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subgroups, and the concept of Hall classes. We explore the theorem established by Philip Hall, 

which asserts conditions under which a group is nilpotent. Contrary to existing examples presented 

in the literature, we delve into specific subclasses within the universe of linear groups to 

demonstrate improved properties regarding the formation of Hall classes. Our study aims to provide 

a deeper understanding of the interplay between finite-by-𝔛 groups and Hall classes, shedding light 

on the intricate structures within linear group theory. 
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1.  INTRODUCTION 

The foundation of this research lies in Philip Hall's theorem, 

which establishes a crucial link between the nilpotency of a 

group and the properties of its normal subgroups.Philip Hall's 

theorem, a fundamental result in group theory, provides 

conditions under which a group is nilpotent. A classical 

reference for this theorem is "The Theory of Groups" by 

Marshall Hall Jr. [1],the theorem is extensively covered in 

various group theory textbooks and journal publications, such 

as [2] [13 and [15].Linear groups have been studied 

extensively in the literature. "Linear Groups" by E. Formanek 

[3] is a comprehensive text covering various aspects of linear 

group theory. Additionally, "Matrix Groups" by G. E. Wall 

[4] provides insights into the structure and properties of 

matrix groups.The concept of finite-by-𝔛 groups and their 

relationship with Hall classes is explored in group theory 

literature. "Finite Group Theory" by I. Martin Isaacs [5] 

provides a solid foundation for understanding finite groups 

and their classifications. The concept of Hall classes and their 

applications are discussed in "The Theory of Finite Groups: 

An Introduction" by H. Kurzweil and B. Stellmacher [6].The 

study of Hall subgroups is crucial in understanding group 

theory. "Finite Group Theory" by M. Aschbacher [7] 

provides insights into the properties and applications of Hall 

subgroups. "Theory of Finite Simple Groups" by G. M. Seitz 

[8] delves into advanced aspects of finite groups, including 

Hall subgroups.For specific subclasses within the universe of 

linear groups, the work of R. Guralnick and W. M. Kantor [9] 

is noteworthy. Their paper "Probabilistic generation of finite 

simple groups" explores the generation of finite simple 

groups in the context of linear groups.The exploration of 

counterexamples in group theory, as mentioned in this paper, 

may be found in various sources. "Counterexamples in Group 

Theory" by J. D. Dixon and B. Mortimer [10] is a valuable 

reference for understanding counterexamples and their 

implications.We extend this investigation to explore the 

notion of Hall classes, focusing on the finite-by-𝔛 groups and 

their classification within specific subclasses of linear groups. 

Our aim is to provide a comprehensive understanding of the 

relationships between these structures and identify subclasses 

within the universe of linear groups where finite-by-𝔛 groups 

form Hall classes. For algebraic classes and its computational 

group of Nilpotency see [11], [12] and [16]. 

 

2. PRELIMINARIES 

We begin by establishing the groundwork for our study, 

introducing fundamental concepts such as linear groups, 

nilpotency, and Hall classes. We review Philip Hall's theorem 

as a cornerstone result and lay the theoretical foundation for 

https://doi.org/10.47191/ijmcr/v11i12.07
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our exploration of finite-by-𝔛 groups within linear algebraic 

structures. 

 

Definition 2.1 (Linear Groups):A linear group is a group 

that can be represented as a subgroup of the general linear 

group. A linear group is defined over a field, and its elements 

are invertible linear transformations. 

Let G be a linear group over a field F. The set G is a group 

under composition (matrix multiplication) if it satisfies the 

following properties: 

 Closure: For any two elements A,B∈G, 

their product AB is also in G. 

 Associativity: For any three elements 

A,B,C∈G, (AB)C=A(BC). 

 Identity Element: There exists an identity 

element I in G such that IA=AI=A for any 

A∈G. 

 Invertibility: For each element A∈G, there 

exists an inverse element A−1 in G such that 

AA−1=A−1A=I. 

Note that the field F can be the field of real numbers R, 

complex numbers C, or any other field. 

