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1. INTRODUCTION 

Group theory plays a pivotal role in various mathematical 

disciplines, and understanding the structural properties of 

finite groups is essential for advancing our comprehension of 

mathematical systems. [1], In this seminal work, Gorenstein 

provides a comprehensive overview of finite group theory, 

laying the groundwork for understanding various structural 

aspects of finite groups. This paper focuses on finite groups 

in the context of prime partitions, denoted as 𝜎, and aims to 

explore the intriguing relationship between the modularity of 

subnormal subgroups and specific characteristics of these 

groups. See [2]’s book is a modern exposition on finite group 

theory. It offers a contemporary perspective on the 

understanding of this paper. For finitely generated subgroup 

and its rank see [3], [4] and [5]. Some of the concepts of 

modularity and its application to computational cryptography 

is seen in [6] and [7]. 

 

2. PRELIMINARIES 

Let’s delve into the preliminary concepts of group theory with 

a more mathematical formulation. 

 

Basic Definitions in Group Theory 2.1. 

Group: Let G be a set with an operation ∗:G×G→G. G is a 

group if it satisfies the following conditions: 

 Closure: For all a,b∈G, a∗b∈G. 

 Associativity: For all a,b,c∈G, 

(a∗b)∗c=a∗(b∗c). 

 Identity Element: There exists an element 

e∈G such that for all a∈G, a∗e=e∗a=a. 

 Inverses: For every a∈G, there exists an 

element a−1∈G such that a∗a−1=a−1∗a=e. 

Subgroup: Let H be a subset of a group G. H is a subgroup of 

G if it forms a group under the same operation. 

Cosets: For a subgroup H of a group G and g∈G, the left coset 

of H containing g is defined as gH={gh| h∈H}. 

Lagrange's Theorem: If G is a finite group and H is a 

subgroup of G, then the order of H divides the order of G. 

 

Prime Partitions 2.2. 

Prime Partition: Given a positive integer n, a prime partition 

of n is a representation of n as a sum of prime numbers, 

disregarding the order of the summands. 

Relevance in Finite Groups: Prime partitions are relevant in 

understanding the structure of finite groups, particularly in 

the context of Sylow theorems and the classification of finite 

simple groups. 

 

Subnormal Subgroups 2.3. 

Normal Subgroup: A subgroup H of a group G is normal if, 

for every g∈G, gHg−1=H. 

https://doi.org/10.47191/ijmcr/v11i12.06


“Modularity in Finite Groups: Characterizing Groups with Modular 𝜎-Subnormal Subgroups” 

3915 Michael N. John1, IJMCR Volume 11 Issue 12 December 2023 

 

Subnormal Subgroup: A subgroup H of a group G is 

subnormal if there exists a series of subgroups {Hi} such that 

H=H0, Hk=G, and Hi is normal in Hi+1 for each i. 

 

Modularity 2.4. 

Modular Groups: A group is modular if all its Sylow 

subgroups are normal. That is, a group G is modular if, for 

every prime factor p of ∣G∣, every Sylowp-subgroup of G is a 

normal subgroup of G 

Modularity Theorem: If a group is a product of two 

subnormal subgroups, then it is itself subnormal. 

These mathematical formulations lay the groundwork for our 

rigorous investigation into the structural properties that 

contribute to modularity within finite groups, shedding light 

on a significant aspect of group theory. 

 

3. DEFINITION OF TERMS 

Prime Partitions (𝜎) 3.1. Given the set of prime numbers 

P={2,3,5,7,11,…}, a prime partition, denoted as σ, is a 

partition of P into distinct non-empty subsets. 

Formally, let {Ai}i∈I be a partition of P (i.e., ⋃i∈IAi=P and Ai

∩Aj=∅ for all i≠j). Then, σ={Ai}i∈I is a prime partition. 

 

Examples 3.1.1 

Trivial Example:Let σ1={{2},{3},{5},{7},{11},…}.This is a 

prime partition where each prime number is in its own subset. 

