑚𝑓(𝑧)

−

1|

 

 

for 0 ≤ 𝜆 ≤ 0, 0 ≤ 𝛾 ≤ 1 and 𝜍 ≥ 0.  

Further we define  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) = 𝑆𝜆

𝑚(𝜇, 𝛾, 𝜍) ∩ 𝑇. 

The  aim of this paper is to study the coefficient bounds ,  radii 

of close-to-convex and starlikeness 

convex linear combinations for the class 

𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍).Furthermore, we obtained integral means 

inequalities for the functions in  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍). 

Theorem 1: A function f(z) of the form (1.1) is in 𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍)   

2

[ (1 ) ( )]
n

n    




   𝜙𝑛(𝜆, 𝑚)|𝑎𝑛| ≤ 1 − 𝛾        

(2.1) 

where 0 ≤ 𝜇 ≤ 1,  0 ≤ 𝛾 ≤ 1
,
𝜍 ≥ 0   and 𝜙𝑛(𝜆, 𝑚) is given 

by (1.5).  

Proof: It suffices to show that  

 

𝝇 |
𝒛(𝑮𝝀

𝒎𝒇(𝒛))
′

(𝟏−𝝁)𝒛+𝝁𝑮𝝀
𝒎𝒇(𝒛)

− 𝟏| − 𝑹𝒆 {
𝒛(𝑮𝝀

𝒎𝒇(𝒛))
′

(𝟏−𝝁)𝒛+𝝁𝑮𝝀
𝒎𝒇(𝒛)

− 𝟏} ≤ 𝟏 − 𝜸 - 

We have 
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   𝜍 |
𝑧(𝐺𝜆

𝑚𝑓(𝑧))
′

(1−𝜇)𝑧+𝜇𝐺𝜆
𝑚𝑓(𝑧)

− 1| − 𝑅𝑒 {
𝑧(𝐺𝜆

𝑚𝑓(𝑧))
′

(1−𝜇)𝑧+𝜇𝐺𝜆
𝑚𝑓(𝑧)

− 1} 

 

≤ (1 + 𝜍) |
𝑧(𝐺𝜆

𝑚𝑓(𝑧))′

(1 − 𝜇)𝑧 + 𝜇𝐺𝜆
𝑚𝑓(𝑧)

− 1| 

           

≤ (1 + 𝜍)
∑

𝑛=2
∞

(𝑛 − 𝜇)𝜙𝑛(𝜆, 𝑚)|𝑎𝑛||𝑧|𝑛−1

1 − ∑

𝑛=2
∞

𝜇𝜙𝑛(𝜆, 𝑚)|𝑎𝑛||𝑧|𝑛−1

 

≤ (1 + 𝜍)
∑

𝑛=2
∞

(𝑛 − 𝜇)𝜙𝑛(𝜆, 𝑚)|𝑎𝑛|

1 − ∑

𝑛=2
∞

𝜇𝜙𝑛(𝜆, 𝑚)|𝑎𝑛|

 

 

 The last expression is bounded above by (1 − 𝛾) if  

 

2

[ (1 ) ( )]
n

n    




   𝜙𝑛(𝜆, 𝑚)|𝑎𝑛| ≤ 1 − 𝛾 

and the proof is complete.  

 

 

Theorem 2:  Let  0 ≤ 𝜇 ≤ 1,  0 ≤ 𝛾 ≤ 1and 𝜍 ≥ 0  then a 

function  f  of the form (1.3) to be in the class 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) if 

and only if 

2

[ (1 ) ( )]
n

n    




   𝜙𝑛(𝜆, 𝑚) ≤ 1 − 𝛾

                              (2.2) 

 

where 𝜙𝑛(𝜆, 𝑚) are given by (1.5) 

 

Proof:   In view of Theorem 1, we need only to prove the 

necessity. If  𝑓 ∈ 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) and z is real then  

 

𝑅𝑒 {
1 − ∑

𝑛=2
∞

𝑛𝜙𝑛(𝜆, 𝑚)𝑎𝑛𝑧𝑛−1

1 − ∑

𝑛=2
∞

𝜇𝜙𝑛(𝜆, 𝑚)𝑎𝑛𝑧𝑛−1

− 𝛾}

> 𝜍 |
∑

𝑛=2
∞

(𝑛 − 𝜇)𝜙𝑛(𝜆, 𝑚)𝑎𝑛𝑧𝑛−1

1 − ∑

𝑛=2
∞

𝜇𝜙𝑛(𝜆, 𝑚)𝑎𝑛𝑧𝑛−1

| 

 

Letting      z  1 along the real axis, we obtain the desired 

inequality 

 

∑ [𝑛(1 + 𝜍) −∞
𝑛=2 𝜇(𝛾 + 𝜍)] 𝜙𝑛(𝜆, 𝑚)|𝑎𝑛| ≤ 1 − 𝛾,

    

where 0 ≤ 𝜇 < 1,  0 ≤ 𝛾 ≤ 1 𝜍 ≥ 0  and 𝜙𝑛(𝜆, 𝑚) 

are given by (1.6). 

