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The study of  flow of fluid with its motion was study in the nineteenth century  by Maurice Couette  

which was as a result of two parallel plates in which the movement are relative, such that the 

surfaces is moving laterally. The plates with varying radii, could be flat, parallel or two concentric 

which is generally referred to as plane Couette. Characteristics of  fluid at rest or in motion may 

undergo changes and become unstable. The critical value or range of the parameters of flow which 

will give rise to instabilities is one of the problems of stability analysis. The stability of fluid motion 

may be tested by perturbing the fluid with a small sinusoidal disturbances on the parameter. In plane 

Couette where moving plates drive the flow and plane Poiseuille flow where a pressure gradient 

drives the flow, in the situation of weak flow and strong distortional elasticity, an asymptotic 

analysis will yields closed - form steady solutions with identical wall conditions which will focus 

on simulations will expose the effects due to wall anchoring conflicts and illustrate the induced 

morphology of the orientation distribution, stored viscoelastic stresses and non - Newtonian flow. 
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INTRODUCTION 

The hydrodynamic stability of Poiseuille flow in a curved 

channel was an early study for a channel formed by two 

concentric cylinders, with spacing (d) small compared with 

the radius of the inner cylinder (R1). The flow was found to 

be unstable when 𝑅𝑒 (
𝑑

𝑅1
)

0.5

  exceeds a value of about 36, 

where Re is the Reynolds number based on the mean velocity 

of the unperturbed flow. The linear stability of the inertialess, 

pressure-driven Poiseuille flow of an oldroyd-B fluid through 

a slightly curved channel, the flow is shown to be unstable in 

certain flow parameters regimes and the instability is a 

stationary mode in MHD plane Poiseuille flow. Stability of 

flow problems was very well accepted and it started with 

Rayleigh (1892) and there has been increase in different ways 

and methods in its configurations (Hassard et al 1999, Orzag 

and Kelys 1980, Waters and Keeley 1987, Gupta 1999).  

The effects of permeability and radiation that was studied by 

(Ngiangia and Wonu, 2007)  on the stability of Couette flow 

in a porous medium, on which the both parameters had an 

independently affect the stability of Couette flow but with a 

high Reynolds number the effect of radiation was prominent.  

The study of scaling properties with steady structure of 

nematic polymers in Couette cels and plane Poiseuille flow 

was done by (Cui et al (2006) and Forest et al (2004)). It was 

assumed that the fluid properties are constants, but 

Boussinesq relation that approximated the body force 

buoyancy term in the Navier - Stokes equation. The viscous 

dissipation that was generated by heat is very small and as 

such negligible which then reduces the function to 𝜇 (
𝜕𝑉

𝜕𝑍
)

2

, 

this implies that in terms of velocity the flow will be fully 

developed. This work is a continuation of an earlier work of 

(Orukari (2012) by looking at the effects of viscous 

dissipation and magnetic field to his problem of study.  

Most of the studies of this nature concentrated mainly in pipes 

and concentric cylinders of varying radii. The attempt 

therefore, is to investigate the effect of the given parameters 

in two infinitely long parallel plates in a porous medium. 

 

MATHEMATICAL FORMULATION 

We consider plane Couette - Poiseuille flow in an infinite 

parallel plate, the motion of the fluid produces  by pressure 

gradient of the Poiscuille flow has a relative movement  in 

Couette flow of the plates. The basic equations governing the  
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the problem following the (Orukari et al (2011),  and Mebine 

(2007)): 

∇. 𝑉 = 0      

    (1)  

𝜌 (
𝜕𝑉

𝜕𝑡
+ (𝑉. ∇)𝑉) =  −∇𝑃 + 𝜇∇2∇ + 𝜌𝑔 −

𝜐

𝑘
𝑉 −

𝜎𝜇2𝐻0𝑉

𝜌∞

   (2) 

(
𝜕𝑇

𝜕𝑡
+ (𝑉. ∇)𝑇) =  𝑎2∇2𝑇 −

1

𝜌𝑐𝑝
∇. 𝑞2 +

𝜇

𝑝𝑐𝑝
(

𝜕𝑉

𝜕𝑍
)

2

 

   (3) 

