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The study of summability techniques plays a vital role in the fields of Functional Analysis, 

Fourier series, and Engineering. This paper is mainly focused on the comparison between Cesaro 

summability and Able summability. Besides providing a theorem, and giving examples related 

to Able method and Cesaro method, we give a theorem to prove the completeness of a sequence 

space. 
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1. INTRODUCTION AND MOTIVATION 

The study of the convergence of infinite series is a classical 

technique. In early times, people were more anxious with 

traditional examinations of convergence of infinite series. 

Series that did not converge were of no interest until the 

arrival of L. Euler (1707–1783)[9]. He took up a serious 

analysis of the series that did not converge. Euler was 

followed by a galaxy of great mathematicians, such as C.F. 

Gauss (1777–1855), A.L. Cauchy (1789–1857), and N.H. 

Abel (1802–1829).In the second half of the 19th century, the 

interest in the study of divergent series almost declined [10]. 

later, in 1890 E. Cesaro reanimated the study of divergent 

series and introduced the idea of (C,1) convergence. [8]Since 

then, many other mathematicians have been contributing to 

the study of divergent series.  

Summability theory has an important role in real analysis as 

well as applied mathematics[10]. Mathematicians, 

researchers, engineers, or physicists who deal with Fourier 

transforms or Fourier series and analytic continuation may 

find summability theory a very useful for their research. 

Newton and Leibniz were the first to apply the concept of 

infinite series, with a brief mention of divergent series. Later 

it became a crucial component of mathematical analysis. 

Cesaro sum was first used explicitly by Leibniz in 1713, and 

then implicitly by Frobenius and Holder in 1882. Holder 

developed a new summability approach called Holder 

summability, which was an extension of Cesaro summability. 

Cauchy and Frobenius addressed the problem of convergence 

of infinite series in 1880, introducing the arithmetic mean 

technique of summability, which Cesaro expanded in 1890 as 

the (C,K) method of summability[8].In 2016, Mishra, 

Tripathi, and Gupta studied some of the properties of Cesaro 

and Holder's mean-of-product summability methods[10]. In 

2019, Sudhakar, Mallik, and Misra studied the summability 

techniques and their applications in different fields of science 

and engineering [9]. 

Summability theory is a part of the mathematical 

analysis that generalizes the concept of convergence to all 

sequences even non-convergent ones. It attempts to create an 

algorithm that assigns a limit to non-convergent sequences; 

The theory makes a non-convergent series converge, in a 

general sense, whenever a sequence of positive linear 

operators doesn’t ordinarily converge. Several workers like 

Ghimire and Pahari ([5] ,[6]) Pahari, Pahari ([11],[12]), 

Paudel, Pahari,and Kumar ([13], [14]),  etc. have made 

their contribution and enriched the theory in sequences. 

 

2. PRELIMINARIES 

Before proceeding with the work, we recall some of the basic 

notations and definitions that are used in this paper. 

Definition 2.1 [3]:  Let (an) be a given real or complex-valued 

sequence. Then an expression of the form ∑ 𝑥
𝑛=1 n or ∑an =a1 

+a2 +a3+a4 +…  is called an “infinite series” . If all of the 

terms of the sequence (an) after a certain terms are zero, then 

∑anis called a “finite series” and is written simply as ∑ 𝑎𝑚
𝑛=1 m. 
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Definition 2.2[1]:A sequence (an) in a normed space (X, ||.||) 

is said to be Cauchy if ∀ ϵ > 0,∃N∈ℕ such that ||an – am|| < ϵ, 

∀m, n>N. It is said to be convergent  if∀ ϵ > 0,∃N∈ℕ such 

that ||an − a|| <  ϵ  , ∀n ≥ N. Otherwise it is called divergent. 

 

Definition2.3[2]:  For any natural number n, if the sequence 

(sn)  of n-th partial sum sn = ∑ 𝑎𝑛
𝑖=1 I of the series 

n = 1



  an  assign 

a finite value S, then the series is said to have sum S. In this 

case, the series is said to converge to the sum S. 

 

Definition2.4[3]:A summation method is called regular if it 

sums every convergent series (in the normal sense) to its 

ordinary sum. 

 

Definition2.5[4]: A summation method S is said to be 

absolutely regular if it is regular and, moreover, if for all 

sequences (an) with partial sums (sn) for which 
lim

n®¥
 𝑆n= ∞ we 

have 

lim

n®¥
Sn = (S). 

 

Definition2.6[7]:  An infinite series whose terms are 

alternately positive and negative is called an alternating 

series. Thus, it may be written in the form  

∑ (−1)𝑛+1∞
𝑛=1 an = a1 – a2 + a3− a4+ .... (an>0). 

