soft g-closed sets in Soft minimal Spaces

R. \mathbf{GOWRI}^1 and **S.** \mathbf{VEMBU}^2

 ¹ Department of Mathematics,
Government College for Women(Autonomous), Kumbakonam, India E-mail gowrigck@rediffmail.com
² Research Scholar, Department of Mathematics,
Government College for Women(Autonomous), Kumbakonam, India E-mail vembuchandrasekaran@gmail.com

Abstract

In this present paper, we introduce soft $g\tilde{m}$ -closed sets and soft $g\tilde{m}$ -open sets in soft minimal spaces and to investigate its properties. Also we introduce some new separation axiom called $T_{1/2}$ -soft minimal space and its basic properties are discussed.

Mathematics Subject Classification: 54A10, 54C08

Keywords: soft minimal, soft \tilde{m} -closed, soft \tilde{m} -open, soft $g\tilde{m}$ -closed, soft $g\tilde{m}$ -open sets, $T_{1/2}$ - space.

1 Introduction

V. Popa and T.Noiri [14] introduced the concept of minimal structure (briefly m-structure). They also introduced the notion of m_X -open set and m_X -closed set and characterize those sets using m_X -closure and m_X -interior operators respectively. C. Boonpok [1] introduced the concept of biminimal structure space and studied $m_X^1 m_X^2$ -open sets and $m_X^1 m_X^2$ -closed sets in biminimal structure spaces. R. Gowri and S. Vembu [7] introduced the concept of Soft minimal and soft biminimal spaces. Also they introduced the notion of \tilde{m} -soft closed, \tilde{m} -soft open, $\tilde{m}_1\tilde{m}_2$ -soft closed, $\tilde{m}_1\tilde{m}_2$ -soft open set and characterize those sets using m_X -closure and m_X -interior operators respectively. C. Viriyapong et.al [16] introduced the concept of generalized m-closed sets in biminimal structure spaces and we obtain some properties of generalized m-closed sets. Russian researcher Molodtsov [12], initiated the concept of soft sets as a new mathematical tool to deal with uncertainties while modeling problems in engineering physics, computer science, economics, social sciences and medical sciences. In this paper, we introduce soft $q\tilde{m}$ -closed sets in soft minimal spaces which are defined over an initial universe with a fixed set of parameters. Also we introduce $T_{1/2}$ - soft minimal spaces and detailed study of some of its properties.

2 Preliminaries

Definition 2.1 [6] Let U be an initial universe and E be a set of parameters. Let P(U) denote the power set of U and A be a nonempty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \to P(U)$.

In other words, a soft set over U is a parametrized family of subsets of the universe U. For $\epsilon \in A$. $F(\epsilon)$ may be considered as the set of ϵ - approximate elements of the soft set (F, A). Clearly, a soft set is not a set.

Definition 2.2 [14] Let X be an initial universe set, E be the set of parameters and $A \subseteq E$. Let F_A be a nonempty soft set over X and $\tilde{P}(F_A)$ is the soft power set of F_A . A subfamily \tilde{m} of $\tilde{P}(F_A)$ is called a soft minimal set over X if $F_{\emptyset} \in \tilde{m}$ and $F_A \in \tilde{m}$.

 (F_A, \tilde{m}) or (X, \tilde{m}, E) is called a soft minimal space over X. Each member of \tilde{m} is said to be \tilde{m} -soft open set and the complement of an \tilde{m} -soft open set is said to be \tilde{m} -soft closed set over X.

Example 2.3 [14] Let $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $F_{A_1} = \{(x_1, \{u_1\})\},\$ $F_{A_2} = \{(x_1, \{u_2\})\},\$ $F_{A_3} = \{(x_1, \{u_1, u_2\})\},\$ $F_{A_4} = \{(x_2, \{u_1\})\},\$ $F_{A_5} = \{(x_2, \{u_2\})\},\$ $F_{A_6} = \{(x_2, \{u_1, u_2\})\},\$ $F_{A_7} = \{ (x_1, \{u_1\}), (x_2, \{u_1\}) \},\$ $F_{A_8} = \{ (x_1, \{u_1\}), (x_2, \{u_2\}) \},\$ $F_{A_9} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\},\$ $F_{A_{10}} = \{ (x_1, \{u_2\}), (x_2, \{u_1\}) \},\$ $F_{A_{11}} = \{ (x_1, \{u_2\}), (x_2, \{u_2\}) \},\$ $F_{A_{12}} = \{ (x_1, \{u_2\}), (x_2, \{u_1, u_2\}) \},\$ $F_{A_{13}} = \{ (x_1, \{u_1, u_2\}), (x_2, \{u_1\}) \},\$ $F_{A_{14}} = \{ (x_1, \{u_1, u_2\}), (x_2, \{u_2\}) \},\$ $F_{A_{15}} = F_A,$ $F_{A_{16}} = F_{\emptyset}$ are all soft subsets of F_A

