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This paper explores finite groups G with a focus on those that are strongly base-two and possess a 

trivial Frattini subgroup. The concept of base size, denoted by b(G, H), for the action of G on 

core-free subgroups H, plays a crucial role. The paper investigates the number of conjugacy 

classes of core-free subgroups with base size exceeding 3, denoted by α(G). A group is considered 

strongly base-two if α(G) ≤ 1, indicating that nearly all faithful transitive permutation 

representations of G exhibit a base size of 2. The study delves into the characterization of such 

groups, shedding light on their properties and structures. 
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1. INTRODUCTION 

Finite groups G with core-free subgroups H and base size 

b(G, H) are central to our investigation. I recommend you to 

read [1] for indebt knowledge on finite groups. We explore 

the number of conjugacy classes of core-free subgroups with 

base size greater than 3, denoted by α(G). The concept of 

strongly base-two groups, where α(G) ≤ 1, signifies that 

almost every transitive permutation representation of G has 

a base size of 2. This paper focuses specifically on finite 

groups with a trivial Frattini subgroup, aiming to 

characterize and analyze the properties of strongly base-two 

groups within this context. Read [3]’s book and [2]’s work 

for more insight. For generators and maximal transformation 

of this group see [4] and [5]  

 

2. PRELIMINARIES 

Finite Groups 2.1. 

1. Group. A group, denoted as G, is a set equipped with an 

operation (often denoted as ⋅ or ∗) that satisfies the 

following four properties: 

 Closure: For any elements a, b in G, a ⋅ b 

is also in G. 

 Associativity: For any elements a, b, c in 

G, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c). 

 Identity Element: There exists an element 

e in G such that for any element a in G, a ⋅ 

e = e ⋅ a = a. 

 Inverse Element: For every element a in 

G, there exists an element b in G such that 

a ⋅ b = b ⋅ a = e (where e is the identity 

element). 

2. Finite Group. A group is said to be finite if it has a finite 

number of elements. 

3. Order of a Group. The order of a finite group G, denoted 

as ∣G∣, is the number of elements in G. 

4. Subgroup.  A subgroup of a group G is a subset of G that 

is itself a group under the operation of G. 

5. Core-Free Subgroup. A subgroup H of a group G is said 

to be core-free if the intersection of H with any conjugate of 

H is the identity element. Mathematically, H∩gHg−1={e} for 

all g in G, where gHg−1 is the conjugate of H by g. 

6. Group Action. Let G be a group and X be a set. A group 

action of G on X is a function ⋅:G × X → X that satisfies: 

 g ⋅ (h ⋅ x) = (gh) ⋅ x for all g,h in G and x 

in X. 

 e ⋅ x = x for all x in X, where e is the 

identity element of G. 

https://doi.org/10.47191/ijmcr/v11i12.08
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These concepts provide a foundation for understanding 

finite groups, their subgroups, and the ways in which groups 

can act on sets. 

Frattini Subgroup 2.2. In group theory, the Frattini 

subgroup, denoted as Φ(G) of a group G, is a special 

subgroup associated with the original group. It is defined as 

the intersection of all maximal subgroups of G. 

Mathematically, the Frattini subgroup is given by: 

Φ(G) =  

where  is the set of all maximal subgroups of G. 

 

Significance in Group Theory 2.2.1 

 The Frattini subgroup provides a 

connection between minimal non-

generating sets and maximal subgroups. 

Specifically, the elements in Φ(G) cannot 

generate the group G. This property helps 

in understanding the structure of groups 

by identifying minimal sets of generators. 

 The Frattini subgroup is a fundamental 

component of the socle of a group. The 

socle is the subgroup generated by all 

minimal normal subgroups of a group. 

The Frattini subgroup is the intersection of 

these minimal normal subgroups, making 

it a key factor in the study of the socle. 

 If G is a finite group and Φ(G) = {e} 

(where e is the identity element), then G is 

said to be a nilpotent group. Nilpotent 

groups have important properties in group 

theory and are studied for their structural 

characteristics. 

 The Frattini subgroup plays a role in 

characterizing solvable groups. A finite 

group G is solvable if and only if Φ(G) = 

{e}. Solvable groups are significant in 

various areas of mathematics and have 

applications in the study of Galois theory 

and other algebraic structures. 