 

3. SOME BASIC TECHNIQUES IN THE INFINITE 

SERIES 

In this section, we are introducing some summability 

techniques, which are as follows. 

 

Cesaro Summability[7]:  The Cesaro summation method is 

an averaging method based on the arithmetic mean of the 

sequence of partial sum. Let (an) be a sequence, and let  

sk = a1 + a2+ a3+…+ak=  
n = 1

k

  an 

beits kth partial sum. Then ∑𝑎𝑛 is called Cesaro sum A if the 

sequence of arithmetic mean of arithmetic mean of its first n 

partial sum tends to A as n tends to infinity.  

That is lim
n

  
1

n
 
k = 1

n

  sk  =A. 

Here the limit A is called Cesaro sum of the series 
n = 1



  an  and 

we write 
n = 1



  an  = A(C). 

Example:(Cesaro summable series): Consider the Grandi’s 

series  

G = 
n = 0



  (1)n = 11+11+…has partial sum  sn given by  

𝑠𝑛 = ∑ 𝑔𝑛
𝑛
𝑖=0 =

(−1)ⅈ+1

2
  where  𝑔𝑛 = (−1)𝑖 . 

Now by using Cesaro summable method we can observe that, 

𝑐𝑛 =
1

𝑛
∑ 𝑠𝑖

𝑛
𝑖=0  = 

1

𝑛
∑

(−1)ⅈ+1

2

𝑛

𝑖=0
 

      = 
1

2𝑛
(𝑛 + ∑ (−1)𝑖𝑛

𝑖=0
) 

       =  
1
2 +

1

2𝑛
∑ (−1)𝑖𝑛

𝑖=0
 

        =  
1

2
+

1

2𝑛
𝑠𝑛 

As we know that |𝑠𝑛| ≤ 1, we can observe that cn tends to 
1

2
 

as 𝑛 → ∞.  

Therefore, we conclude that 
n = 0



  gn=  
1
2(C, 1). 

In this way, a new branch of mathematical analysis came into 

the existence with the aim to assign a limit(in some sense) to 

divergent series. The same idea can be developed for infinite 

series. This research had grown very fast in the last century 

and many mathematicians played pioneer role in the 

development of many summability methods for divergent 

sequences and series.  

The following example is a milestone in which the sequence 

is (C, 1)-summable, although it is divergent. 

 

Example (Cesaro summable Sequence):  

If ak = (−1)k(k∈ℕ), then consider a sequence (bn) defined by 

bn =   0, for n = 2k and bn = − 
1

n
    if  for n = 2k + 1. 

We see lim
n

bn = 0, which gives that the sequence (ak) is 

Cessaro summable i.e., (C, 1) − summable to 0 and is  written 

as lim
k

ak= 0 (C, 1). 

In particular if ak → S (C, 1) as k ,it is written as lim
k

ak 

= S (C, 1). 

It is also noted that (C, 1)-summability preserve the usual 

convergence i.e. every convergent sequence is always (C, 1)-

summable to their own limit. Thus, with the help of arithmetic 

means, we see a divergent sequence may be treated as a 

convergent sequence. Moreover, (C, 1)-summability can be 

extended to (C, 2)-summability and 

further up to (C, k)-summability.  

 

Example: (Series which is not Cesaro summable): Consider 

the series 

F 
n = 1



  n =  1 + 2 + 3 + ⋯ ∞ 

then the sequence of partial sums (sk) is obtained 

(1,3,6,10,…).  
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Since the sequence of partial sums grows without bounds, the 

series F diverges to infinity. Also, the sequence (tn) of 

arithmetic mean of partial sums of the series F is 

{
1

1
 , 

4

2
 ,  

10

3
 , 

20

4
 , …}. This sequence diverges to infinity as 

well. So F is not Cesaro summable. 

 

Theorem 3.1: [7]If  K1>K>1, and ∑𝑎𝑛 = 𝐴(𝐶, 𝐾) then 

∑ 𝑎𝑛= A(C,K1). 

Theorem 3.2:[2] If K>0, then (C,K) method is regular. 

 

Now we will define another popular method of summability 

which is known as Able summability method.  

 

Definition:[7] Consider a  series, 


n = 0



  an =𝑎0+ a1+a2+a3+…; we form a new series  a0+ a1x + 

a2x2+ ….; by the help of the sequence (1, x2, x3, ….).  

If the new series converges for 0<x<1 to a value A with a limit 

x tends to 1, then the limit is called the Able sum of the 

original series, a0 +a1 +a2 +….   