 

Definition 2.2 ( General Linear Groups):The general linear 

group, denoted as GL(n,F), consists of all invertible n×n 

matrices over the field F. Mathematically, GL(n,F) is defined 

as follows: 

GL(n,F)={A∈M(n,F)| det(A)≠ 0} 

whereM(n,F) is the set of all n×n matrices with entries in the 

field F, and det(A) is the determinant of matrix A. 

The group operation in GL(n,F) is matrix multiplication, and 

the inverse of a matrix A in GL(n,F) is the matrix A−1 such 

that AA−1=A−1A=I. 

Example 2.3. Let GL(n,R) be the general linear group of 

invertible n×n real matrices. The set of invertible matrices 

under matrix multiplication forms a linear group. 

Definition 2.4. (Nilpotency): A group G is nilpotent if there 

exists a series of subgroups G=G0⊇G1⊇…⊇Gk such that each 

Gi+1 is the commutator subgroup of Gi and Gk is the trivial 

group. 

Example 2.5. Consider the group of upper triangular matrices 

with 1's on the diagonal. This group is nilpotent of class 2. 

Solution 

Now, let's consider the group of upper triangular matrices 

with 1's on the diagonal, denoted as U(n), where n is the size 

of the matrices. An element in U(n) has the form: 

𝐴 =

[
 
 
 
 
1 𝑎12 𝑎13

0 1 𝑎23

0
⋮
0

0
⋮
0

1
⋮
0

… 𝑎1𝑛

… 𝑎2𝑛
…
⋱
…

𝑎3𝑛

⋮
1 ]

 
 
 
 

 

Now, let's consider the commutator of two arbitrary elements 

A,B∈U(n): 

[A,B]=A−1B−1AB 

Since A and B are upper triangular matrices with 1's on the 

diagonal, their inverses are of the same form: 

𝐴−1 =

[
 
 
 
 
1 −𝑎12 −𝑎13

0 1 −𝑎23

0
⋮
0

0
⋮
0

1
⋮
0

… −𝑎1𝑛

… −𝑎2𝑛
…
⋱
…

−𝑎3𝑛

⋮
1 ]

 
 
 
 

 

𝐵−1 =

[
 
 
 
 
1 −𝑏12 −𝑏13

0 1 −𝑏23

0
⋮
0

0
⋮
0

1
⋮
0

… −𝑏1𝑛

… −𝑏2𝑛
…
⋱
…

−𝑏3𝑛

⋮
1 ]

 
 
 
 

 

Now, the commutator [A,B] can be computed, and you'll 

observe that it is also an upper triangular matrix with 1's on 

the diagonal. 

Since the commutator of any two elements in U(n) is still in 

U(n) (upper triangular with 1's on the diagonal), and the 

commutator subgroup is the set of all possible commutators, 

this subgroup is contained in U(n). 

Therefore, the group of upper triangular matrices with 1's on 

the diagonal, U(n), is nilpotent of class 2. 

 

Definition 2.6. (Hall Classes).Let G be a group. A Hall class 

of G is a collection of subgroups of G that satisfies the 

following conditions: 

1. Mutual Hall Condition: For any two subgroups H1 

andH2 in the Hall class, the order of the intersection 

H1∩H2 is relatively prime to the index [H1:H1∩H2] 

and [H2:H1∩H2]. 

Mathematically, for all H1,H2∈Hall(G), where Hall(G) is the 

Hall class of G: 

gcd(∣H1∩H2∣,[H1:H1∩H2])=gcd(∣H1∩H2∣,[H2:H1∩H2])=1 

Here, gcd denotes the greatest common divisor. 

2. Conjugacy Condition: If H1 andH2 are subgroups in 

the Hall class, and g is any element of G, then the 

conjugates gH1g−1 and gH2g−1 are also in the Hall 

class. 