soft minimal $\tilde{m} = \{F_A, F_{\emptyset}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_{11}}\}$

Definition 2.4 [7] Let (X, m_X) be an m-space. A subset A of X is said to be generalized m-closed (briefly gm-closed) if $m_X - Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $m_X - open$.

Definition 2.5 [7] An m-space (X, m_X) is called an $m - T_{1/2}$ -space if every gmclosed set of (X, m_X) is m_X -closed.

Definition 2.6 [14] Let (F_A, \tilde{m}) be a soft minimal space with nonempty set F_A is said to have property B if the union of any family belonging to \tilde{m} belongs to \tilde{m} .

Definition 2.7 [14] Let (F_A, \tilde{m}) be a soft minimal space over X. For a soft subset F_B of F_A , the \tilde{m} -soft closure of F_B and \tilde{m} -soft interior of F_B are defined as follows:

- (1) $\tilde{m}Cl(F_B) = \cap \{F_\alpha : F_B \subseteq F_\alpha, F_A F_\alpha \in \tilde{m}\},\$
- (2) $\tilde{m}Int(F_B) = \bigcup \{F_\beta : F_\beta \subseteq F_B, F_\beta \in \tilde{m}\}.$

Lemma 2.8 [14] Let (F_A, \tilde{m}) be a soft minimal space over X. For a soft subset F_B and F_C of F_A , the following properties hold:

(1) $\tilde{m}cl(F_A - F_B) = F_A - \tilde{m}Int(F_B)$ and $\tilde{m}Int(F_A - F_B) = F_A - \tilde{m}cl(F_B)$,

(2) If $(F_A - F_B) \in \tilde{m}$, then $\tilde{m}cl(F_B) = F_B$ and if $F_B \in \tilde{m}$, then $\tilde{m}Int(F_B) = F_B$,

(3) $\tilde{m}cl(F_{\emptyset}) = F_{\emptyset}, \ \tilde{m}cl(F_A) = F_A, \ \tilde{m}Int(F_{\emptyset}) = F_{\emptyset} \ and \ \tilde{m}Int(F_A) = F_A,$

- (4) If $F_B \subseteq F_C$, then $\tilde{m}cl(F_B) \subseteq \tilde{m}cl(F_C)$ and $\tilde{m}Int(F_B) \subseteq \tilde{m}Int(F_C)$,
- (5) $F_B \subseteq \tilde{m}cl(F_B)$ and $\tilde{m}Int(F_B) \subseteq F_B$,

(6) $\tilde{m}cl(\tilde{m}cl(F_B)) = \tilde{m}cl(F_B)$ and $\tilde{m}Int(\tilde{m}Int(F_B)) = \tilde{m}Int(F_B)$.

Lemma 2.9 [14] Let F_A be a nonempty set and \tilde{m} on X satisfying property B. For a soft subset F_B of F_A , the following properties hold:

(1) $F_B \in \tilde{m}$ if and only if $\tilde{m}Int(F_B) = F_B$,

(2) If F_B is \tilde{m} -closed if and only if $\tilde{m}Cl(F_B) = F_B$,

(3) $\tilde{m}Int(F_B) \in \tilde{m}$ and $\tilde{m}Cl(F_B) \in \tilde{m}$ -closed.

3 Soft generalized closed sets in soft minimal spaces

In this section, we introduce the concept of soft g-closed sets in soft minimal spaces and study some of their properties.

