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Abstract

This paper investigates an optimal energy problem for infinite dimensional dynamic

systems governed by partial differential equations. A new concept of an optimal energy

problem is proposed, and its existence and uniqueness in Banach space are studied and

obtained in terms of semigroup of linear operators and geometric properties of Banach

space. Finally, an application of the optimal control to a Euler-Bernoulli robot beam

is discussed, and it can be seen that the optimal energy control proposed in this paper

is viable to the robot system.
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1 Introduction

Optimal control theory is a branch of control theory that deals with finding a control for

a dynamical system over a period of time such that an objective function is optimized.
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It has numerous applications in science, engineering and operations research. In the past

of couple decades, the optimal control problems for infinite dimensional dynamic systems

appear to be very important and significant in both theory and practice. We have worked

on control theory for infinite dimensional dynamic systems[1]−[5], and obtained a number of

quite meaningful results on stabilities and stabilizations. In the present paper, a new concept

of optimal energy control is proposed, and its existence and uniqueness in Banach space are

studied and obtained in terms of semigroup of linear operators and geometric properties

of Banach space. Finally, an application of the optimal control to a Euler-Bernoulli robot

beam is discussed, and it can be seen that the optimal energy control proposed in this paper

is viable to the robot system.and dealt with an approach of semigroup of linear operators

and in the frequency domain for infinite dimensional dynamic system governed by partial

differential equations. Finally, we apply the optimal control theorem proposed to an Euler-

Bernoulli robot system and show that the optimal energy control in this paper is viable to

the robot system.

2 An Optimal Energy Control

In this section, we shall propose a new concept of an optimal energy control for the infinite

dimensional system defined as follows:

dy
dt = Ay(t) + Bu((y(t), t) + f(y(s), s)

y(0) = y0
(2.1)

where both state space H and control space Y are Hilbert spaces, the state function y(t)

on [0, T ] is valued in H, A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0. B is

a bounded linear operator from L2([0, T ] : Y) to L2([0, T ] : H), u(y(t), t) is a control of the

system, and f(y(s), s) is a function in L2([0, T ] : H).

Let us now investigate a specific optimal control, the minimum energy control of the

system (2.1). We know that the minimum energy control in an abstract Banach space

is just, in general, the minimum norm control. So, in an essential mathematics point of

view, the topic about existence and uniqueness of the minimum energy control should be

significant with a priority to be considered and studied.
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Since mathcalA is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, we see

from the semigroup theory of linear operators that for every control element u(y(·), ·) ∈

L2([0, T ] : Y), the system (2.1) has an unique mild solution

y(t) = S(t)y0 +
∫ t
0
S(t− s)[B(u(y(s), s)) + f(y(s), s)]ds (2.2)

let ϕ(·) be an arbitrary element in C([0, T ],H), and

ρ = infu∈L2([0,T ],Y)‖ϕ(t)− S(t)y0 −
∫ t

0

S(t− s)[Bu(y(s, s) + f(y(s), s)]ds‖ ,

and define the admissible control set of the system (2.1) as follows

Uad = {u ∈ L2([0, T ],Y) : ‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)[Bu(y(s), s) + f(y(s), s)]‖ ≤ ρ+ ε}

(2.3)

where ε is any positive number.

It can be seen from (2.2) that Uad is not empty and contains infinitely many elements

related to ϕ and ε. The minimum energy control problem is actually to find the element u,

satisfying

‖u0‖ = min{‖u‖ : u ∈ Uad} (2.4)

where u0 is said to be a minimum energy control element.

Lemma 2.1 The admissible control set Uad defined by (2.2) is a closed convex set in Hilbert

space L2([0, T ] : Y).

Proof. Convexity. For any u1, u2 ∈ Uad and a real number λ, 0 < λ < 1, it is easy to

see from (2.2) that

‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)[Bui(y(s), s) + f(y(s), s)])‖ ≤ ρ+ ε i = 1, 2 (2.5)

and hence

‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)[B(λu1(y(s), s) + (1− λ)u2(y(s), s)) + f(y(s), s)]ds‖

≤ λ‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)[Bu1(y(s), s) + f(y(s), s)])ds‖

+(1− λ)‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)[Bu2(y(s), s) + f(y(s), s)]ds‖

≤ λρ+ (1− λ)ε = ρ+ ε.

