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Some special classes of univalent functions play an important role in geometric function theory 

because of their geometric properties. Many of such classes have been introduced and studied; 

some became well known, for example, the classes of convex, starlike, close to convex, strongly 

convex and strongly starlike functions. Previous studies by Awolere and Oladipupo (2018) now 

served as motivation and background to investigate certain classes of analytic, univalent and bi-

univalent functions in terms of their coefficient bounds involving salagean and sigmoid 

functions via Chebyshev poynomial. The classes 𝐻𝑛(𝜆, 𝛽, 𝛾(𝑠), 𝜙(𝑧, 𝑡))  are newly established 

classes for which coefficient bounds will be determined. The aim of the present work is to 

investigate coefficient bound for class 𝐻𝑛(𝜆, 𝛽, 𝛾(𝑠), 𝜙(𝑧, 𝑡))  of pseudo-starlikeness associated 

with sigmoid functions defined by Salagean operator via Chebyshev polynomial, Fekete-szego 

problem will also be established and the Hankel of the function will be determined. 
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INTRODUCTION 

The theory of a special function does not have a specific 

definition but it is of incredibly important to scientist and 

engineers who are concerned with Mathematical calculations 

and have a wide application in physics, Computer, engineering 

etc. Recently, the theory of special function has been outshining 

by other fields like real analysis, functional analysis, algebra, 

topology, differential equations. Bi-univalent function is a 

complex function which its inverse exist and it arises from 

univalent functions which is a branch of complex analysis. The 

concept of univalence of an analytical function g(z) in a simply 

connected domain refers to the fact that g(z) does not take the 

same value twice (Pommerenke,1983). It has found its use in 

solving a broad range of problems in hydrodynamic, 

aerodynamics, thermodynamics, electrodynamics, natural 

science and neural network. 

Let function g(z) be regular in the unit disk }1:{  zzU and the function g(z) has a Maclaurin series expansion  

  

Normalizing the class of analytic function on D that satisfies the 
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In fact, with the univalence of g(z), the supposition that 1b 0  consequently hold true, otherwise for sufficiently small value of z the 

function f(z) takes the same value at least twice in the neighborhood of 0b  (Hayman, 1958). A function f(z) is said to be bi-univalent if 

its inverse exist. A function is analytic if and only if its Taylor series about 𝑥0 converges to the function in some neighborhood for every 

𝑥0 in its domain. It’s a function that is locally convergent power series. There exist both real analytic functions and complex analytic 

functions, categories that are similar in some ways, but different in others. Functions of each type are infinitely differentiable, but 

complex analytic function exhibit properties that do not hold generally for real analytic functions.  

 Chebyshev polynomial 

Chebyshev polynomials have become increasingly important in numerical analysis, from both theoretical and practical points of view; 

there are four kinds of Chebyshev polynomials. The majority of books and research papers dealing with specific orthogonal polynomial 

of Chebyshev family, contain mainly results of Chebyshev polynomial of first and second kinds )(xTn and )(xU n  and their numerous 

uses in different applications, see Atinkaya and Yacin (2016), Fadipe-Joseph,  Kadir, Akinwumi, Adeniran (2018). 

Fekete-Szego theorem 

Fekete-Szego, (1933) proved that 
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Holds for the function Sf  and the result is sharp. The problem of finding the sharp bounds for the non-linear functional 
2

23 aa 

of any compact family of function is popularly known as Fekete–Szego problem. Several authors at different time have applied the 

classical Fekete – Szego to various classes of functions to obtain various sharp bounds the likes of Ravichandran (2004), Selvaraj & 

Thirupathi (2014), Frastin & Darus (2003); Mohd & Darus (2012). 