Definition 3.1 A soft subset F_B of a soft minimal space (F_A, \tilde{m}) is said to be soft generalized \tilde{m} -closed sets (briefly $sg\tilde{m} - closed$) if $\tilde{m}Cl(F_B) \subseteq U_B$ whenever $F_B \subseteq U_B$ and U_B is soft $\tilde{m} - open$. The complement of soft generalized \tilde{m} -closed set is said to be soft generalized \tilde{m} -open sets (briefly $sg\tilde{m}$ -open).

The family of all $sg\tilde{m}$ closed (resp. $sg\tilde{m}$ -open) sets of (F_A, \tilde{m}) is denoted by $sg\tilde{m}Cl(F_A)$ (resp. $sg\tilde{m}O(F_A)$)

Example 3.2 Let $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then

 $\begin{array}{ll} F_{A_1} = \{(x_1, \{u_1\})\}, & F_{A_2} = \{(x_1, \{u_2\})\}, \\ F_{A_3} = \{(x_1, \{u_1, u_2\})\}, & F_{A_4} = \{(x_2, \{u_1\})\}, \\ F_{A_5} = \{(x_2, \{u_2\})\}, & F_{A_6} = \{(x_2, \{u_1, u_2\})\}, \\ F_{A_7} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, & F_{A_8} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}, \\ F_{A_9} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\}, & F_{A_{10}} = \{(x_1, \{u_2\}), (x_2, \{u_1\})\}, \\ F_{A_{11}} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, & F_{A_{12}} = \{(x_1, \{u_2\}), (x_2, \{u_1, u_2\})\}, \\ F_{A_{13}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}, F_{A_{14}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, \\ F_{A_{15}} = F_A, & F_{A_{16}} = F_{\emptyset} \\ & soft \ minimal \ (\tilde{m}) = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_9}, F_{A_{11}}, F_{A_{14}}, F_A\} \end{array}$

Then the soft generalized \tilde{m} -closed sets $\{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_4}, F_{A_7}, F_{A_{11}}, F_{A_{13}}, F_A\}$

Proposition 3.3 Every soft \tilde{m} -closed set is soft $g\tilde{m}$ -closed.

Proof: Let F_B be a soft \tilde{m} -closed and U_B be a soft \tilde{m} -open such that $F_B \subseteq U_B$. Then $\tilde{m}Cl(F_B) \subseteq U_B$, since F_B is a soft $g\tilde{m}$ -closed sets $\tilde{m}Cl(F_B) = F_B$ and $\tilde{m}Cl(F_B) \subseteq U_B$. Therefore F_B is a soft $g\tilde{m}$ closed sets.

Remark 3.4 The converse of the Proposition 3.3 is not true as seen from the following example.

Example 3.5 Let (F_A, \tilde{m}) be a soft minimal space where $X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. $\tilde{m} = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_9}, F_{A_{11}}, F_{A_{14}}, F_A\}$. Then the soft $g\tilde{m}$ -closed sets $\{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_{11}}, F_{A_{13}}, F_A\}$. Here, F_{A_5} is soft $g\tilde{m}$ -closed but not soft \tilde{m} -closed.

Theorem 3.6 Union of two soft $g\tilde{m}$ -closed sets is soft $g\tilde{m}$ -closed.

Proof: Let F_B and G_B are soft $g\tilde{m}$ -closed set. Let U_B be a soft \tilde{m} -open set of (F_A, \tilde{m}) suct that $F_B \cup G_B \subseteq U_B$. Then $F_B \subseteq U_B$ and $G_B \subseteq U_B$. Since F_B and G_B are soft $g\tilde{m}$ -closed, $\tilde{m}Cl(F_B) \subseteq U_B$ and $\tilde{m}Cl(G_B) \subseteq U_B$. Hence $\tilde{m}Cl(F_B \cup G_B) \subseteq \tilde{m}Cl(F_B) \cup \tilde{m}Cl(G_B) \subseteq U_B$. Therefore $F_B \cup G_B$ is soft $g\tilde{m}$ -closed set. \Box

Remark 3.7 The intersection of two soft $g\tilde{m}$ -closed sets need not be soft $g\tilde{m}$ -closed as seen from the following example.

Example 3.8 Let (F_A, \tilde{m}) be a soft minimal space where $X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}.$

 $\tilde{m} = \{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_9}, F_{A_{11}}, F_{A_{14}}, F_A\}.$ Then the soft $g\tilde{m}$ -closed sets $\{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_4}, F_{A_7}, F_{A_{11}}, F_{A_{13}}, F_A\}.$ Then F_{A_3} and $F_{A_{11}}$ are soft $g\tilde{m}$ -closed but $F_{A_3} \cap F_{A_{11}} = F_{A_5}$ is not soft $g\tilde{m}$ -closed set.