(2.6)
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Consequently, we see from λu1 + (1 − λ)u2 ∈ L2([0, T ];Y) and inequality (3.6) that

λu1 + (1− λ)u2 ∈ Uad, Therefore, Uad is a convex subset of L2([0, T ],Y).

Closedness. Suppose {un} ⊂ Uad, and limn→∞ ‖un − u∗‖ = 0. Let us now show that

u∗ ∈ Uad. In fact, from the definition of Uad we see that

‖ϕ(t)− S(t)y0 −
∫ t

0

S(t− s)(Bun(y(s), s) + f(y(s), s)ds‖ ≤ ρ+ ε, n = 1, 2, · · ·

It should be noted that S(t), t ≥ 0 is a C0-semigroup in Hilbert space H, then there is a

constant M > 0 such that sup
0≤t≤T

‖S(t)‖ ≤M . On the other hand, since y(s) is differentiable

on [0, T ], it is continuous on [0, T ], and hence {y(s) : s ∈ [0, T ]} is a bounded set in L2([0, T ] :

Y). Therefore, there is a constant N > 0 such that ‖Bu(y(s), s)‖ ≤ N (0 ≤ s ≤ T ), and

furthermore,

‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)(Bu∗(y(s), s) + f(y(s0, s))ds‖

≤ ‖ϕ(t)− S(t)y0 −
∫ t
0
S(t− s)(Bun(y(s), s) + f(y(s), s))ds‖

+‖
∫ t
0
S(t− s)B[un(y(s), s)− u∗(y(s), s)]‖

≤ ρ+ ε+M‖un − u∗‖ ·NT

(2.7)

Letting n→∞ leads to

‖ϕ(t)− S(t)y0 −
∫ t

0

S(t− s)[Bu∗(y(s), s) + f(y(s), s]ds‖ ≤ ρ+ ε

which implies that u∗ ∈ Uad, and thus Uad is a closed set. The proof is complete.

Theorem 2.1 There exists an unique minimum energy control element in the admissible

control set Uad of the system (1.1)

Proof. Since L2([0, T ] : Y) is a Hilbert space, it is naturally a strict convex Banach Space.

From the preceding Lemma, we have seen that Uad is a closed convex set in L2([0, T ] : Y),

it follows from [2] that there is an unique element u0 ∈ Uad such that

‖u0‖ = min {‖u‖ : u ∈ Uad}

According to the definition (2.3), u0 is just the desired minimum energy control element

of the system (2.1). The proof is complete.

Finally, we shall show that the minimum energy control element can be approached.
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Theorem 2.2 Suppose that u0 is the minimum energy control element of the system (2.1),

then there exists a sequence {un} ⊂ Uad such that {un} converges strongly to u0 in L2([0, T ] :

Y), namely,

lim
n→∞

‖un − u0‖ = 0

Proof. Let {un} be a minimized sequence in the admissible control set Uad, then it

follows that

‖un+1‖ ≤ ‖un‖, n = 1, 2, · · · (2.8)

and

limn→∞ ‖un‖ = inf{‖u‖ : u ∈ Uad} (2.9)

It is obvious that {un} is a bounded sequence in L2([0, T ];Y), and so there is a subse-

quence {unk
} of {un} such that {unk

} weakly converges to an element ũ in L2([0, T ];Y) (see

[8]).

Since Uad is a closed convex set in L2([0, T ];Y) (see Lemma 2.1), we see from Mazur’s

Theorem that Uad is a weakly closed set in L2([0, T ] : Y), thus ũ ∈ Uad. Combining (3.2)

and employing the properties of limits of weakly convergent sequence on norm yield

inf{‖u‖ : u ∈ Uad} ≤ ‖ũ‖ ≤ limk→∞ ‖unk
‖

= lim
nk→∞

‖unk
‖ = lim

n→∞
‖un‖ = inf{‖u‖;u ∈ Uad}.

(2.10)

Thus, we have

limn→∞ ‖un‖ = ‖ũ‖ (2.11)

and

‖ũ‖ = inf{‖u‖ : u ∈ Uad}. (2.12)

Since {unk
} is weakly convergent to ũ, it follows from (2.3) that {unk

} converges to ũ.