Non-trivial Example:Let σ2

={{2,5},{3,11},{7},{13,17,19},…}.Here, the prime 

numbers are partitioned into subsets based on some criteria 

(e.g., sum, difference, etc.). 

Partition with Infinite Sets: Let σ3

={{2},{3,5},{7,11,13},{17,19,23,29},…}.In this case, the 

subsets may contain an infinite number of primes. 

Prime partitions provide a way to organize and study the set 

of prime numbers based on different criteria or properties, 

offering insights into the distribution and relationships among 

prime numbers. The examples illustrate various ways in 

which prime numbers can be grouped into distinct subsets 

within a prime partition. 

 

Subnormal Subgroup 3.2.Let G be a group, and let H be a 

subgroup of G. The subgroup H is said to be subnormal in G 

if there exists a chain of subgroups {𝐻𝑖}𝑖=0
𝑘  such that: 

1. H=H0 andHk=G. 

2. For each 𝑖=0,1,…,k−1, the subgroup Hi is normal in 

Hi+1. 

In other words, H is subnormal in G if there is a series of 

subgroups starting from H and ending with the whole group 

G, and each subgroup in the series is normal in the next one. 

 

Examples 3.2.1 

Trivial Example:Consider the group G=Z2×Z2, where Z2 is 

the cyclic group of order 2. The subgroup H={(0,0),(1,0)} is 

subnormal in G because it is normal in G itself. 

Non-Trivial Example:LetG=S4, the symmetric group on 4 

elements. Consider the subgroup 

H={(1),(12)(34),(13)(24),(14)(23)}, which is the Klein four-

group. This subgroup is subnormal in G as there is a chain of 

subgroups leading from H to G. 

Infinite Group Example:Consider the group G=Z, the 

additive group of integers. The subgroup H=2Z (the set of 

even integers) is subnormal in G since H is normal in G. 

Subnormal subgroups provide a way to understand the 

structure of a group by examining its nested normal 

subgroups. These subgroups are useful in various areas of 

group theory, including the study of solvable groups and the 

composition series of groups. 

Modular Subgroup 3.3.Let G be a modular group, and let H 

be a modular subgroup of G. The index of H in G is denoted 

as [G:H], and it represents the number of left cosets of H in 

G. If [G:H] is relatively prime to ∣G∣, i.e., gcd([G:H],∣G∣)=1, 

then H is said to be a modular subgroup with relatively 

prime index. 

 

Example 3.2.1 

Consider the group G=S3, the symmetric group on 3 elements. 

Let H={(1),(12)}, the subgroup generated by a 2-cycle. The 

index of H in G is [G:H]=3, which is relatively prime to 

∣G∣=6. Therefore, H is a subgroup with relatively prime 

index. 

 

4. CENTRAL IDEA 

The central idea revolves around investigating finite groups 

in which every 𝜎-subnormal subgroup exhibits modularity. 

Our aims to identify and characterize the structural features 

that contribute to this unique property, shedding light on the 

interplay between prime partitions, subnormality, and 

modularity within the context of finite groups. 

Lemma 4.1. Every subgroup of a finite group is subnormal.  

Proof 

Base Case: Consider a finite group G of order n=1. In this 

case, the only subgroup is G itself, and G is trivially 

subnormal in itself. 

Inductive Step: Assume that every subgroup of a group of 

order k is subnormal for 1≤k<n. We aim to show that every 

subgroup of a group of order n is subnormal. 

Let H be a subgroup of G with order m. By Lagrange's 

theorem, the order of H divides the order of G, i.e., m divides 

n. 

Now, consider the left cosets of H in G: H,g1H,g2H,…,gkH, 

where gi are distinct elements of G. 

Define the subgroup K=g1Hg1
−1. Note that K is isomorphic to 

H since conjugation by g1 is an isomorphism. Therefore, K 

also has order m. 