Theorem 3.9 If F_B is soft \tilde{m} -open and soft $g\tilde{m}$ -closed then F_B is soft \tilde{m} -closed.

Proof: Let F_B is soft \tilde{m} -open and soft $g\tilde{m}$ -closed. Let $F_B \subset F_B$ where F_B is soft \tilde{m} -open. Since F_B is soft $g\tilde{m}$ -closed we have $\tilde{m}Cl(F_B) \subseteq F_B$. Then $F_B = \tilde{m}Cl(F_B)$. Hence F_B is soft \tilde{m} -closed.

Theorem 3.10 If F_B is soft $g\tilde{m}$ -closed and G_B is soft \tilde{m} -closed, then $F_B \cap G_B$ is soft $g\tilde{m}$ -closed.

Proof: Let U_B be a soft \tilde{m} -open such that $F_B \cap G_B \subseteq U_B$. Thus $F_B \subseteq U_B \cup G_B^c$. Then $\tilde{m}Cl(F_B) \subseteq U_B \cup G_B^c$. Then $\tilde{m}Cl(F_B) \cap G_B \subseteq U_B$. Since G_B is soft \tilde{m} -closed. Therefore, $\tilde{m}Cl(F_B) \cap G_B \subseteq U_B$. Hence $F_B \cap G_B$ is soft $g\tilde{m}$ -closed. \Box

Theorem 3.11 Let soft subset F_B of a soft minimal space (F_A, \tilde{m}) . If F_B is soft $g\tilde{m}$ -closed, then $\tilde{m}Cl(F_B) - F_B$ contains no nonempty soft \tilde{m} -closed set.

Proof: Let G_B be a nonempty soft \tilde{m} -closed set such that $G_B \subseteq \tilde{m}Cl(F_B) - F_B$. Since F_B is soft $g\tilde{m}$ -closed, $F_B \subseteq G_B^c$. That is $F_B \subseteq F_A - G_B$, where G_B^c is soft \tilde{m} -open implies that $\tilde{m}Cl(F_B) \subseteq G_B^c$. Hence $G_B \subseteq [\tilde{m}Cl(F_B)]^c$. Now $G_B \subseteq [\tilde{m}Cl(F_B)] \cap [\tilde{m}Cl(F_B)]^c = F_{\emptyset}$. Therefore $\tilde{m}Cl(F_B) - F_B$ contains no nonempty soft \tilde{m} -closed set. **Remark 3.12** The converse of the above theorem is not true as seen from the following example

soft $g\tilde{m}$ -closed sets $\{F_{\emptyset}, F_{A_1}, F_{A_3}, F_{A_4}, F_{A_8}, F_{A_{10}}, F_{A_{11}}, F_A\}$. Take $F_B = F_{A_9}$. Then $\tilde{m}Cl(F_B) - F_B = \tilde{m}Cl(F_{A_9}) - F_{A_9} = F_{A_2}$ which does not contain any nonempty soft \tilde{m} -closed set. But $F_B = F_{A_9}$ is not soft $g\tilde{m}$ -closed.

Corollary 3.14 Let (F_A, \tilde{m}) be a soft minimal space satisfying property *B*. Let soft subset F_B is soft $\tilde{g}\tilde{m}$ -closed set in (F_A, \tilde{m}) , then F_B is soft \tilde{m} -closed if and only if $\tilde{m}Cl(F_B) - F_B$ is soft \tilde{m} -closed.

Proof: Let F_B is soft \tilde{m} -closed then $\tilde{m}Cl(F_B) = F_B$. That is $\tilde{m}Cl(F_B) - F_B = F_{\emptyset}$. Thus F_{\emptyset} is soft \tilde{m} -closed. Hence $\tilde{m}Cl(F_B) - F_B = F_{\emptyset}$ is soft \tilde{m} -closed. conversely, Let $\tilde{m}Cl(F_B) - F_B$ is soft \tilde{m} -closed. If F_B is soft $g\tilde{m}$ -closed By Theorem 3.11, $\tilde{m}Cl(F_B) - F_B = F_{\emptyset}$. Hence F_B is soft $g\tilde{m}$ -closed. Therefore F_B is soft \tilde{m} -closed. \Box

Theorem 3.15 If F_B is a soft $g\tilde{m}$ -closed set in (F_A, \tilde{m}) such that $F_B \subseteq G_B \subseteq \tilde{m}Cl(F_B)$ then G_B is also a soft $g\tilde{m}$ -closed set in (F_A, \tilde{m}) .