Where T is the temperature, 𝑉  is fluid velocity, 𝜌  is fluid 

density, P is Pressure, 𝜇 is absolute viscosity g is acceleration 

due to gravity, 𝜐 is kinematic viscosity, k is permeability of 

the medium, 𝐻0  is magnetic field, 𝜌∞  is porous medium 

density ,𝑎 , is thermal diffusivity and 𝑞2 is radiative term  

𝜕2𝑞2

𝜕𝑍2 − 3𝛼2𝑞2 − 16𝛼𝑇∞
3 𝜕𝑇

𝜕𝑍
= 0   

    (4) 

A formulation in terms intego-differential equations is a 

treatment of radiative transfer. The approximation theories 

that were developed permit a formulation involving 

differential equation. The formulation of the problem is a 

modification by radiative term which will reduce equation (4) 

to 
𝜕𝑞2

𝜕𝑍
= 4𝛿2(𝑇 − 𝑇∞)    

    (5) 

 

Where 𝛿2 = ∫ (𝛼𝑘∗
𝜕Λ

𝜕𝑇
) 𝑑𝑘∗∞

0
   

    (6) 

Where Λ  is the Planck’s function, 𝛼𝑘∗   is the absorption 

coefficient, 𝑘∗  is the frequency of radiation and T is the 

temperature. Using Boussinesq approximation and 

substituting equation (5) in equation (3) and this will course 

the effect of variation of density with temperature exclusively 

to the body force term. The assumptions, gives the flow 

equation that describe the physical situation below: 
𝜕𝑉

𝜕𝑍
=  0      (7 ) 

𝜌
𝜕𝑉

𝜕𝑡
= −

𝜕𝑃

𝜕𝑍
+

𝜇𝜕2𝑉

𝜕𝑍2 + 𝑔𝜌0𝜉(𝑇 − 𝑇0) −
𝜐

𝑘
𝑉 −

𝜎0𝜇2𝐻0
2𝑉

𝜌∞
 

     (8) 

𝜕𝑇

𝜕𝑡
=

𝛼2𝜕2𝑇

𝜕𝑍2 −
4𝛿2(𝑇−𝑇0)

𝜌𝑐𝜌
+

𝜇

𝜌𝑐𝑝
(

𝜕𝑉

𝜕𝑍
)

2

   

     (9) 

Where 𝜉 is coefficient of volume expansion. 

 

PERTURBATION 

The disturbance in the velocity field, temperature field, and 

pressure field are denoted by  

𝑉1 =  𝑉 − 𝑉𝑒 , 𝑇1 =  𝑇 − 𝑇𝑒 , 𝑃1 = 𝑃 − 𝑃𝑒   (10) 

Where, e denotes equilibrium values. 

If we put (10) in (7), (8) and (9) and keeping unity terms only, 

the following linearized equations are obtained 

𝜕𝑉1

𝜕𝑍
= 0       (11) 

𝜌
𝜕𝑉1

𝜕𝑡
= −

𝜕𝑃1

𝜕𝑍
+

𝜇𝜕2𝑉1

𝜕𝑍2 − 𝑔𝜌0𝜉(𝑇1 − 𝑇0
1) −

𝜐

𝑘
𝑉1 −

𝜎0𝜇2𝐻0
1𝑉1

𝜌∞

      (12) 

𝜕𝑇1

𝜕𝑡
=

𝛼2𝜕2𝑇1

𝜕𝑍2 −
4𝛿2(𝑇1−𝑇0

1)

𝜌𝑐𝜌
+

𝜇

𝜌𝑐𝜌
(

𝜕𝑉1

𝜕𝑍
)

2

   (13) 

 

Non - dimensional analysis 

For dimensional homogeneity, we substitute the following 

expressions 

𝑍 =
𝑉1𝑡

𝑑
, 𝑃 =

𝑃1

𝜌𝑉2
, 𝛼2 =

4𝛿2𝜌∞𝑐∞𝑑2

𝜌𝑐𝜌𝜐
, 𝐾𝛼 =

𝜐𝜇𝑑2

𝑘𝜌
 

𝑉 =  
𝑉1

𝑈
, 𝛽2 =

𝛼2𝜌𝑡

𝑇∞

, 𝑔 =  
𝑔𝑑

𝑉2
, 𝜃 =

𝑇1 − 𝑇∞
1

𝑇 − 𝑇∞

 