Now, we have the chain of subgroups: H⊴K⊴g1Hg1
−1⊴… 

By the inductive hypothesis, K is subnormal in g1Hg1
−1, and 

by definition of subnormality, H is subnormal in g1Hg1
−1. 
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Since g1 was an arbitrary element of G, this holds for all 

elements of G. Therefore, H is subnormal in G. 

By induction, the statement holds for all finite groups. 

This completes the proof of Lemma 4.1 using induction and 

the concept of cosets. 

 

Proposition 4.2: If G is a finite group and H is a 𝜎-subnormal 

subgroup, then H is modular.  

Proof 

Step 1: Subnormal Implies Normal Series: Let H0=H,H1

,…,Hk=G be a subnormal series for H in G. That is, each Hi 

is normal in Hi+1. 

Step 2: Induction on the Length of the Series: 

Base Case:When k=1, H is normal in G, and all Sylow 

subgroups are normal by definition. Thus, the base case 

holds. 

Inductive Step: Assume the proposition is true for subnormal 

series of length k−1, and let's consider a subnormal series of 

length k. We want to show that H is modular. 

Consider the factor group H1/H0. By the induction hypothesis, 

H1/H0 is modular. Now, we can use the Correspondence 

Theorem, which states that there is a one-to-one 

correspondence between subgroups of G containing H0 and 

subgroups of G/H0. 

Step 3: Relationship Between Subgroups and Sylow 

Subgroups: Let P1,P2,…,Pr be the distinct Sylow subgroups 

of G. Now, consider the corresponding subgroups P1H0,P2H0

,…,PrH0 in G/H0. Since H1/H0 is modular, each of these 

subgroups is normal in G/H0. 

Step 4: Lifting to the Original Group: Now, use the 

Correspondence Theorem to lift these subgroups back to 

subgroups of G containing H0. Denote these lifted subgroups 

as Q1,Q2,…,Qr. 

Step 5: Sylow Subgroups are Normal: Since each PiH0 is 

normal in G/H0, and Qi corresponds to PiH0, each Qi is normal 

in G. 

Step 6: Conclusion: Therefore, H is a subgroup of G whose 

index is relatively prime to ∣G∣. By definition, H is a modular 

subgroup. 

This completes the proof by establishing the relationship 

between prime partitions and modularity within subnormal 

subgroups.  

 

Theorem 4.3. A finite group G has every 𝜎-subnormal 

subgroup modular if and only if G is a solvable group.  

Proof. 

1. G Solvable ⇒Every𝜎-subnormal Subgroup is Modular 

Assume G is solvable. By the definition of solvability, there 

exists a composition series {e}=G0⊴G1⊴…⊴Gk=G such that 

each factor group Gi+1/Gi is abelian. 

Now, consider a 𝜎-subnormal subgroup H of G. By 

definition, there exists a chain of subgroups H=H0⊴H1

⊴…⊴Hm=G such that each Hi is normal in Hi+1. 

Since G is solvable, the composition series above ensures that 

Gi+1/Gi isabelian. By the Correspondence Theorem, each 

factor group Hi+1/Hi is isomorphic to a factor group of Gi+1/Gi

, which is abelian. Therefore, each Hi+1/Hi isabelian, making 

H modular. 

2. Every 𝜎-subnormal Subgroup of G is Modular ⇒G is 

Solvable 

Now, assume that every 𝜎-subnormal subgroup of G is 

modular. 

Consider a composition series for {e}=G0⊴G1⊴…⊴Gk=G 

We want to show that each factor group Gi+1/Gi isabelian. 

Proof by Contradiction 

Suppose there exists some i such that Gi+1/Gi is not abelian. 

Consider the factor group Gi+1/Gi and the natural projection 

map π:Gi+1→Gi+1/Gi. 

Now, let N=ker(π). Since Gi+1/Gi is not abelian, N is a non-

trivial normal subgroup of Gi+1. By the Correspondence 

Theorem, N corresponds to a 𝜎-subnormal subgroup H of G. 

However, H is not modular, contradicting our assumption. 

Therefore, our assumption that there exists i such that Gi+1/Gi 

is not abelian is false. 