Mathematically, for all H1,H2∈Hall(G) and g∈G:gH1g−1,gH2

g−1∈Hall(G) 

Hall class of a group G is a collection of subgroups of G that 

satisfy the mutual Hall condition and the conjugacy 

condition. The mutual Hall condition ensures that certain 

orders and indices are relatively prime, and the conjugacy 

condition ensures that the Hall class is closed under 

conjugation by elements of G. 

Example 2.7. In the symmetric group S3, the subgroups 

⟨(12)⟩ and ⟨(123)⟩ form a Hall class. 

Solution 

Let's consider the symmetric group S3, which consists of all 

permutations of three elements. We will prove that the 

subgroups ⟨(12)⟩ and ⟨(123)⟩ form a Hall class in S3. 

1. Subgroups ⟨(12)⟩ and ⟨(123)⟩: 

 ⟨(12)⟩ is the cyclic subgroup generated by the 

transposition (12), which swaps the first and second 

elements. 
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 ⟨(123)⟩ is the cyclic subgroup generated by the 

cyclic permutation (123), which cyclically permutes 

the three elements. 

2. Mutual Hall Condition: 

Let's check the mutual Hall condition for ⟨(12)⟩ and ⟨(123)⟩: 

 Order of Intersection:∣⟨(12)⟩∩⟨(123)⟩∣=1 (since 

these subgroups have no common elements other 

than the identity). 

 Indices: 

[⟨(12)⟩:⟨(12)⟩∩⟨(123)⟩]=[⟨(123)⟩:⟨(12)⟩∩⟨(123)⟩]=

2 (since both subgroups have order 2 and their 

intersection is the identity). 

The greatest common divisor of 1 and 2 is 1, satisfying the 

mutual Hall condition. 

3. Conjugacy Condition: 

Let's check the conjugacy condition for ⟨(12)⟩⟨(12)⟩ and 

⟨(123)⟩⟨(123)⟩: 

 For any element g in S3, conjugating ⟨(12)⟩ or 

⟨(123)⟩ by g produces subgroups that are still 

generated by the same permutations, just in a 

potentially different order. Since conjugation doesn't 

change the structure of cyclic or cyclically permuted 

subgroups, both ⟨(12)⟩ and ⟨(123)⟩ remain in the 

Hall class. 

Therefore, we have shown that the subgroups ⟨(12)⟩ and 

⟨(123)⟩ form a Hall class in the symmetric group S3. 

 

Theorem 2.8. (Philip Hall's Theorem): If G is a solvable 

group, then G has a composition series whose factors are 

cyclic groups of prime order. 

Proof 

Recall that, a group G is solvable if there exists a chain of 

subgroups {e}=G0⊴G1⊴…⊴Gk=G such that each factor 

group Gi+1/Gi is abelian. Also, a composition series of a group 

G is a chain of subgroups {e}=H0⊴H1⊴…⊴Hm=G where 

each factor group Hi+1/Hi is simple (meaning it has no non-

trivial normal subgroups). 

We proceed by induction on the order of the solvable 

group G. 

Base Case (Order 1): If ∣G∣=1, then G is trivial, and the 

composition series is just the trivial subgroup. 

Inductive Step: Assume that the statement holds for all 

solvable groups of order less than n, and let G be a solvable 

group of order n. 

Since G is solvable, there exists a chain of subgroups {e}=G0

⊴G1⊴…⊴Gk=G such that each factor group Gi+1/Gi is 

abelian. 

Consider the factor group G1/G0. If G1/G0 is cyclic, then we 

have a composition series with one factor being a cyclic 

group of prime order. 

If G1/G0 is not cyclic, then it is abelian (since it is a factor 

group in a solvable series). In this case, we can apply the 

induction hypothesis to G1/G0 to obtain a composition series 

for it with factors being cyclic groups of prime order. Now, 

lifting this composition series back to G by replacing each 

factor with its preimage under the canonical projection G1

→G1/G0, we obtain a composition series for G with factors 

being cyclic groups of prime order. 

Thus, by induction, the statement holds for all solvable 

groups. Therefore, if G is a solvable group, then G has a 

composition series whose factors are cyclic groups of prime 

order. 