Pseudo-starlikeness functions 

More Recently Babalola (2013) defined a new subclass λ−pseudo starlike function of order  β (0≤β <1)  satisfying the analytic condition  
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and denoted by  L . Further note that 

If λ= 1, we have the class of starlike functions of order β, satisfying the condition  
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denoted by  *S
 

 If β= 0, we simply write L instead of L(0). Babalola (2013) remarked that though for λ >1, these classes of λ−pseudo-starlike functions 

clone the analytic representation of starlike functions, it is not yet known the possibility of any inclusion relations between them. 

Thereafter numerous researchers have study pseudo-starlike functions in different direction. For further information see Laxmi and 

Sharma (2017), Awolere and Ibrahim-Tiamiyu (2017),. Murugurusundaramoorthy and Janani (2015). 

 

METHOD AND TOOLS 

In this present work, several methods shall be employed such as Salagean derivative operator ))(()( 1 zfdDzfD nn  , Coefficient 

bounds, Fekete-szego problems and differentiation, taylor series expansion will also be used to transform pseudo-starlike functions. 

Salagean (1983) introduces the following differential operator: 



“Coefficient Bounds of Bi-Univalent Function Involving Pseudo-Starlikeness Associated with Sigmoid Function Defined 

by Salagean Operator via Chebyshev Polynomial” 

3957 GBOLAGADE, A. M.1, IJMCR Volume 12 Issue 01 January 2024 

 

)()(0 zfzfD   

))())(()( 101  zzfzfDDzfD  

       
))(())(()( 11   zfDzzfDDzfD nnn

                                              (4) 

Where   ,...2,10 n  

Lemma 1:  If a function Pp  is given by  UzzpzpzpzP  ...,1)( 3

3

2

21
 

Then Nkpk  ,2  where P is the family of all functions analytic in U for which  

P(0) = 1 and Re(p(z))>0 (Miller & Mocanu, 2000, Miller 1975) 

For the purpose of this work the following lemma shall be recalled. 

Lemma 2: If   ...,2

21  zbzbz  ,01 b is analytic and satisfies   1z  on unit disk E, then for each 10  r , 

  1 z  and   11  re unless   zez  1  for some real number  Definition 1: A function f  is said to be the class 
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where g is an extension of Ef 1
. 

Chebyshev polynomial 

The Chebyshev polynomial of the first and second kinds is well known. In the case of a real variable x  in (-1, 1), they are defined by 
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The Chebyshev polynomials ),(tTn  ,1,1t of the first kind have the generating function of the form  

∑ 𝑇𝑛(𝑡)𝑧𝑛 =  
1 − 𝑡𝑧

1 − 2𝑡𝑧 + 𝑧2
(𝑧 ∈  𝐷)

∞

𝑛=0

 

However, the Chebyshev polynomials of the first kind Tn (t) and the second kind Uu (t) are well connected by the following relationships 

𝑑𝑇𝑛(𝑡)

𝑑𝑡
= 𝑛𝑈𝑛−1(𝑡), 

𝑇𝑛(𝑡) =  𝑈𝑛(𝑡) − 𝑡𝑈𝑛−1(𝑡), 

2𝑇𝑛(𝑡) =  𝑈𝑛(𝑡) −  𝑈𝑛 − 2(𝑡). 

 Main Results
 

  

Theorem 1: Let ),(),(,,( tzsf n   then   
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Proof: Since ),(),(,,( tzsn  . There exist two Chebyshev polynomials  
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In the light of (5), (6), and (7) and from (10) and (11) we have, 
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Subtracting (13) and (16), making use of (18) and (19) we observe that  

               

               tUdtUdasas

tUctUcasas

nn

nn

1

2

1123

2

2

222

2

2

112

2

2

222

3

113132122

112142313









 

         2

2

22

3 1221423132 aasn  
 



“Coefficient Bounds of Bi-Univalent Function Involving Pseudo-Starlikeness Associated with Sigmoid Function Defined 

by Salagean Operator via Chebyshev Polynomial” 

3962 GBOLAGADE, A. M.1, IJMCR Volume 12 Issue 01 January 2024 

 