Proof: Let $G_B \subseteq U_B$ where U_B is soft \tilde{m} -open. Since F_B is soft $g\tilde{m}$ -closed set in (F_A, \tilde{m}) , we have $\tilde{m}cl(F_B) - F_B$ contains no nonempty soft \tilde{m} -closed set. Now $G_B \subseteq \tilde{m}Cl(F_B)$ implies that $\tilde{m}Cl(G_B) \subseteq \tilde{m}Cl(F_B)$. We have $\tilde{m}Cl(G_B) - G_B \subseteq \tilde{m}Cl(F_B) - F_B$. This implies $\tilde{m}Cl(G_B) - G_B$ contains no nonempty soft \tilde{m} -closed By Theorem 3.11, G_B is soft $g\tilde{m}$ -closed. \Box

Theorem 3.16 For each $x \in F_A$, $\{x\}$ is soft \tilde{m} -closed in F_A or $\{x\}^c$ is soft $g\tilde{m}$ -closed set.

Proof: If $\{x\}$ is not soft \tilde{m} -closed. Then the only soft \tilde{m} -open set containing $\{x\}^c$. This implies $\tilde{m}cl[\{x\}]^c \subseteq F_A$. Hence $\{x\}^c$ is soft $g\tilde{m}$ -closed in F_A .

Theorem 3.17 Let (F_A, \tilde{m}) be a soft minimal space satisfying property B. If F_B is sg \tilde{m} -closed of (F_A, \tilde{m}) then $\tilde{m}Cl(\{x\}) \cap F_B \neq F_{\emptyset}$ holds for each $x \in \tilde{m}Cl(F_B)$

Proof: Let $x \in \tilde{m}Cl(F_B)$. Assume that $\tilde{m}Cl(\{x\}) \cap F_B = F_{\emptyset}$. Then $F_B \subseteq [\tilde{m}Cl(\{x\})]^c$. Since F_B is $sg\tilde{m}$ -closed and $[\tilde{m}Cl(\{x\})]^c$ is soft \tilde{m} -open, thus $\tilde{m}Cl(F_B) \subseteq [\tilde{m}Cl(\{x\})]^c$. Consequently $\tilde{m}Cl(F_B) \cap \tilde{m}Cl(\{x\})$. This is a contradiction. \Box

4 Soft generalized \tilde{m} -open set

Definition 4.1 A soft subset F_B is called a soft $g\tilde{m}$ -open in a soft minimal space (F_A, \tilde{m}) if the relative complement of F_B is soft $g\tilde{m}$ -closed in F_A

Theorem 4.2 A soft subset F_B is soft $g\tilde{m}$ -open if and only if $G_B \subseteq \tilde{m}Int(F_B)$ whenever G_B is soft \tilde{m} -closed and $G_B \subseteq F_B$.

Proof: Let F_B be a soft $g\tilde{m}$ -open set. Let G_B be a soft \tilde{m} -closed set such that $G_B \subseteq F_B$. Then $F_B{}^c \subseteq G_B{}^c$ where $G_B{}^c$ is soft \tilde{m} -open. $F_B{}^c$ is soft $g\tilde{m}$ -closed implies that $[\tilde{m}Cl(F_B)]^c \subseteq G_B{}^c$. That is $[\tilde{m}Int(F_B)]^c \subseteq G_B{}^c$. Therefore $G_B \subseteq \tilde{m}Int(F_B)$. Conversely suppose G_B is soft \tilde{m} -closed and $G_B \subseteq F_B$. Also $G_B \subseteq \tilde{m}Int(F_B)$. Let $U_B{}^c \subseteq F_B$ where $U_B{}^c$ is soft \tilde{m} -closed. By hypothesis $U_B{}^c \subseteq \tilde{m}Int(F_B)$. Thus $[\tilde{m}Int(F_B)]^c \subseteq U_B$. (i.e) $[\tilde{m}Cl(F_B)]^c \subseteq U_B$. Therefore $F_B{}^c$ is soft $g\tilde{m}$ -closed. Hence F_B is soft $g\tilde{m}$ -open set \Box

Theorem 4.3 If $\tilde{m}Int(F_B) \subseteq F_B$ and F_B is soft $g\tilde{m}$ -open set then G_B is soft $g\tilde{m}$ -open.