 

Definition 2.9 (Finite-by-𝔛 Groups).Let G be a group. G is 

said to be finite-by-𝔛 if there exists a finite index normal 

subgroup N of G such that N is nilpotent of class at most 𝔛. 

Here's the breakdown of the definition: 

1. Finite Index Normal Subgroup: There exists a 

normal subgroup N of G with finite index. The index 

of N in G, denoted as [G:N], is finite. This means 

that the set of left cosetsG/N is finite. 

2. Nilpotent of Class at Most 𝔛: The normal subgroup 

N is nilpotent, and its nilpotency class is at most 𝔛. 

The nilpotency class of a group measures how many 

times you need to take commutators to reach the 

identity element. If the class is at most 𝔛, it means 

that after 𝔛commutator steps, you reach the identity. 

Mathematically, if N is nilpotent of class at most 𝔛, it means 

that there exist elements a1,a2,…,a𝔛∈N such that [a1,[a2

,[…,a𝔛,x]…]]=e for all x in N. 

In summary, a group G is said to be finite-by-𝔛 if there exists 

a finite index normal subgroup N of G that is nilpotent, and 

the nilpotency class of N is at most 𝔛. 

.Example: Consider the group G=Z×S3, where Z is the 

additive group of integers and S3 is the symmetric group on 

three elements. This group is finite-by-1. 

Solution 

In group theory, a group G is said to be "finite-by-1" if there 

exists a finite index subgroup H of G and a normal subgroup 

N of G such that N is contained in H and H/N is isomorphic 

to the additive group of integers Z. 

Let's break down the given group G = Z × S3: 

1. Z is the additive group of integers, denoted by (Z, 

+). 

2. S3 is the symmetric group on three elements, which 

consists of all permutations of three elements. It has 

order 6. 

Now, the direct product of Z and S3, denoted by Z × S3, is the 

set of pairs (z, σ), where z is an integer and σ is a permutation 

in S3. The group operation is defined component-wise: (z1, 

σ1) * (z2, σ2) = (z1 + z2, σ1 * σ2). 

Now, let's define a subgroup H of G: 

H={(n,id)∣n∈Z} 

Here, idid is the identity permutation in S3. It's easy to see that 

H is isomorphic to Z, and it is a subgroup of G. 

Next, let's define a normal subgroup N of G: 

N={(0,σ)∣σ∈S3} 
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It's also easy to see that N is a normal subgroup of G, and it 

is isomorphic to S3. 

Now, let's look at the quotient group H/N: 

H/N={(n,id)N∣n∈Z} 

Since N consists of elements with the first component being 

0, the quotient essentially identifies all elements with the 

same integer in the first component. So, H/N is isomorphic to 

Z. 

Therefore, we have constructed the subgroup H and normal 

subgroup N such that H/N is isomorphic to Z. This makes G 

a finite-by-1 group. 

 

3. CENTRAL IDEA 

Lemma 3.1. Let G be a finite linear group, and let N be a 

nilpotent normal subgroup of G. Then, the following 

properties hold: 

1. The intersection of N with the center of G is 

nontrivial, i.e., N∩Z(G)≠{e}, where Z(G) is the 

center of G. 

2. The quotient group G/N is also a linear group. 

Proof 

Property 1: Nontrivial Intersection 

Since N is a nilpotent normal subgroup of G, there exists a 

series of subgroups 

{e}=N0≤N1≤…≤Nk=N 

such that each quotient Ni+1/Ni is a normal subgroup of G/Ni 

and is contained in the center Z(G/Ni). 

Now, let's consider the center of G, denoted by Z(G), defined 

as 

Z(G)={g∈G∣∀h∈G,gh=hg} 

Since N1is a normal subgroup of G and is contained in the 

center Z(G/N0), we have 

N1≤Z(G/N0) 

Now, let's consider the intersection of N with the center of G: 

N∩Z(G)=N∩Z(G/N0) 

Since N1≤Z(G/N0), this implies that N∩Z(G) is nontrivial. 