In other words a sequence an is said to be Able summable, 

written as (A) sumable to L if  lim
x1–

(1 − 𝑥) ∑ 𝑎𝑘𝑥𝑘∞

𝑘=0
  

exists finitely and equals to L. 

Example:[4]From the Grandi’sseries 

F 
n = 1



  (1)n =  1 − 1 + 1 − 1 + ⋯, 

we form a new series 1x+x2x3+…; by the help of the 

sequence (1, x2, x3, …;).  

Now for 0 < x < 1, the new series converges to the limit A = 

1

2
, as 1 x + x2x3 +  x4 …= lim

x1

1

1+𝑥
  = 

1

2
 = A. 

Theorem 3.3 :[7] [15] Able’s method is regular.  

But, if the series is Able summable may not be convergent. 

This is illustrated by the following example. 

Let an= 1+(1)n,  for all nℕ, that is clear that 
n = 0



  an is 

divergent. However,  

lim
x1–

∑ 𝑎𝑘𝑥𝑘∞

𝑘=0
  = lim

x1–
(2 ∑ (−1)𝑘𝑥𝑘∞

𝑘=0
) 

    =2 lim
x1–

(
1

1+𝑥
) = 1. 

Which shows that 
n = 0



  an is (A) summable to 1. 

Now we are at the position of  mentioning our main result. 

 

4. MAIN RESULT 

In this section, we shall investigate some results that 

characterize the Able method, which is more stronger than 

Cesaro method. [4][7]. 

Theorem4.1: If 
n = 0



  anis(C,1) summable to L, then it is 

Able Summable. 

Proof: Let us consider  sn=
1

(𝑛+1)
∑ 𝑎𝑘

𝑛
𝑘=0 then  (n+1)sn = 

∑ 𝑎𝑘
𝑛
𝑘=0 .  

          Calculating we will get    ak   = (k +1).sk − k.sk-1.   

Also, suppose that  

                                    f(x) = (1x)∑ 𝑎𝑘
∞
𝑘=0 𝑥𝑘. 

We observe that 

                                       f(x)=(1x)∑ 𝑎𝑘𝑥𝑘∞

𝑘=0
 

             = (1x) [𝑎0 + ∑ {(𝑘 + 1)𝑠𝑘 − 𝑘𝑠𝑘−1}𝑥𝑘∞
𝑘=1 ] 

Since, ∑ 𝑥𝑘+1
𝑘 has radius of convergence 1, the series 

∑ (𝑘 + 1)𝑥𝑘+1
𝑘  has radius of convergence 1 and so, ∑ (𝑘 +𝑘

1)𝑠𝑘𝑥𝑘+1 and ∑ 𝑘𝑠𝑘−1𝑥𝑘
𝑘  each has radius of convergence at 

least 1as 𝑠𝑘 converges to a finite limit.  

Thus the power series 

[𝑎0 + ∑ {(𝑘 + 1)𝑠𝑘 − 𝑘𝑠𝑘−1}𝑥𝑘∞
𝑘=1 ], 

has a radius of convergence at least 1 and so, the power series  

(1x)∑ 𝑎𝑘𝑥𝑘
𝑘   converges  

for  |x|<1. 

 

Now, we assert that                   lim
x1–

  (1 − 𝑥) ∑ 𝑎𝑘𝑥𝑘
𝑘 = 𝐿. 

     Now,       
1

(1−𝑥)2          f(x)   =    
1

(1−𝑥)2 (1x)∑ 𝑎𝑘𝑥𝑘
𝑘  

                                            = 
1

(1𝑥)
∑ 𝑎𝑘𝑥𝑘

𝑘  

                                            = ∑ 𝑥𝑘
𝑘 ∑ 𝑎𝑘𝑥𝑘

𝑘  

                                            =∑(𝑎0 + 𝑎1 + 𝑎2 + ⋯ +

𝑎𝑘   )𝑥𝑘 

                                             =   ∑ (𝑘 + 1)𝑠𝑘𝑘 xk 

We know that   
1

(1−𝑥)2    =    ∑ (𝑘 + 1)𝑥𝑘
𝑘  

Hence for 0 < x <1, we get  

                                     |f(x)L|=|(1 − 𝑥)2 ∑ (𝑘 + 1)𝑠𝑘𝑥𝑘 −𝑘

𝐿(𝑎 − 𝑥)2 ∑ (𝑘 + 1)𝑥𝑘
𝑘 | 

                                                 =|(1 − 𝑥)2 ∑ (𝑠𝑘 − 𝐿)𝑥𝑘
𝐾+1 | 

≤ (1 − 𝑥)2 ∑(𝑘 + 1)

𝑘

|𝑠𝑘 − 𝐿|𝑥𝑘 

Since 
lim

n®¥
sn = L. Given that ε > 0 , ∃ a  positive integer N 

such that 

|𝑠𝑛 − 𝐿| < 


2
,  n≥ 𝑁. 