 

Corollary 1. If f(z)  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍), then  

           

|𝑎𝑛| ≤
1−𝛾

[𝑛(1+𝜍)−𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)
   

                            (2.3) 

where 0 ≤ 𝜇 < 1,  0 ≤ 𝛾 ≤ 1 𝜍 ≥ 0  and 𝜙𝑛(𝜆, 𝑚) are given 

by (1.5). Equality holds for the function  

 

                     

𝑓(𝑧) = 𝑧 −
1−𝛾

[𝑛(1+𝜍)−𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)
𝑧𝑛

.

 

                  (2.4) 

Theorem 3.  Let  

                                  𝑓1(𝑧) = 𝑧 and  

 

    𝑓𝑛(𝑧) = 𝑧 −
1−𝛾

[𝑛(1+𝜍)−𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)
𝑧𝑛, 𝑛 ≥ 2.              (2.5) 

Then  f(z)  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍), if and only if it can be expressed in 

the form  

𝑓(𝑧) = ∑ 𝑤𝑛𝑓𝑛
∞
𝑛=1 (𝑧) , 𝑤𝑛 ≥ 0, ∑ 𝑤𝑛

∞
𝑛=1 = 1 .                                                                           

(2.6) 

Proof. Suppose  f(z) can  be written as in (2.6).Then  

 𝑓(𝑧) = 𝑧 − ∑ 𝑤𝑛
∞
𝑛=2

1−𝛾

[𝑛(1+𝜍)−𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)
𝑧𝑛 . 

Now, 

  ∑ 𝑤𝑛
∞
𝑛=2

(1−𝛾)[𝑛(1+𝜍)−𝜇(𝛾+1)]𝜙𝑛(𝜆,𝑚)

(1−𝛾)[𝑛(1+𝜍)−𝜇(𝛾+1)]𝜙𝑛(𝜆,𝑚)
 =  ∑ 𝑤𝑛

∞
𝑛=2 = 1 − 𝑤1 ≤

1.

 Thus   f(z)  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍). Conversely , let us have   f(z)  

𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍).Then  by using  (2.3) ,  we get  

                 𝑤𝑛 =
[𝑛(1+𝜍)−𝜇(𝛾+1)]𝜙𝑛(𝜆,𝑚)

(1−𝛾)
𝑎𝑛 , 𝑛 ≥ 2 

  

and   𝑤1 = 1 − ∑ 𝑤𝑛
∞
𝑛=2 . Then we have  𝑓(𝑧) =

∑ 𝑤𝑛𝑓𝑛
∞
𝑛=1 (𝑧) and hence this completes the proof of 

Theorem. 

Theorem 4.  The class  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) is a convex set. 

Proof. Let the function  

𝑓𝑗(𝑧) = 𝑧 − ∑ 𝑎𝑛,𝑗𝑧𝑛∞
𝑛=2 , 𝑎𝑛,𝑗 ≥ 0, j =1,2                             (2.7)  

be in the class 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) . It sufficient to show that the 

function ℎ(𝑧) defined by  

 ℎ(𝑧) = 𝜉𝑓1(𝑧) + (1 − 𝜉)𝑓2(𝑧) ,  0 ≤ 𝜉 < 1, 

is in the class 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍). Since  

 ℎ(𝑧) = 𝑧 − ∑ [𝜉𝑎𝑛,1 + (1 − 𝜉)𝑎𝑛,2]∞
𝑛=2 𝑧𝑛 , 

An easy compution with the aid of of Theorem 2, gives 

    ∑ [𝑛(1 + 𝜍) −∞
𝑛=2 𝜇(𝛾 + 𝜍)] 𝜉𝜙𝑛(𝜆, 𝑚)𝑎𝑛,1  +

∑ [𝑛(1 + 𝜍) −∞
𝑛=2 𝜇(𝛾 + 𝜍)] (1 − 𝜉)𝜙𝑛(𝜆, 𝑚)𝑎𝑛,2  

          ≤ 𝜉(1 − 𝛾) + (1 − 𝜉)(1 − 𝛾) 

         ≤ (1 − 𝛾), 

which implies  that ℎ ∈ 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍). 

Hence  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) is  convex. 

     Next we obtain the radii of close –to-convexity 

,starlikeness and convexity for the class𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) . 