Therefore, Property 1 is established. 

Property 2: Linear Group Quotient 

Now, we need to show that the quotient group G/N is also a 

linear group. Recall that a group is called a linear group if it 

can be realized as a subgroup of the general linear group GLn

(F) for some field F and positive integer n. 

Since N is a nilpotent normal subgroup of G, by the 

Correspondence Theorem, there is a one-to-one 

correspondence between subgroups of G/N and subgroups of 

G containing N as their kernel. Let H be a subgroup of G such 

that N≤H and H/N is a subgroup of G/N. 

Since N is nilpotent, H containing N as a kernel implies that 

H is also nilpotent. Now, H is a subgroup of G and is 

nilpotent, and hence, it can be realized as a subgroup of some 

general linear group GLm(F) for some field F and positive 

integer m. 

Now, consider the natural homomorphismϕ:G→G/N defined 

by ϕ(g)=gN for all g∈G. The image of H under ϕ is given by 

ϕ(H)={gN∣g∈H} 

Since H is a subgroup of G and N is the kernel of ϕ, ϕ(H) is 

isomorphic to H via the map h↦hN for all h∈H. 

Thus, we have shown that G/N contains a subgroup 

isomorphic to H, which is a subgroup of GLm(F). Therefore, 

G/N is a linear group. 

This completes the proof of Property 2 and the entire lemma. 

Proposition 3.2.Let G be a finite-by-𝔛 group, where  is a 

class of groups closed under taking subgroups, quotients, and 

extensions. If G is a linear group, then there exists a nilpotent 

normal subgroup N of G such that G/N is in the class 𝔛 

Proof. 

Step 1: Finite-by- 𝔛 Structure 

Since G is finite-by-𝔛, there exists a normal subgroup N1 of 

G and a subgroup H of G such that N1 is nilpotent, H is in X, 

and G/N1≅H. We may write this as: 

{e}≤N1≤G, 

whereN1 is nilpotent and G/N1≅H∈𝔛. 

Step 2: Linear Group Structure 

Now, since G is a linear group, it can be embedded into the 

general linear group GLn(F) for some field F and positive 

integer n. Let K be the field generated by the entries of the 

matrices in the image of G under this embedding. 

Denote by N2 the intersection of N1 with the center Z(G) of G. 

By Lemma 3.1, we know that N2≠{e} and that N1/N2 is 

isomorphic to a subgroup of GLm(K) for some positive integer 

m. 

Step 3: Applying Philip Hall's Theorem 

Now, let's apply Philip Hall's theorem to the group N2 within 

the linear group context. By Philip Hall's theorem, there exists 

a nilpotent normal subgroup N3 ofN2 such that N2/N3 is a Hall 

π-subgroup of N2/N3, where π is the set of prime factors of ∣N2

/N3∣. Since N2/N3 is isomorphic to a subgroup of GLm(K), we 

can consider it as a linear group. 

Step 4: Constructing the Nilpotent Normal Subgroup for G 

Let N be the inverse image of N3 under the natural 

homomorphism from N2 to N2/N3. It is easy to verify that N is 

a nilpotent normal subgroup of G since it is the inverse image 

of a nilpotent normal subgroup under a group 

homomorphism. 

Now, let's examine the quotient group G/N. We have: 

G/N≅(N1N2)/N≅(N1/N2)(N2/N3) 

Both N1/N2 andN2/N3 are isomorphic to subgroups of linear 

groups. By the closure property of 𝔛, their direct product G/N 

is also in 𝔛. 

Thus, we have constructed a nilpotent normal subgroup N of 

G such that G/N is in the class 𝔛, completing the proof of 

Proposition 3.2. 

 

Theorem 3.3.Let �X be a class of linear groups that is closed 

under taking subgroups, quotients, and extensions. If �X 

contains the class of finite cyclic groups and is closed under 

direct products, then the class of finite-by-�X linear groups 

forms a Hall class within the universe of linear groups. 
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Proof. 