This implies that every factor group Gi+1/Gi isabelian, and 

hence, G is solvable. 

Thus, we have shown both implications, completing the proof 

of Theorem 4.3. 

 

Theorem 4.4. Characterization of the structure of finite 

groups with modular 𝜎-subnormal subgroups.  

Proof. 

Step 1: Forward Direction (If): Assume that every 𝜎-

subnormal subgroup H of G is modular. We aim to show that 

G is solvable. 

Consider a composition series for G:1=G0⊴G1⊴…⊴Gn=G, 

where each Gi+1/Gi is simple. 

Let H be a maximal 𝜎-subnormal subgroup of G. We claim 

that H⊴G. 

Assume, for the sake of contradiction, that H⋬G. By the 

Correspondence Theorem, there exists a simple group L such 

that H∩L⊴L, where L is a composition factor of G. Let 

N=H∩L. 

Since H is 𝜎-subnormal, [G:H] is relatively prime to ∣H∣, and 

since L is simple, [G:N]=[G:H] is relatively prime to 

∣N∣=∣H∩L∣. Thus, N⊴H∩L⊴L, and by simplicity of L, N=1 or 

N=L. 

If N=1, then H∩L=1, and by the isomorphism theorems, HL 

is isomorphic to H×L, contradicting the maximality of H. 

If N=L, then L≤H, and again, HL is isomorphic to H×L, 

contradicting the maximality of H. 

Therefore, our assumption that H⋬G is false, and H⊴G. 

Now, since H is 𝜎-subnormal and normal in G, the factor 

group G/H inherits the property that every subgroup is 𝜎-

subnormal and, consequently, modular. By induction, we can 

extend this argument to the entire composition series of G. 
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This implies that every composition factor Gi+1/Gi is solvable, 

making G solvable. 

Step 2: Reverse Direction (Only If): Assume that G is 

solvable. We aim to show that every 𝜎-subnormal subgroup 

H of G is modular. 

Consider a 𝜎-subnormal subgroup H of G. We proceed by 

induction on the length of the 𝜎-subnormal chain for H. 

Base Case: If H is a maximal 𝜎-subnormal subgroup, then 

[G:H] is relatively prime to ∣H∣, and hence H is modular. 

Inductive Step: Suppose that every 𝜎-subnormal subgroup of 

length k is modular. Consider a 𝜎-subnormal subgroup H with 

a chain of length k+1: 

H0⊴H1⊴…⊴Hk⊴H. 

By the inductive hypothesis, each factor Hi+1/Hi is modular. 

Since Hi⊴Hi+1 and [Hi+1:Hi] is in the subset of primes 

specified by 𝜎, it follows that [Hi+1:Hi] is relatively prime to 

∣Hi+1/Hi∣. 

Now, by the Chinese Remainder Theorem, the product of 

relatively prime numbers is itself relatively prime to each of 

them. Therefore, [H:Hk]=[H:H0]=[H:H1]⋅[H1:H2]⋅…⋅[Hk−1:Hk

] is relatively prime to ∣H/Hk∣. 

Thus, by induction, every 𝜎-subnormal subgroup H of G is 

modular. 

Combining both directions, we have shown that a finite group 

G has every 𝜎-subnormal subgroup modular if and only if G 

is solvable. This completes the proof of Theorem 4.4, 

providing a detailed characterization of the structure of finite 

groups with modular 𝜎-subnormal subgroups in the context 

of prime partitions. You can also read [8]’s work on Solvable 

Groups With Monomial Characters Of Prime Power. 

 

5. CONCLUSION 

Our study offers a significant contribution to the 

understanding of finite groups with 𝜎-subnormal subgroups, 

emphasizing the relationship between prime partitions and 

modularity. By shedding light on the structural properties that 

foster modularity within groups, we pave the way for future 

research endeavors and applications in diverse mathematical 

contexts. This research not only deepens our comprehension 

of group theory but also underscores the elegance and 

complexity inherent in the study of finite groups and their 

intricate substructures. 
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