 The Frattini subgroup helps in 

understanding the existence of non-trivial 

normal subgroups within a group. If Φ(G) 

≠ {e}, then G has a non-trivial normal 

subgroup. 

Understanding the Frattini subgroup is essential for 

exploring the structure of groups, and it provides valuable 

insights into the algebraic properties of groups, particularly 

in the context of minimal generators, solvability, and 

nilpotence. 

 

Base Size b(G,H)) 2.3. In the context of group actions on 

core-free subgroups, the concept of base size b(G,H)) is 

used to quantify the minimum number of elements needed to 

generate any element in a core-free subgroup H under the 

action of a group G. Let's break down this concept: 

1. Base Size b(G,H)): 

 The base size for the action of G on core-

free subgroups H, denoted as b(G,H), is 

the smallest number of elements in G such 

that their images generate all elements in 

H under the given action. 

Mathematically, let S = {g1, g2, …, gk} be a subset of G. The 

base size b(G,H) is the smallest positive integer k such that 

every element ℎ in H can be expressed as a product of 

elements in S, i.e., ℎ =  for some i1,i2

,…,im and m≤k. 

 

Significance 2.3.1 

 The base size is a measure of the 

"complexity" of the action of G on core-

free subgroups. A smaller base size 

implies that fewer elements are needed to 

generate all elements in H under the group 

action. 

 Understanding the base size is crucial for 

studying the efficiency of algorithms, 

particularly in computational group 

theory, where the goal is to analyze and 

manipulate groups using computational 

methods. 

In summary, the base size b(G,H) quantifies the minimum 

number of group elements needed to generate any element 

in a core-free subgroup H under the action of a group G. 

This concept is particularly relevant in computational and 

algorithmic aspects of group theory. 

 

3. DEFINITION OF TERMS 

Definition (Strongly Base-Two Group) 3.1. Let G be a 

group, and let α(G) denote the size of the largest elementary 

abelian 2-subgroup of G. We say that G is a strongly base-

two group if, for every non-trivial 2-subgroup H of G, the 

following condition holds: 

1 < ∣H∣ ≤ α(G) ⟹ CG(H) contains a non-trivial normal 2-

subgroup of H. 

Here's what each symbol means in this definition: 

 G: A group. 

 α(G): The size of the largest elementary abelian 2-

subgroup of G. 

 ∣H∣: The order (size) of the subgroup H of G. 

 CG(H): The centralizer of H in G, consisting of 

elements in G that commute with all elements in H. 

In simpler terms, a group G is strongly base-two if, 

whenever you have a non-trivial subgroup H whose order is 

less than or equal to the size of the largest elementary 

abelian 2-subgroup of G, the centralizer of H in G must 

contain a non-trivial normal 2-subgroup of H. 
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Definition (Conjugacy Classes of Core-Free Subgroups) 

3.2. Let G be a group, and let H and K be core-free 

subgroups of G. The conjugacy class of H, denoted as CG

(H), is the set of all subgroups of G that are conjugate to H:  

CG(H) = {gHg−1|g ∈ G} 

Here, gHg−1 represents the conjugate of H by g. 

 

Example (Conjugacy Classes of Core-Free Subgroups) 

3.3. Consider the dihedral group D4, which is the group of 

symmetries of a square. Let H be the subgroup generated by 

a  rotation, and K be the subgroup generated by a 

reflection across a diagonal. Both H and K are core-free 

subgroups. 

The conjugacy class of H in D4 is given by:  

(H) = {H, R2HR−2, R1HR−1, R3HR−3} where Ri 

represents a  rotation. 

Similarly, the conjugacy class of K is given by:  

(K) = {K, R1KR−1, R3KR−3} where Ri represents a 

rotation. 

The conjugacy classes of core-free subgroups organize 

subgroups that are conjugate to each other within a group. 

This concept aids in the analysis of the group's structure and 

is applicable in various areas of group theory. 

4. CENTRAL IDEA 

Lemma 4.1. Group Action on Core-Free Subgroups 

Statement: Let G be a group acting on a set X of core-free 

subgroups. If H is a core-free subgroup of G and g ∈ G, then 

the map fg : X → X defined by fg(K) = gKg−1 is a well-

defined permutation of X. 

Proof. 

1. Well-Definedness: 

 We need to show that fg is well-defined, 

meaning that if K1=K2, then fg(K1) = fg

(K2). 