Theorem 5. Let the function  𝑓(𝑧) defined by (1.3) belong to 

the class 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍).Then  𝑓(𝑧) 

is close-to-convex of order 𝛿 (0 ≤ 𝛿 < 1) in the disc  |𝑧| <

𝑟1, where  
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 𝑟1 = 𝑖𝑛𝑓
𝑛≥2

[
(1−𝛿) ∑ [𝑛(1+𝜍)−∞

𝑛=2 𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)

𝑛(1−𝛾)
 ]

1

𝑛−1
, 𝑛 ≥ 2.  (2.8) 

 

The result is sharp, with the extremal function  𝑓(𝑧) is given 

by (2.5 ) 

Proof. Given 𝑓 ∈ 𝑇, and  𝑓 is close-to-convex of order  𝛿, we 

have  

    |𝑓′(𝑧) − 1| < 1 − 𝛿                                                           (2.9) 

For the left hand side of  (2.9) we have  

                         |𝑓′(𝑧) − 1| ≤ ∑ 𝑛𝑎𝑛
∞
𝑛=2 |𝑧|𝑛−1  

The last expression is less than  1 − 𝛿                                                         

               ∑
𝑛

1−𝛿

∞
𝑛=2 𝑎𝑛|𝑧|𝑛−1 ≤ 1.  

Using the fact, that  f(z)  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) if and only if  

∑

∞

𝑛=2

[𝑛(1 + 𝜍) − 𝜇(𝛾 + 𝜍)]𝜙𝑛(𝜆, 𝑚)

(1 − 𝛾)
𝑎𝑛 ≤ 1, 

We can  (2.9)  is true if  

  

𝑛

1 − 𝛿
|𝑧|𝑛−1 ≤

[𝑛(1 + 𝜍) − 𝜇(𝛾 + 𝜍)]𝜙𝑛(𝜆, 𝑚)

(1 − 𝛾)
 

or, equivalently, 

  |𝑧| ≤ {
(1−𝛿)[𝑛(1+𝜍)−𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)

𝑛(1−𝛾)
}

1

𝑛−1
 

which completes the proof. 

  

Theorem 6. Let the function  𝑓(𝑧) defined by (1.3) belong to 

the class 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍).Then  𝑓(𝑧) 

is  starlike of order of order 𝛿 (0 ≤ 𝛿 < 1) in the disc  |𝑧| <

𝑟2, where  

𝑟2 = 𝑖𝑛𝑓
𝑛≥2

[
(1−𝛿) ∑ [𝑛(1+𝜍)−∞

𝑛=2 𝜇(𝛾+𝜍)]𝜙𝑛(𝜆,𝑚)

(𝑛−𝛿)(1−𝛾)
 ]

1

𝑛−1
                 (2.10) 

The result is sharp,with extremal  function  𝑓(𝑧) is given by 

(2.5).                                                                             

Proof.   Given 𝑓 ∈ 𝑇, and  𝑓 is starlike  of order  𝛿, we have 

                            |
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 1| < 1 − 𝛿                                 

(2.11) 

For the left hand side of  (2.11   ) we have  

|
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 1| ≤ ∑

(𝑛 − 1)𝑎𝑛|𝑧|𝑛−1

1 − ∑ 𝑎𝑛|𝑧|𝑛−1∞
𝑛=2

∞

𝑛=2

 

The last expression is less than  1-δ if  

  

∑
𝑛−𝛿

1−𝛿

∞
𝑛=2 𝑎𝑛|𝑧|𝑛−1 < 1. 

  

Using the fact that  f(z)  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍) if and if  

∑

∞

𝑛=2

[𝑛(1 + 𝜍) − 𝜇(𝛾 + 𝜍)]𝜙𝑛(𝜆, 𝑚)

(1 − 𝛾)
𝑎𝑛 ≤ 1, 

We can say  (2.11) is true if  

∑
𝑛 − 𝛿

1 − 𝛿

∞

𝑛=2

|𝑧|𝑛−1 ≤
[𝑛(1 + 𝜍) − 𝜇(𝛾 + 𝜍)]𝜙𝑛(𝜆, 𝑚)

(1 − 𝛾)
 

or equilently                                                                                                      

|𝑧|𝑛−1 ≤
(1 − 𝛿)[𝑛(1 + 𝜍) − 𝜇(𝛾 + 𝜍)]𝜙𝑛(𝜆, 𝑚)

(𝑛 − 𝛿)(1 − 𝛾)
 

which yields the starlikeness of the family.  