              2

1

2

1

2

2221

2

2

22

3 112263132 dctUdctUaas nn  
 

                2

1

2

1

22

2221

2

2

22

3 1121323132 dcUdctUasas nn  
 

    
   s

dctUa
a

nn 



3132

1

3

221

2

2
3






 

    
   

    
   s

dctU

s

dctU
a

nn 







3132

1

3122

1 221

22

2

1

2

1

22

1
3











 

Applying Lemma 2 once again, we obtain 

 
 

 
   s

tt
a

n







313

12

12

14
2

22

3










 

Now from (14) and (17), it is evident that  

        32

22

4 322116414 aasas nnn  

 

        32

22

4 32396414 aasas nnn  

  
             tUdtUddtUdasn

3

3

122113

3

2

332 112122210
3

214

















again by (13) 

and (15) we observe that
 

       

  
  3

2

3322

32

222

4

22210124
3

218

3239621164142

as

aasas

n

nnn





















 

       
  

  3

2

332

32

2

4

2 2386
3

218
325204142 asaasas nnnn 


 













       
  

  3

2

32

32

2

4

2 2368
3

218
321454142 asaasas nnnn 


 













       
  

 

              3

1

3

1321112331

3

2

32

32

2

4

2

11212

2368
3

218
321454142

dctUddcctUdctU

asaasas nnnn























       
   
   

    
   

    
   
























s

dctU

s

dctU

s

ctU
sas

nnn

nnn














3132

1

3122

1

212

1
321454142 221

22

2

1

2

1

22

1112

4

2

  
 

   

   
         

    3

1

3

13

21112331333

3

1

3

1

3

32

1

121
212

1
2368

3

218

dctU

dccctUdctU
s

ctU
s

n

n






























   

   

     

    
   

    
    

    
   

    
   

    
   s

dctU

s

dccctU

s

dctU

s

dccctU

s

dctU

s

ctU
a

nnn

nnn

























4142

1

4142

12

4142

1

413124

15

4124

15

414126

1)9348(

3

`1

3

1321212331

2121

2

1

2

3

2

1

2

1

3

1

3

3

1

3

1

3

4































 

on the application of Lemma 2, above yields
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   s

ctU

s

dctU

s

dctU
aa

nnn 222

2

1

2

1

2

221

22

2

1

2

1

2

1

2

2

23
212

1

3132

1

3122

1































    (22)
 

Applying lemma 2 for the coefficients of c1,d1, c2, and d2 in (22), we have  
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which completes the proof       

  

Theorem 3:  Let ),(),(,,( tzsf n   Then 
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Upon substitution for values of a2,a3 and a4, we have  
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Applying lemma 2 for the coefficients of c1,d1, c2, and d2 yields
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which completes the proof. 

  
Corollary 1:   Let ),(),(,0,(0 tzsf   from theorem1, we have 
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 Corollary 2:  Let )),(),(,,(0 tzsf   

and ℓ ∈ ℝ in theorem 2, we have 
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Corollary 3: Let
 

),(),(,,(0 tzsf   in theorem 3, we have 
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CONCLUSION  

This work is focused on defining a bi-univalent function of 

order   and establishing coefficient bounds of bi-univalent 

function involving pseudo-starlikeness associated with sigmoid 

functions defined by Salagean operator via Chebyshev 

polynomials. The results gave birth to new subclasses of bi-

univalent function for class ),(),(,,( tzsn  , 

Coefficient bounds for class ),(),(,,( tzsn 
, 

and 

relevant connection to Fekete-szego problem for the class

),(),(,,( tzsn 
  

with respect to the coefficient 

bounds of bi-univalent function involving pseudo-starlikeness 

associated with sigmoid functions defined by Salagean operator 

via Chebyshev polynomials were established. The 

consequences of the results with respects to the choices of the 

parameters involved made establishment of corollaries 

possible. 
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