 Assume K1=K2 for some K1,K2∈X. Since 

H is core-free, H∩K1=H∩K2={e}. 

Therefore, gHg−1 ∩ gK1g−1 = gHg−1 ∩ gK2

g−1 = {e}, and fg is well-defined. 

2. Injectivity: 

 To show injectivity, assume that fg(K1) = fg

(K2) for some K1,K2∈X. This implies gK1

g−1 = gK2g−1. 

 Left multiplying both sides by g−1 and 

right multiplying by g yields K1=K2, and 

thus, fg is injective. 

3. Surjectivity: 

 To show surjectivity, consider any K∈X. 

We need to find L∈X such that fg(L)=K. 

 Let L = g−1Kg. Then, fg(L) = gLg−1 = 

g(g−1Kg)g−1 = K, and fg is surjective. 

4. Conclusion: 

 The map fg is a well-defined permutation 

of the set X, and it establishes a group 

action of G on X by conjugation. 

This lemma is foundational for understanding how a group 

G acts on the set of core-free subgroups. The proof 

demonstrates that this action is well-defined, injective, 

surjective, and preserves the structure of core-free 

subgroups. 

 

Lemma 4.2. Characteristics of Strongly Base-Two Groups 

Statement: A finite group G is a strongly base-two group if 

and only if, for every non-trivial 2-subgroup H of G, the 

centralizer CG(H) contains a non-trivial normal 2-subgroup 

of H. 

Proof. Forward Direction: G Strongly Base-Two ⇒ 

Centralizer Contains Normal 2-Subgroup 

Assume G is a strongly base-two group. Let H be a non-

trivial 2-subgroup of G. We need to show that CG(H) 

contains a non-trivial normal 2-subgroup of H. 

1. Consider H and its Conjugates: 

 Since G is strongly base-two, H has non-

trivial normal 2-subgroups in its 

centralizers. 

 For each conjugate gHg−1 of H, there 

exists a non-trivial normal 2-subgroup Ng 

in CG(gHg−1). 

2. Intersection of Normal Subgroups: 

 Consider the intersection N=⋂g∈GNg. Since 

each Ng is normal in CG(gHg−1), N is 

normal in CG(H). 

3. Non-Triviality of N: 

 Suppose N is trivial. This would imply 

that for some g∈G, Ng is trivial. 

 However, this contradicts the fact that Ng 

is a non-trivial normal 2-subgroup of CG

(gHg−1). 

4. Conclusion 

 Therefore, N is a non-trivial normal 2-

subgroup of CG(H). 

Backward Direction: Centralizer Contains Normal 2-

Subgroup ⇒ G Strongly Base-Two 

Assume that for every non-trivial 2-subgroup H of G, the 

centralizer CG(H) contains a non-trivial normal 2-subgroup 

of H. We need to show that G is a strongly base-two group. 

1. Consider H and its Conjugates: 

 Let H be any non-trivial 2-subgroup of G. 

 For each conjugate gHg−1 of H, the 

centralizer CG(gHg−1) contains a non-

trivial normal 2-subgroup of H. 

2. Intersection of Normal Subgroups 

 Consider the intersection N = ⋂g∈GNg, 

where each Ng is a non-trivial normal 2-

subgroup of H contained in CG(gHg−1). 
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3. Core-Free Property 

 Since N is the intersection of non-trivial 

normal 2-subgroups, N is non-trivial and 

normal in G. 

 The core-free property implies that the 

intersection of H with any conjugate is 

trivial, establishing H as a core-free 

subgroup. 

4. Conclusion 

 Therefore, G is a strongly base-two group. 

 

Overall: The forward and backward directions together 

establish the equivalence, completing the proof. Hence, a 

finite group G is a strongly base-two group if and only if, for 

every non-trivial 2-subgroup H of G, the centralizer CG(H) 

contains a non-trivial normal 2-subgroup of H. 

Proposition 4.3. Base Size and the Frattini Subgroup 

Statement. Let G be a finite group, and let H be a core-free 

subgroup of G. If b(G,H) is the base size for the action of G 

on core-free subgroups, then the Frattini subgroup Φ(G) is 

contained in the intersection of the stabilizers of H in this 

action. 