Therefore, in view of Theorem 2.1 and (2.4) we see that ũ = u0, namely, ũ is the minimum

energy control element. Thus, {unk
} strongly converges to the minimum energy control

element in L2([0, T ] : Y). Without loss of generality, we can rewrite {unk
} by {un}, then

the conclusion of theorem is now obtained.
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The Theorem 2.2 points out that the minimum energy control element can be approached

by a weakly convergent sequence in the control space, which provides the theoretical basis

of approximate computation for finding the minimum energy control element.

3 Application of Optimal Control to a Flexible Robot

System

We shall start this section with the following flexible robot system[4],[5]:



ÿ(t, x) + 2δEIρ−1y′′′′(t, x) + EIρ−1y′′′′(t, x) = −xθ̈(t),

ϕ̈(t, x)− 2δ(GJ/ρk2)ϕ̇′′(t, x)− (GJ/ρk2)ϕ′′(t, x) = 0,

m[(l + c)θ̈(t) + ÿ(t, l) + cÿ′(t, l) + eϕ̈(t, l)] = EIy′′′′(t, l)− 2δEIẏ′′′′(t, l)

m[(l + c)θ̈(t) + ÿ(t, l) + cÿ′(t, l) + eϕ̈(t, l)] + J0[θ̈(t, l)] = −EIÿ(t, l)− 2δEIẏ′′(t, l)

me[(l + c)θ̈ + ÿ(t, l) + cÿ′(t, l) + eϕ̈(t, l)] + JT ϕ̈(t, l) = −GJϕ′(t, l)− 2δGJϕ̇(t, l)

y(t, 0) = 0, ẏ(t, 0) = 0; (t, 0) = 0.

(3.1)

where the meaning of the symbols used above in system (3.1) are the same as in [4] and [5].

We shall choose the space H1 = L2(0, l) × L2(0, l) × R3 as the state space of system

(3.1), which is a Hilbert space equipped with inner product

〈w, v〉 = ρ

∫ l

0

[w1(x)v1(x)w2(x)v2(x)]dx+
5∑
i=3

wivi

where w = (w1, · · · , w5)T , v = (v1, · · · , v5)T .

Define an operator Λ : H → H as follows

Λw =


1 0 0

0 1 0

0 0 M

w, M =


m mc me

mc J0 +mc2 mce

me mce JT +me2

 ,

It is not difficult to verify that Λ is the positive definite linear operator on H ′.
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Let B1 : D(B1)→ H:

B1w = diag

(
EI

ρ

d4

dx4
,− GJ

ρK2

d2

dx2
,−EI d

3

dx3
, EI

d

dx
,GJ

d

dx

)
w,

D(B1) = {w|w = (w1, · · · , w5)T , w′′1 (·) ∈ H2(0, l), w′2(·) ∈ H̃(0, l)}

Ω = −(x, 0,m(l + c), J0 +mc(l + c),me(l + c))T ,

After defining the previous operators, we can now write again the system (3.1) as follows:

ẅ(t) + 2δA1ẇ(t) +A1w(t) = Λ−1Ωθ̈(t)

w(0) = w0, ẇ(0) = w10

(3.2)

here A1 = Λ−1B1, D(A1) = D(B1);w = (w1, · · · , w5)T , w0, w10 are the initial values of the

system (3.1).

Now, we set v = (v1, v2)T , v1 = w, v2 = ẇ

A =

 0 I

−A1 −2δA1

 , D(A) = D(A1)×D(A1), B =

0 0

0 C

 ,

F1(t, v(t)) = (0,Λ−1θ̈(t))T . (3.3)

then system (3.3) is equivalent to the following first order evolution equation in H = H1×H1v̇(t) = Av(t) + Bu(v(t), t) + F1(t, v(t))

v(0) = v0

(3.4)

where v0 = (w0, w10)T .

We start a discussion with defining following operators

Aif = ρ−1
∂2

∂x2

(
pi(x)

∂2f(x)

∂x2

)
,

D(Ai) =
{
f ∈ H4(0, l)|f, f ′, f ′′, (pif ′′)′ are absolutely continuous function on

[0, l], (pif
′′)′′ ∈ L2[0, l], f(0) = f ′(0) = 0, (pif

′′)(l, t) = 0. (pif
′′)′(l, t) = 0

}
(i = 1, 2)
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It should be noted that f in D(A1) can be written as f = u − ũ, and the function ũ suits

following differential equation

∂2

∂x2

(
p1(x) ∂2ũ

∂x2

)
= 0. (3.5)

By solving equation (3.5) we find

ũ(x) =
∫ x
0

∫ y
l
mg z−1

p1(z)
dzdy. (3.6)

Lemma 3.1 The operators A1 and A2 are positive self-adjoint operators in L2[0, l], more-

over, A−11 and A−12 exist, and they are compact operators.