𝑅𝑒−1 =
𝜇

𝑉𝑑𝜌
, 𝑡 =

𝑉𝑑

𝑡
, 𝑀2 =

𝜎0𝜇2𝐻0
1𝜐

𝜌∞𝑈2
, 𝐺𝑟

= [𝑔𝜁
(𝑇 − 𝑇0)𝑑3

𝑉2
] 

𝑃𝑟 =
𝜇𝑐𝜌

𝛼2𝜌𝑐𝑣

, 𝐸𝑐 =
𝑈2

𝑐𝜌(𝑇 − 𝑇0)
 

into (11) to  (13), which results in 
𝜕𝑉

𝜕𝑍
= 0      (14) 

𝜌
𝜕𝑉

𝜕𝑡
= −

𝜕𝑃

𝜕𝑍
+ 𝑅𝑒−1 𝜕2𝑇

𝜕𝑍2 + 𝐺𝑟𝜃 − 𝐾′′𝑉 − 𝑀2𝑉  (15) 

𝜕𝜃

𝜕𝑡
= 𝛽2 𝜕2𝜃

𝜕𝑍2 − 𝛼2𝜃 + 𝑃𝑟 𝐸𝑐 (
𝜕𝑉

𝜕𝑍
)

2

    (16)

  

Where the parameter M is dimensional magnetic field, Pr is 

Prandtl number, Ec is Eckert number and Gr is Grashof 

number. Equations (15) and (16) are subject to the boundary 

conditions  

𝜃(0) =  1, 𝜃(∞) =  0 

𝑉(0) =  0, 𝑉(𝑑)  =  𝑈  for Couette flow 

𝑣(0) =  0, 𝑉(𝑑)  =  0  for Poiseuille flow 

When we assume, that the fluid velocity at the wall of the 

plates is equal to the wall velocity and that the condition is 

no- slip one. 

 

METHOD OF SOLUTION 

The problem of in equations (15) and (16) are  non-linear 

equations and a step by step numerical integration will be 

involved. However, analytical solution is possible, if we 

assume small Re as that of (Gbadeyan & Idowu 2006) and 

by adopting regular perturbation by (Israel- Cookey et al 

2003) 

𝑉(𝑍, 𝑡) = 𝑉0(𝑍) +  𝑅𝑒𝑉1(𝑍)𝑒𝑡𝜔𝑡  (17a) 

𝜃(𝑍, 𝑡) = 𝜃0(𝑍) + 𝑅𝑒𝜃1(𝑍)𝑒𝑡𝜔𝑡   (17b) 

Substituting equation (17) into equations (15) and (16), 

neglecting (𝜃𝑅𝑒2) and simplifying, we will get sequence of 

approximations below after collecting terms of the same 

order: 

𝑅𝑒−1𝑉0
11(𝑍) + 𝐺𝑟𝜃0(𝑍) − 𝑀2𝑉0(𝑍) − 𝑘𝜌 = 0 

  (18) 

𝛽2𝜃0
11(𝑍) − 𝛼2𝜃0(𝑍) + 𝑃𝑟 𝐸𝑐𝑉0

1(𝑍) = 0  

  (19) 
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Subject to 

𝜃(0) =  1, 𝜃0(∞) =  0 

𝑉0(0) =  0, 𝑉0(𝑑)  =  𝑈  (20) 

Therefore 0(1) equations, and 

𝑖𝜔𝑉1(𝑍) = 𝑅𝑒−1𝑉1
11(𝑍) + 𝐺𝑟𝜃1(𝑍) − 𝐾𝛼𝑉1(𝑍) − 𝑀2𝑉1(𝑍)

       (21) 

𝑖𝜔𝜃1(𝑍) = 𝛽2𝜃1
11(𝑍) − 𝛼2𝜃1(𝑍) + 2𝑃𝑟 𝐸𝑐𝑉0

1(𝑍)𝑉1
1(𝑍)

        (22) 

Subject to  

𝑉1(0) = 0, 𝑉1(𝑑) =  𝑈 

𝜃1(0) = 1, 𝜃1(∞) = 0     (23) 

For 0(Re) equations. 