Also as (𝑠𝑛) is bounded , therefore there exists a  M > 0  such 

that  |𝑠𝑛 |≤ 𝑀,  ∀ 𝑛ℕ. 

 

Now let us choose    

𝛿 =min[
1

2
{

𝜀

4(𝑀+1)(𝑁+1)
}

1

2
]. 

If  1𝛿 < 𝑥 < 1, then 
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                  |f(x)L|  ≤ (1 − 𝑥)2[∑ (𝑘 + 1)|𝑠𝑘  − 𝐿|𝑥𝑘 +𝑁−1
0

∑ (𝑘 + 1)|𝑠𝑘  − 𝐿|𝑥𝑘∞
𝑘=𝑁 ] 

 

                               <𝛿2𝑁(2𝑀) ∑ 𝑥𝑘𝑁−1

𝑘=0
+ (1 − 𝑥)2

2

1

(1x)2 

                                   ≤
𝜀

4(𝑀+1)(𝑁+1)22 𝑁2M +


2 

                              <


2
  + 



2
 =ε. 

Thus, we observed that  

lim
x1–

𝑓(𝑥) = 𝐿            or  lim
x1–

(1 − 𝑥) ∑ 𝑎𝑘𝑥𝑘
𝑘

=L. 

Which enable us to write that (an) is Able summable too. This  

completes the proof of the theorem. 

The converse of the theorem may not hold. That is, there are 

some series which are Able summable but not Cesaro 

summable.  

This result is shown by the following example: 

𝑎𝑛 =  {

(𝑘 + 1), ⅈ𝑓  𝑛 = 2𝑘

   −(𝑘 + 1), ⅈ𝑓  𝑛 = 2𝑘 + 1 

Let  sn  =
1

(𝑛+1)
∑ 𝑎𝑘 

𝑛
𝑘=0 .Thenwe have 

sn ={

𝑘+1

2𝑘+1
, ⅈ𝑓  𝑛 = 2𝑘

0 ,      ⅈ𝑓    𝑛 = 2𝑘 + 1 

 

Since (s2k) converges  to 
1

2
 and (s2k+1)is convergent to 0, so (sn) 

does not converge. 

Thus (an) is not  (C,1) summable. Now for |x|<1, we have 

∑ 𝑎𝑘𝑥𝑘
𝑘

 = 1x + 2x2  2x3 + 3x4  3x5 +….. 

                 =(1x)+2x2(1x)+3x4(1x)+….. 

                 =(1x)
1

(1−𝑥2)2 

Thus we have  (1x)∑ 𝑎𝑘𝑥𝑘
𝑘

 =  =(1 − 𝑥)2 1

(1−𝑥2)2  = 
1

(1+𝑥)2 

Consequently, lim
x1–

(1x)∑ 𝑎𝑘𝑥𝑘 =  
𝑘

lim
x1–

1

(1+𝑥)2 = 
1

4
 

That is the sequence (an)  is Able-summable to 
1

4
. This 

completes the proof. 

 

In the following, for a fixed positive number n, we define a 

new class of complex sequences  

a = (ak)  as follows: 

 
Then one can easily show that the class (S, ||.||)forms a 

linear space with respect to the norm  ||a||  on (S, ||.||). 

 

Theorem 4.2 : The linear space(S, ||.||) is complete space 

with respect to the norm (4.1). 

Proof: Let  (ar)
¥

r=1
,be a Cauchy sequence in (S, ||.||), 

 where ar = (a
r

i
)

¥

i=1
 , r = 1, 2, 3, ...... 

 

This shows that for a fixed i(1<i < ∞) , the sequence 

(a
r

i
)

¥

i=1
 is a Cauchy sequence of complex numbers. 

Since the space of complex numbers is complete, 

therefore converges in it. 

 

 
 Now in view of (4.1) and(4.2), we have 

  
  

This shows that a  (S, ||.||) and hence (S, ||.||) is a complete 

normed space.  

This completes the proof. 

 

5. CONCLUSION  

In this paper, we have studied some methods of 

summability techniques of infinite series and sequences. In 

fact, these results can be used in the fields of Functional 

Analysis, Fourier series, and Engineering to investigate other 

properties of the infinite series and sequences. 
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