Proof: $\tilde{m}Int(F_B) \subseteq G_B \subseteq F_B$ implies $F_B{}^c \subseteq G_B{}^c \subseteq [\tilde{m}Cl(F_B)]^c$ and $F_B{}^c$ is soft $g\tilde{m}$ -closed. Hence G_B is soft $g\tilde{m}$ -open.

Theorem 4.4 A soft subset F_B is soft $g\tilde{m}$ -closed if and only if $\tilde{m}Cl(F_B) - F_B$ is soft $g\tilde{m}$ -open.

Proof: Let F_B is soft \tilde{gm} -closed. Let $G_B \subseteq \tilde{m}Cl(F_B) - F_B$ where G_B is soft \tilde{m} closed. By theorem 4.3 $G_B = F_{\emptyset}$. Therefore $G_B \subseteq \tilde{m}Int[\tilde{m}Cl(F_B) - F_B]$. By Theorem 4.2 $\tilde{m}Cl(F_B) - F_B$ is soft \tilde{gm} -open. Conversely, Let $F_B \subseteq G_B$ where G_B is soft \tilde{m} -open set. Then $\tilde{m}Cl(F_B) \cap G_B{}^C \subseteq \tilde{m}Cl(F_B) \cap F_B{}^c = \tilde{m}Cl(F_B) - F_B$. Since $\tilde{m}Cl(F_B) \cap G_B{}^c$ is soft \tilde{m} -closed and $\tilde{m}Cl(F_B) - F_B$ is soft \tilde{gm} -open. It follows from the Theorem 4.2 $\tilde{m}Cl(F_B) \cap U_B{}^c \subseteq \tilde{m}Int[\tilde{m}Cl(F_B) \cap F_B{}^c] = \tilde{m}Int[\tilde{m}Cl(F_B) - F_B] =$ F_{\emptyset} . Hence F_B is soft \tilde{gm} -closed. \Box

Remark 4.5 The converse of the above Theorem 4.4 is not true as shown in the following example

Example 4.6 Let (F_A, \tilde{m}) be a soft minimal space where $X = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E \text{ and } F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}.$ $\tilde{m} = \{F_{\emptyset}, F_{A_1}, F_{A_4}, F_{A_5}, F_{A_{10}}, F_{A_{11}}, F_{A_{13}}, F_A\}.$ Then the soft $g\tilde{m}$ -closed sets are $\{F_{\emptyset}, F_{A_2}, F_{A_4}, F_{A_5}, F_{A_7}, F_{A_8}, F_{A_{12}}, F_A\}.$ Here, $F_B = F_{A_1}.$ Then $\tilde{m}Cl(F_{A_1}) - F_{A_1} = F_{A_4}$ which is soft $g\tilde{m}$ -open. But F_{A_1} is not soft $g\tilde{m}$ -closed.

Remark 4.7 For any soft subset F_B of F_A , $\tilde{m}Int(\tilde{m}Cl(F_B) - F_B) = F_{\emptyset}$.

Theorem 4.8 IF F_B is soft $g\tilde{m}$ -open set in (F_A, \tilde{m}) such that $\tilde{m}Int(F_B) \subseteq G_B \subseteq F_B$ and G_B is soft $g\tilde{m}$ -open set in (F_A, \tilde{m}) .

Proof: Let F_B is soft $g\tilde{m}$ -open set in (F_A, \tilde{m}) such that $\tilde{m}Int(F_B) \subseteq G_B \subseteq F_B$. Let U_B be a soft \tilde{m} -closed such that $U_B \subseteq G_B$. Then $U_B \subseteq F_B$. Since F_B is soft $g\tilde{m}$ -open set $U_B \subseteq \tilde{m}Int(F_B)$. Now $\tilde{m}Int(\tilde{m}Cl(F_B)) \subseteq \tilde{m}Int(G_B) = U_B \subseteq \tilde{m}Int(G_B)$. That is $U_B \subseteq \tilde{m}Int(G_B), G_B$ is soft \tilde{m} -open. Hence G_B is soft $g\tilde{m}$ -open. \Box

Theorem 4.9 Every soft \tilde{m} -open set is soft $g\tilde{m}$ -open set.