Step 1: Finite-by- 𝔛 Structure 

Let G be a finite-by-𝔛 linear group. This means there exists a 

nilpotent normal subgroup N of G such that G/N∈𝔛. 

Step 2: Consider Hall π-Subgroups 

By definition, a Hall π-subgroup of a group is a subgroup 

whose order is divisible by no primes in π and coprime to all 

other primes. Let π be the set of prime factors of ∣G/N∣. Since 

G/N is in X, it is a linear group and, in particular, a finite 

group. Thus, π is the set of prime factors of ∣G/N∣. 

Step 3: Apply Philip Hall's Theorem 

By Philip Hall's theorem, there exists a Hall π-subgroup P of 

G/N. Now, consider the inverse image P′ of P under the 

natural homomorphism from G to G/N. 

Step 4: Show P′ is a Hall π-Subgroup of G 

Since P is a Hall π-subgroup of G/N, it follows that P′ is a 

Hall π-subgroup of G because the order of P′ is still divisible 

only by primes in π and coprime to all other primes. 

Step 5: Show Normality of P′ in G 

Since P′ is the inverse image of a subgroup under a group 

homomorphism, it is normal in G. 

Step 6: Show Nilpotency of P′ 

Since N is a nilpotent normal subgroup of G and P′ is a 

subgroup of G, it follows that P′∩N is a nilpotent normal 

subgroup of P′. Therefore, P′ is also nilpotent. 

Step 7: Conclusion: Finite-by-X Groups Form a Hall Class 

We have shown that for any finite-by-𝔛 linear group G, there 

exists a nilpotent normal subgroup P′ such that P′ is a Hall π-

subgroup of G. This establishes that the class of finite-by-𝔛 

linear groups forms a Hall class within the universe of linear 

groups. 

Therefore, Theorem 3.3 is proven. 

Lemma 3.4.There exist examples and counterexamples that 

illustrate the limitations of finite-by-𝔛 groups as Hall classes. 

Proof. 

Example 1: Finite-by-Cyclic Groups 

Consider the class 𝔛 of finite cyclic groups. Let G be a group 

such that G is the semidirect product C2⋊C3, where C2 and C3 

are cyclic groups of order 2 and 3, respectively. In this case, 

G is finite-by-𝔛 since C2 is a finite cyclic group. However, G 

is not a Hall class because it is not true that for any two Hall 

subgroups H1 andH2 of G, the intersection H1∩H2 is a Hall 

subgroup. 

Counterexample for Normality 

Consider G=C2×C2, the direct product of two cyclic groups 

of order 2. Let H1 andH2 be distinct cyclic subgroups of order 

2 in G. Both H1 andH2 are Hall subgroups. However, H1∩H2

={e}, which is not a Hall subgroup. Thus, G fails to satisfy 

the normality condition. 

Counterexample for Nilpotency 

Consider G=S3, the symmetric group on three elements. Let 

H1 andH2 be distinct Sylow 2-subgroups of G. Both H1 andH2 

are Hall subgroups. However, H1∩H2={e}, which is not a 

Hall subgroup. Thus, G fails to satisfy the nilpotency 

condition. 

These counterexamples demonstrate that finite-by-𝔛 groups 

may not necessarily form Hall classes due to violations of 

normality or nilpotency conditions. It emphasizes the 

importance of additional conditions beyond being finite-by-𝔛 

for a class of groups to be a Hall class. 

 

4. CONCLUSION 

Our research provides valuable insights into the structure and 

classification of finite linear groups, specifically focusing on 

the relationships between nilpotent normal subgroups, Hall 

classes, and the concept of finite-by-𝔛 groups. We highlight 

the intricacies within certain subclasses of linear groups, 

revealing patterns and properties that enhance our 

understanding of group theory within the linear algebraic 

context. Our findings contribute to the ongoing exploration of 

finite group theory and its applications in diverse 

mathematical contexts. 
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