Where 𝑘𝜌 =
1

𝜌

𝜕𝑃

𝜕𝑍
 is a constant pressure gradient 

To solve the nonlinear- coupled equations of (18) - (23) we 

will assume  the Eckert number (Ec) is small, and so, an 

asymptotic expansion for the flow with temperature and 

velocity will be as follows 

𝑉0(𝑍) = 𝑉01(𝑍) + 𝐸𝑐𝑉02(𝑍)   

   (24a) 

𝜃0(𝑍) = 𝜃01(𝑍) + 𝐸𝑐𝜃02(𝑍)   

   (24b 

𝑉1(𝑍) = 𝑉11(𝑍) + 𝐸𝑐𝑉12(𝑍)   

   (24c) 

𝜃1(𝑍) = 𝜃11(𝑍) + 𝐸𝑐𝜃12(𝑍)   

   (24d) 

Substituting equation (24) into equations (16) - (23), we will 

have the sequence of approximations below; 

𝑅𝑒−1𝑉01
11(𝑍) + 𝐺𝑟𝜃01(𝑍) − (𝐾𝛼 + 𝑀2)𝑉01(𝑍) − 𝑘𝜌 = 0      

(25) 

𝛽2𝜃01
11(𝑍) − 𝛼2𝜃01(𝑍) = 0   26) 

𝑅𝑒−1𝑉02
11(𝑍) + 𝐺𝑟𝜃02(𝑍) − (𝐾𝛼 + 𝑀2)𝑉02(𝑍) = 0 27) 

𝛽2𝜃02
11(𝑍) − 𝛼2𝜃02(𝑍) = 0    (28) 

Subject to 

𝑉01(0) = 0, 𝑉01(𝑑) = 𝑈, 𝑉02(0) = 0, 𝑉02(𝑑) = 𝑈 

   (29) 

𝜃01(0) = 1, 𝜃01(∞) = 0, 𝜃02(0) = 1, 𝜃02(∞) = 0 

For 0(1) equations, and 

𝑖𝜔𝑉11
1 (𝑍) = 𝑅𝑒−1𝑉11

11(𝑍) + 𝐺𝑟𝜃11(𝑍) − (𝐾𝛼 + 𝑀2)𝑉11(𝑍)

     (30) 

𝜄𝜔𝜃11(𝑍) = 𝛽2𝜃11
11(𝑍) − 𝛼2𝜃11(𝑍)    (31) 

𝑖𝜔𝑉11
1 (𝑍) = 𝑅𝑒−1𝑉12

11(𝑍) + 𝐺𝑟𝜃12(𝑍) − (𝐾𝛼 + 𝑀2)𝑉12(𝑍)

     (32) 

𝜄𝜔𝜃12(𝑍) = 𝛽2𝜃12
11(𝑍) − 𝛼2𝜃12(𝑍)    (33) 

Subject to 

𝑉11(0) = 0, 𝑉11(𝑑) = 𝑈, 𝑉12(0) = 0, 𝑉12(𝑑) = 𝑈 

    

𝜃11(0) = 1, 𝜃11(∞) = 0, 𝜃12(0) = 1, 𝜃12(∞) = 0 

    (34) 

For 0(Ec) equations. 

Solving equation (28), we assume a solution of the form 

𝜃01(𝑍) = ℯ𝜆𝑍      (35) 

Substituting equation (35) into equation (28) with the B.C of 

(29), we will get 

𝜃02(𝑍) = ℯ𝑚1𝑍      (36) 

If we substitute equation (36) into equation (27) and simplify, 

we obtain 

𝑉02
11(𝑍) − 𝐴𝑉02(𝑍) = −𝐴2ℯ𝑚1𝑍    (37) 

Using the boundary conditions of equation (29) in equation 

(37) gives 

𝑉01
11(𝑍) = 𝐴1ℯ𝑚6𝑍 + 𝑈ℯ−𝑚6𝑍 − 𝐴2ℯ𝑚1𝑍   (38) 

From equation (28), we can get the solution of equation (34 ) 

as 

𝜃12(𝑍) = ℯ𝑚1𝑍      (39) 

Substituting equation (39) into equation (32) and simplifying, 

results 

𝑉12
11(𝑍) − 𝐴3𝑉12

1 (𝑍) − 𝐴𝑉12(𝑍) = −𝐴2ℯ𝑚2𝑍   (40) 

From equation (28), the solution to equation (31) can be 

written as 

𝜃11(𝑍) = ℯ𝑚2𝑍      (41) 