Proof: Let F_B be a soft $g\tilde{m}$ -open set. Let U_B is a soft $g\tilde{m}$ -closed such that $U_B \subseteq \tilde{F}_B$. Then $U_B \subseteq \tilde{m}Int(F_B)$. Since F_B is soft $g\tilde{m}$ -open set $\tilde{m}Int(F_B) = F_B$, $U_B \subseteq \tilde{m}Int(F_B)$. Therefore F_B is a soft $g\tilde{m}$ -open set.

The converse is not true in general . The following Example supports our claim. \Box

Example 4.10 Let $X = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$. Then $\tilde{m} = \{F_{\emptyset}, F_{A_1}, F_{A_8}, F_{A_{10}}, F_A\}$. Then the soft $g\tilde{m}$ -closed sets are $\{F_{\emptyset}, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}, F_{A_5}, F_{A_6}, F_{A_8}, F_{A_{10}}, F_A\}$. Here, F_{A_5} is soft $g\tilde{m}$ -open but not soft \tilde{m} -open.

Theorem 4.11 If F_B and G_B are two soft $g\tilde{m}$ -open subset of a soft minimal space (F_A, \tilde{m}) then $F_B \cap G_B$ is soft $g\tilde{m}$ -open.

Proof: Assume that U_B is soft \tilde{m} -closed set containing in $(F_B \cap G_B)$. Since F_B and G_B are soft $g\tilde{m}$ -open set then by theorem 4.2 $U_B \subseteq \tilde{m}Int(F_B)$ and $U_B \subseteq \tilde{m}Int(G_B)$. Then we have $U_B \subseteq \tilde{m}Int(F_B) \cap \tilde{m}Int(G_B) = \tilde{m}Int(F_B \cap G_B)$. Hence $U_B \subseteq \tilde{m}Int(F_B \cap G_B)$. Therefore $F_B \cap G_B$ is soft $g\tilde{m}$ -open. \Box

Theorem 4.12 If F_B and G_B are two soft $g\tilde{m}$ -open subset of a soft minimal space (F_A, \tilde{m}) then $F_B \cup G_B$ is soft $g\tilde{m}$ -open.

Proof: Assume that U_B be a soft \tilde{m} -closed subset of $F_B \cup G_B$. Then $U_B \cap \tilde{m}cl(F_B)$ $\tilde{\subseteq} F_B$ and hence by theorem 4.2 $U_B \cap \tilde{m}cl(F_B) \tilde{\subseteq} \tilde{m}Int(F_B)$. Similarly $U_B \cap \tilde{m}cl(G_B) \tilde{\subseteq} \tilde{m}Int(G_B)$. $U_B \tilde{\subseteq} \tilde{m}Int(F_B) \cup \tilde{m}Int(G_B) \tilde{\subseteq} \tilde{m}Int(F_B \cup G_B)$. Hence $U_B \tilde{\subseteq} \tilde{m}Int(F_B \cup G_B)$ and by theorem 4.2 $F_B \cup G_B$ is soft $g\tilde{m}$ -open. \Box

5 $T_{1/2}$ - soft minimal space

Definition 5.1 A soft minimal space (F_A, \tilde{m}) is said to be a $T_{1/2}$ - space if every soft $g\tilde{m}$ -closed set of (F_A, \tilde{m}) is soft \tilde{m} -closed

Theorem 5.2 Let (F_A, \tilde{m}) be a soft minimal space, then (1) Every $T_{1/2}$ -space is T_0 -space. (2) Every T_1 -space is $T_{1/2}$ -space.

Proof: It is obivious

Theorem 5.3 Let (F_A, \tilde{m}) be a soft minimal space, the following properties are equivalent:

(1) (F_A, \tilde{m}) is an $T_{1/2}$ - space.

(2) For each $x \in F_A$, the singleton $\{x\}$ is not soft \tilde{m} -open and soft \tilde{m} -closed.