 

Integral Means Inequalities        

   In [6], Silverman found that the function 𝑓2(𝑧) = 𝑧 −
𝑧2

2
 is 

often extremal over the family  𝑇.  He applied this function to  

resolve his integral means inequality conjuctured  [5] and 

settled in [6], that  

 ∫ |𝑓(𝑟𝑒𝑖𝜑)|
𝜂2𝜋

0
𝑑𝜑 ≤ ∫ |𝑓2(𝑟𝑒𝑖𝜑)𝜂|

2𝜋

0
𝑑𝜑 , 

for all 𝑓 ∈ 𝑇, 𝜂 > 0 and  0 < 𝑟 < 1. In [5] , he also proved 

his conjucture for the subclasses 

𝑇∗(𝛼) and  𝐶(𝛼) of  𝑇. 

Now,  we prove  Silverman ‘s conjecture for the class of 

functions  𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍).

. 

We need the concept of subordination between analytic 

functions and a subordination  

 

theorem of Littlewood  [2]. 

 

Two functions  𝑓 and  𝑔, which are analytic in 𝐸, the function 

𝑓 is said to be  

 

subordinate to 𝑔 in 𝐸 if there exists a function  𝑤 analytic in 

𝐸 with  

 

𝑤(0) = 0, |𝑤(𝑧)| < 1, (𝑧 ∈ 𝐸)
 
Such that 𝑓(𝑧) = 𝑔(𝑤(𝑧)), 

(𝑧 ∈ 𝐸). 

 

We denote this subordination by  𝑓(𝑧) ≺ 𝑔(𝑧). ( ≺denotes 

subordination). 

 

Lemma 1. If the functions 𝑓and 𝑔are analytic in 𝐸 with 

𝑓(𝑧) ≺ 𝑔(𝑧),then for 𝜂 > 0and𝑧 = 𝑟𝑒𝑖𝜑 0 < 𝑟 < 1,                                                                                             

                                ∫ |𝑔(𝑟𝑒𝑖𝜑)|
𝜂2𝜋

0
𝑑𝜑 ≤

∫ |𝑓 (𝑟𝑒𝑖𝜑)|
𝜂2𝜋

0
𝑑𝜑 

Now, we discuss the integral means inequalities for functions 

𝑓 in 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍)

.
                         

                           ∫ |𝑔(𝑟𝑒𝑖𝜑)|
𝜂2𝜋

0
𝑑𝜑 ≤ ∫ |𝑓 (𝑟𝑒𝑖𝜑)|

𝜂2𝜋

0
𝑑𝜑  

Theorem 7. Let  𝑓 ∈ 𝑇𝑆𝜆
𝑚(𝜇, 𝛾, 𝜍), 0 ≤ 𝜇 < 1, 0 ≤ 𝛾 ≤ 1, 

and 𝑓2(𝑧) be defined by 

                                    𝑓2(𝑧) = 𝑧 −
1−𝛾

𝜑2(𝜆,𝑚,𝜇,𝜍,𝛾)
𝑧2                                            

(2.12) 

 

Proof. For  𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑛
∞
𝑛=2 𝑧𝑛, (2.12) is equivalent to 
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∫ |1 − ∑ 𝑎𝑛𝑧𝑛−1

∞

𝑛=2

|

𝜂
2𝜋

0

𝑑𝜑

≤ ∫ |1 −
1 − 𝛾

𝜑2(𝜆, 𝑚, 𝜇, 𝜍, 𝛾)
𝑧|

𝜂2𝜋

0

𝑑𝜑 

By Lemma 1, it is enough to prove that  

1 − ∑ 𝑎𝑛𝑧𝑛−1

∞

𝑛=2

≺ 1 −
1 − 𝛾

𝜑2(𝜆, 𝑚, 𝜇, 𝜍, 𝛾)
𝑧 

Assuming  

1 − ∑ 𝑎𝑛𝑧𝑛−1∞
𝑛=2 ≺ 1 −

1−𝛾

𝜑2(𝜆,𝑚,𝜇,𝜍,𝛾)
𝑤(𝑧) , 

and using (2.2) we obtain  

|𝑤(𝑧)| = |∑∞
𝑛=2

𝜑2(𝜆,𝑚,𝜇,𝜍,𝛾)

1−𝛾
𝑎𝑛𝑧𝑛−1|  ≤

|𝑧| ∑
𝜑2(𝜆,𝑚,𝜇,𝜍,𝛾)

1−𝛾
𝑎𝑛

∞
𝑛=2 ≤ |𝑧| 

where        𝜑𝑛(𝜆, 𝑚, 𝜇, 𝜍, 𝛾) = [𝑛(1 + 𝜍) − 𝜇(𝛾 +

𝜍)]𝜙𝑛(𝜆, 𝑚)      

This completes the proof.                                   
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