Proof Apply integration by parts with the definition of A and the boundary conditions

included in D(A1) to find

< A1f, f > =

∫ l

0

ρ−1(p1(x)f ′′(x))′′f(x)dx

= ρ−1
∫ l

0

(p1(x)f ′′(x))′f ′(x)dx

= ρ−1
∫ l

0

p1(x)f ′′(x)f ′′(x)dx ≥ 0.

Since 0 < α1 ≤ p1(x) ≤ β1 <∞, we have

< A1f, f > ≥ ρ−1α1‖f ′′‖2 ≥ 0, (3.7)

and hence, A1 is a symmetric operator.

In order to show that A1 is self-adjoint, it suffices to show that there is a constant c > 0

such that ‖A1f‖ ≥ c‖f‖, f ∈ D(A1) (see [10]).

In fact, we can see from (3.7) that

‖A1f‖‖f‖ ≥ < A1f, f > ≥ ρ−1α1‖f ′′‖2

Applying the boundary conditions of f in D(A1), we can get the inequality[11]

∫ l

0

|f(x)|2dx ≤ l4

12

∫ l

0

|f ′′(x)|2dx,

and hence

‖A1f‖‖f‖ ≥ ρ−1α1(
12

l4
)

∫ l

0

|f(x)|2dx = c‖f‖2
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where c =
12ρ−1α1

l4
> 0. It follows that

‖A1f‖ ≥ c‖f‖, (3.8)

and so A1 is a positively defined self-adjoint operator.

It is easy to see from (3.7) that A−11 exists. Now set A1f = g, and f = A−11 g, then (3.7)

gives us

‖A−11 g‖ ≤ 1

c
‖g‖,

this means that mapping A−11 : H4(0, l)→ H4(0, l) is bounded, and

‖A−11 ‖ ≤
1

c
.

Thus, A−11 is a compact operator by Sobolev embedding theorem[15].

By similar manner, it can be shown that A2 is a positively defined self-adjoint operator,

and A−12 exists as a compact operator, and the proof is complete. �

We now choose Hilbert space H = L2[0, l] × L2[0, l] as a state space of equations (3.1),

on which inner product and norm are defined as follows:

(u, v)H = (u1, v1) + (u2, v2), u, v ∈ H,

here u = (u1, u2)T , v = (v1, v2)T , (· , ·) is the inner product on L2[0, l]. Let

W (t) =

 u(t)

v(t)

 , F (t) =

 0

F1(t, v(t))



A =

 A1 0

0 A2

 , D(A) = D(A1)×D(A2).

Then the equations (3.1) with the initial-boundary conditions can be written as follows:

Ẅ (t) + ηAẆ (t) +AW (t) = F (t)

W (0) = W0, Ẇ (0) = W10

(3.9)

For the sake of establishing an evolution equation of the system (3.1), we introduce a

Hilbert space H = H ×H, on which inner product is defined as follows:

〈~u,~v〉 = 〈Au(1), Av(1)〉H + 〈u(2), v(2)〉H , ~u,~v ∈ H,
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where ~u = (u(1), u(2))
T , ~v = (v(1), v(2))

T .

Let ~u = (u(1), u(2))
T , u(1) = W,u(2) = dW/dt.

A =

[
0

−A
I

−ηA

]
, D(A) = D(A)×D(A), F =

[
0

F (t)

]
.

then (3.9) can be written as the following first-order evolution equation:

d~u(t)
dt

= A~u(t) + F(t)

~u(0) = ~u0 = (W (0), Ẇ (0))T .
(3.10)

We shall discuss semigroup generation of operator A below. Let us start with inves-

tigation of spectrum of A.

Lemma 3.2 The operator A is a positive self-adjoint operator in Hilbert space H, and

A−1 is a compact operator. Therefore, the spectrum σ(A) of A consists entirely of isolated

eigenvalues {λn}∞n=1 with finite multiplicities so that

0 < λ1 < λ2 < · · · < λn < · · · and λn →∞ (n→∞),

and the set of all normalized eigenvectors {φk1 , φk2 , · · · , φkjk }
∞
k=1 constitutes a orthonormal

basis of H.