Substituting equation (41) into equation (30) and 

rearrangement results in 

𝑉11
11(𝑍) − 𝐴3𝑉11

1 (𝑍) − 𝐴𝑉11(𝑍) = −𝐴2ℯ𝑚2𝑍   (42) 

The solution of equation (40) and equation (42) with the 

boundary conditions of (34) is 

𝑉1(𝑍) = (𝐶1 + 𝑈)ℯ𝑚3𝑍 + 𝑈ℯ𝑚4𝑍 + 𝐶1ℯ𝑚2𝑍   (43) 

To determine the complete solution of equation (4.10) using 

the same method ) can be written as 

𝜃01(𝑍) = ℯ𝑚1𝑍      (44) 

We substitute equation (44) into equation (25) and after 

simplification, we get 

𝑉01
11(𝑍) − 𝐴𝑉01(𝑍) = 𝐴4 − 𝐴2ℯ𝑚1𝑍    (45) 

To determine the complimentary function of equation (37), 

and the solution of equation (29) for the particular integral of 

the same equation, is given by 

𝑉01(𝑍) = (𝑈 − 𝐶3)ℯ𝑚5𝑍 + (𝐶2 + 𝑈)ℯ−𝑚5𝑍 − 𝐶2 − 𝐶3ℯ𝑚1𝑍

 (46) 

Substituting equations (38) and (46) into equations (24a), 

gives 

𝑉0(𝑍) = (𝑈 − 𝐶3)ℯ𝑚5𝑍 + (𝐶2 + 𝑈)ℯ−𝑚5𝑍 − 𝐶2 − 𝐶3ℯ𝑚1𝑍 + 

𝐸𝑐(𝐴1ℯ𝑚6𝑍 + 𝑈ℯ𝑚6𝑍 − 𝐴2ℯ𝑚1𝑍)    (47) 

Also, further substituting equations (36) into equation (24) 

results,  

𝜃0(𝑍) = ℯ𝑚1𝑍 + 𝐸𝑐ℯ𝑚1𝑍      (48) 

Again, substituting equations (43) and (41) into equation 

(24c) results,  

𝑉1(𝑍) = (𝐶1 + 𝑈)ℯ𝑚3𝑍 + 𝑈ℯ𝑚4𝑍 + 𝐶1ℯ𝑚2𝑍 

+𝐸𝑐(𝐶1 + 𝑈)ℯ𝑚3𝑍 + 𝑈ℯ𝑚4𝑍 + 𝐶1ℯ𝑚2𝑍   (49) 

Finally, putting equations (39) and (41) into equation (24d), 

we get 

𝜃1(𝑍) = ℯ𝑚1𝑍 + 𝐸𝑐ℯ𝑚1𝑍      (50) 

Similarly, if we put equations (47) and (49) into (17a) and 

equations (48) and (50) into (17b), the temperature and 

velocity profiles are obtain respectively as: 

𝑉(𝑍, 𝑡) = (𝑈 − 𝐶3)ℯ𝑚5𝑍 + (𝐶2 + 𝑈)ℯ−𝑚5𝑍 − 𝐶2 − 𝐶3ℯ𝑚1𝑍

+ 

𝐸𝑐(𝐴1ℯ𝑚6𝑍 + 𝑈ℯ𝑚6𝑍 − 𝐴2ℯ𝑚1𝑍) + 𝑅𝑒(ℯ𝑚1𝑍 +

𝐸𝑐ℯ𝑚1𝑍)𝑒𝑖𝜔𝑡  (51) 
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𝜃(𝑍, 𝑡) = (1 + 𝐸𝑐)ℯ𝑚1𝑍 + (𝑅𝑒ℯ𝑚1𝑍 + 𝑅𝑒𝐸𝑐ℯ𝑚1𝑍)𝑒𝑖𝜔𝑡

     (52) 

 

CONCLUSION 

Since the fluid properties are the heat generated by viscous 

shear viscous dissipation is not negligible and the function 

reduces to 𝜇 (
𝜕𝑉

𝜕𝑍
)

2

. The flow was fully developed in terms of 

velocity and the difference in temperature between the plates 

and that of the fluid is large enough for free convection to 

flow. This condition may prevail in practice and therefore is 

physically important. 
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