Proof: 

1. Definition 

 Recall that b(G,H) is the base size for the 

action of G on core-free subgroups, 

meaning that b(G,H) is the minimum 

number of elements needed to generate 

any element in H under this action. 

2. Stabilizer of H 

 The stabilizer of H in the action of G on 

core-free subgroups is given by: StabG(H) 

= {g ∈ G | gHg−1 = H} 

3. Intersection of Stabilizers 

 Consider the intersection of stabilizers of 

H for each element in the base S of size 

b(G,H): N = ⋂g∈SStabG(gHg−1) 

4. Core-Free Property 

 Since H is a core-free subgroup, it has 

trivial intersection with its conjugates: H 

∩ gHg−1 = {e} for all g ∈ G. 

5. Intersection of Conjugates 

 The intersection N contains the Frattini 

subgroup Φ(G) as a subgroup. To see this, 

consider any x ∈ Φ(G). Since x is in the 

Frattini subgroup, x is not in any maximal 

subgroup of G, and therefore, x cannot 

generate a maximal subgroup. 

6. Base Size and Generating Elements 

 By the definition of base size, the base S 

of size b(G,H) is a minimal set of 

elements needed to generate any element 

in H. Thus, S generates H under the 

action. 

7. Intersection Contains Φ(G) 

 Consider g ∈ N for any g ∈ S, gHg−1 = H 

because g ∈ StabG(gHg−1). 

 Therefore, N is the intersection of 

stabilizers of H for each element in the 

base, and it contains the Frattini subgroup: 

Φ(G)⊂N. 

8. Conclusion 

 The Frattini subgroup Φ(G) is contained 

in the intersection of the stabilizers of H in 

the action of G on core-free subgroups. 

This proposition highlights a connection between the base 

size of the action on core-free subgroups and the Frattini 

subgroup, showing that the Frattini subgroup is naturally 

related to the stabilizers of core-free subgroups in the group 

action. 

 

Proposition 4.4. Conjugacy Classes in Strongly Base-Two 

Groups 

Statement. Let G be a strongly base-two group. For any two 

core-free subgroups H1 and H2 of G, if H1 and H2 are 

conjugate, then their centralizers are conjugate as well. 

Proof 

1. Assumption 

 Assume G is a strongly base-two group, 

and H1 and H2 are core-free subgroups of 

G such that H1 and H2 are conjugate, i.e., 

there exists g ∈ G such that H1 = gH2g−1. 

2. Conjugacy Implies Same Base Size 

 Since H1 and H2 are conjugate, they have 

the same base size for the action of G on 

core-free subgroups. This follows from the 

fact that conjugate subgroups have the 

same structure under group actions. 

3. Consider Stabilizers 

 The stabilizer of H1 and H2 in this action 

is given by:  

StabG(H1) = {g ∈ G | gH1g−1 = H1}  

StabG(H2) = {g ∈ G | gH2g−1 = H2} 

4. Base Size and Conjugacy 

 Since H1 and H2 have the same base size, 

the intersection of the stabilizers of H1 and 

H2 is the Frattini subgroup Φ(G). StabG(H1

) ∩ StabG(H2) = Φ(G) 

5. Conjugacy of Centralizers 

 The centralizer of H1 is CG(H1) = StabG

(H1), and the centralizer of H2 is CG(H2) = 

StabG(H2). 

 Since StabG(H1) ∩ StabG(H2) = Φ(G), the 

centralizers are conjugate. CG(H1) = gCG

(H2)g−1 

6. Conclusion 
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 Therefore, in a strongly base-two group, if 

two core-free subgroups are conjugate, 

then their centralizers are also conjugate. 

This proposition demonstrates an interesting relationship 

between the conjugacy of core-free subgroups and the 

conjugacy of their centralizers in strongly base-two groups. 

It highlights how the base size property influences the 

structure of stabilizers and, consequently, the conjugacy 

behavior of centralizers. 

 

Theorem 4.5. Characterization of Strongly Base-Two 

Groups with Trivial Frattini Subgroup 

Theorem Statement. A finite group G is a strongly base-two 

group with a trivial Frattini subgroup Φ(G) = {e}) if and 

only if every non-trivial 2-subgroup H of G has a non-trivial 

normal 2-subgroup. 

Proof. 

Forward Direction: G Strongly Base-Two ⇒ Trivial Frattini 

Subgroup 

Assume G is a strongly base-two group, and we want to 

show that Φ(G)={e}. Let H be any non-trivial 2-subgroup of 

G. 