Proof: $(1) \Rightarrow (2)$

Let (F_A, \tilde{m}) be a $T_{1/2}$ - space and $x \in F_A$. If x is not soft \tilde{m} -closed subset of (F_A, \tilde{m}) . Then $\{x\}^c$ is not soft \tilde{m} -open and then $\{x\}^c$ is soft $g\tilde{m}$ -closed. Since (F_A, \tilde{m}) is $T_{1/2}$ - space. This implies that $\{x\}^c$ is soft \tilde{m} -closed and hence $\{x\}$ is soft \tilde{m} -open. (2) \Rightarrow (1) Let G_B be a soft $g\tilde{m}$ -closed and $x \in \tilde{m}Cl(G_B)$. We have the following two cases: case(i) If the singleton $\{x\}$ is soft \tilde{m} -closed. By Theorem 3.11 $\tilde{m}Cl(G_B) - G_B$ does not contain any non empty closed set. This shows that $x \in G_B$. case(ii) If the singleton $\{x\}$ is soft \tilde{m} -open. If $\notin G_B$. Then $G_B \subseteq \{x\}^c$. Since $\{x\}^c$ is soft \tilde{m} -closed. Then $\tilde{m}Cl(G_B) \subset \tilde{m}Cl\{x\}^c = \{x\}^c$. Thus $x \notin \tilde{m}Cl(G_B)$. In either case,

If the singleton $\{x\}$ is soft *m*-open. If $\notin G_B$. Then $G_B \subseteq \{x\}$. Since $\{x\}$ is soft \tilde{m} -closed. Then $\tilde{m}Cl(G_B) \subseteq \tilde{m}Cl\{x\}^c = \{x\}^c$. Thus $x \notin \tilde{m}Cl(G_B)$. In either case, $\tilde{m}Cl(G_B) = G_B$. That is G_B is soft \tilde{m} -closed. Thus (F_A, \tilde{m}) is a $T_{1/2}$ -soft minimal space.

Corollary 5.4 The property of $T_{1/2}$ -space is strictly between T_0 and T_1 .

References

- C. Boonpok, Biminimal Structure Spaces, International Mathematical Forum, 15(5)(2010), 703-707.
- [2] N. Cagman, S. Karatas, and S. Enginoglu, Soft Topology., Comput. Math. Appl., Vol. 62,(2011), 351-358.
- [3] F. Cammaroto and T. Noiri, On Λ- sets and related topological spaces, Acta Math. Hungar., 109 (3)(2005), 261-279.
- [4] D. Chen, The Parametrization Reduction of Soft Set and its Applications, Comput.Math.Appl.49 (2005), 757-763.
- [5] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35 (1986), 19-28.
- [6] R. Gowri and G. Jegadeesan, soft generalized closed set in soft cech closure space, Global Journal of Pure and Applied Mathematics, Vol.12, No.1 (2016), 909-916
- [7] R.Gowri, S.Vembu, Soft minimal and soft biminimal spaces, Int Jr. of Mathematical Science and Appl., Vol. 5, No.2,(2015), 447-455.
- [8] B.M Ittanagi, Soft Bitopological Spaces, International Journal of Computer Applications, Vol. 107, No.7(2014).
- [9] J.C Kelly, Bitopological Spaces, Proc. London Math. Soc., 13 (1963), 71-81
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.

- [11] H. Maki, K.C Rao and A. Nagoor Gani, On generalized semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17-29.
- [12] D.A Molodtsov, Soft Set Theory First Results. Comp.and Math.with App., Vol.37, (1999), 19-31.
- [13] T. Noiri and V. Popa, A generalized of some forms of g-irresolute functions, European J. of Pure and Appl. Math., 2(4)(2009), 473-493.
- [14] V. Popa, T. Noiri, On M-continuous functions, Anal. Univ.Dunarea de Jos-Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18, No.23 (2000), 31-41.
- [15] M. Shabir, M. Naz, On soft topological spaces, Comput.Math. Appl.,61, (2011), 1786-1799.
- [16] C. Viriyapong, M. Tunapan, W. Rattanametawee and C. Boonpok, Generalized m-Closed Sets in Biminimal Structure Spaces Int. Journal of Math. Analysis, Vol.5, No.7, (2011), 333 - 346