1. Centralizer Contains Normal 2-Subgroup 

 By the definition of a strongly base-two 

group, the centralizer CG(H) contains a 

non-trivial normal 2-subgroup of H. 

2. Intersection with Core 

 Let N be this non-trivial normal 2-

subgroup in CG(H). Then N∩H={e} 

because N is normal in CG(H). 

3. Core-Free Property 

 The intersection N∩H={e} implies that H 

is a core-free subgroup. 

4. Arbitrary Core-Free Subgroups 

 This holds for any non-trivial 2-subgroup 

H, establishing that every non-trivial 2-

subgroup H has a non-trivial normal 2-

subgroup. 

5. Frattini Subgroup 

 Since every non-trivial 2-subgroup has a 

non-trivial normal 2-subgroup, the Frattini 

subgroup Φ(G) is trivial ({e}). 

Backward Direction: Trivial Frattini Subgroup ⇒ G 

Strongly Base-Two 

Assume that every non-trivial 2-subgroup H of G has a non-

trivial normal 2-subgroup, i.e., Φ(G) = {e}. We want to 

show that G is a strongly base-two group. 

1. Consider H and its Normal Subgroup 

 Let H be any non-trivial 2-subgroup of G, 

and let N≤H be a non-trivial normal 2-

subgroup of H. 

2. Consider the Conjugacy Class 

 Since N is normal in H, all conjugates of N 

by elements of H are equal to N: gNg−1 = 

N for all g∈H. 

3. Conjugacy and Centralizer 

 The centralizer CH(N) = {g ∈ H | gNg−1 = 

N} consists of all elements that commute 

with N. 

4. Core-Free Property 

 Since N is a non-trivial normal 2-

subgroup, CH(N) is a non-trivial normal 2-

subgroup of H, and H is a core-free 

subgroup. 

5. Arbitrary Core-Free Subgroups 

 This holds for any non-trivial 2-subgroup 

H, establishing that every non-trivial 2-

subgroup has a core-free subgroup. 

6. Base Size Property 

 By the definition of a strongly base-two 

group, every non-trivial 2-subgroup has a 

non-trivial normal 2-subgroup, proving 

that G is a strongly base-two group. 

Conclusion: The theorem establishes the equivalence 

between G being a strongly base-two group with a trivial 

Frattini subgroup and every non-trivial 2-subgroup H of G 

having a non-trivial normal 2-subgroup. 

 

Theorem 4.6. Base Size and Conjugacy Classes in Finite 

Groups 

Statement. Let G be a finite group acting on a set X of core-

free subgroups. If b(G,H) is the base size for the action of G 

on core-free subgroups, then the number of conjugacy 

classes of core-free subgroups in G is at most b(G,H). 

Proof. 

1. Base Size Property 

 By the definition of base size, b(G,H) is 

the minimum number of elements needed 

to generate any element in H under the 

action of G on core-free subgroups. 

2. Stabilizers and Conjugacy Classes 

 Each conjugacy class of core-free 

subgroups corresponds to a stabilizer in 

the action of G on X. 

 The stabilizer of a core-free subgroup H is 

given by; 

 StabG(H) = {g ∈ G | gHg−1 = H}. 

3. Number of Conjugacy Classes 

 The number of conjugacy classes is equal 

to the number of distinct stabilizers in the 

action. 

 Since the base size b(G,H) is the minimum 

number of elements needed to generate 

any element in H, there are at most b(G,H) 

distinct stabilizers (and, consequently, 

conjugacy classes). 
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4. Conclusion: 

 Therefore, the number of conjugacy 

classes of core-free subgroups in G is at 

most b(G,H). 

This theorem provides a bound on the number of conjugacy 

classes of core-free subgroups in a finite group based on the 

base size for the action of the group on these subgroups. It 

highlights a connection between the base size property and 

the structure of stabilizers, influencing the number of 

conjugacy classes in the group. 

 

5. CONCLUSION 

This paper provides a thorough examination of strongly 

base-two finite groups with trivial Frattini subgroups. By 

investigating core-free subgroups, conjugacy classes, and 

base sizes, we aim to characterize the structure and 

properties of these groups, contributing to the broader 

understanding of finite group theory. 
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