Proof. Since A =

[
A1 0
0 A2

]
and A1, A2 are positive self-adjoint operators with compact

inverses, A is also positive self-adjoint operator with compact inverse.

In the light of [15], we can arrive at the result that the spectrum of operator A consists

entirely of isolated eigenvalues {λn}∞n=1 with finite multiplicities, and

0 < λ1 < λ2 < · · · < λn; λn → +∞ (n→∞).

If φkj (j = 1, 2, · · · , jk) is the eigenvector for the eigenvalues λk of A:

Aφkj = λkφkj , ‖ϕkj‖ = 1,

then {φk1 , φk2 , · · · , φkjk }
∞
k=1 constitutes a orthonormal basis of H. �

Theorem 3.1 Let σ(A) and σp(A) be the spectrum and the point spectrum of A respec-

tively, then

(i) σ(A) = σp(A) ∪ {−1/η}, σp(A) = {ξk, µk}∞k=1.
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where ξk = (−ηλk+
√

(ηλk)2 − 4λk)/2 and µk = (−ηλk−
√

(ηλk)2 − 4λk)/2 are eigenvalues

of A, and the eigenvectors of A for ξk and µk are

~φkj =
1√

λ2k + |ξk|2

[
φkj
ξkφkj

]
, ~ψkj =

1√
λ2k + |µk|2

[
φkj
µkφkj

]
, ‖~φkj‖ = ‖~ψkj‖ = 1,

j = 1, 2, · · · , jk; k = 1, 2, · · ·

respectively.

(ii) If α ∈ ρ(A), then

(αI −A)−1 =
[

(α2+ηαA+A)−1(α+ηA)
−I+(α2+ηαA+A)−1(α2+ηαA)

(α2+ηαA+A)−1

α(α2+ηαA+A)−1

]
(3.11)

Proof By verifying directly, we can see that {ξk, µk}∞k=1 ⊂ σp(A), and ~φkj , ~ψkj are

eigenvectors for ξk and µk respectively.

Since

lim
k→∞

ξk = lim
k→∞

−ηλk +
√

(ηλk)2 − 4λk
2

= lim
k→∞

(−ηλk +
√

(ηλk)2 − 4λk)(−ηλk −
√

(ηλk)2 − 4λk)

2(−ηλk −
√

(ηλk)2 − 4λk)

= lim
k→∞

4λk

−2(ηλk +
√

(ηλk)2 − 4λk)

= lim
k→∞

(−2)
1

η +
√
η2 − 4

λk

= (−2)
1

η + η
= −1

η
< 0,

and similarly,

lim
k→∞

µk = lim
k→∞

(−ηλk −
√

(ηλk)2 − 4λk)(−ηλk +
√

(ηλk)2 − 4λk)

2(−ηλk +
√

(ηλk)2 − 4λk)

= lim
k→∞

4λk

2(−ηλk +
√

(ηλk)2 − 4λk)

= lim
k→∞

(2)
1

−η +
√
η2 − 4

λk
= −∞,

we have

−1

η
∈ σ(A) and {ξk, µk}∞k=1 ∪ {−

1

η
} ⊆ σ(A).
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On the other hand, let α 6= ξk, µk,− 1
η , and f(λ) = α2λ−1 + ηα + 1, then f(A) =

α2A−1 + ηα + I by functional calculus. Since the extended spectrum, σe(A) of A is equal

to σ(A) ∪ {∞} = {λk}∞k=1 ∪ {∞}, and α 6= ξk, µu and − 1
η , we have

f(λk) = α2λ−1k + ηα+ 1 6= 0, otherwise α = ξk or µk;

f(∞) = lim
k→∞

f(λk) = ηα+ 1 6= 0, otherwise α = −1

η
.

It follows from the spectral mapping theorem[15] that 0 6∈ f(σe(A)) = σ(f(A)), namely

0 ∈ ρ(f(A)). This implies that the inverse of α2 + ηαA+A exists, and

(α2 + ηαA+A)−1 = A−1(α2A−1 + ηα+ I)−1 = A−1[f(A)]−1

is a bounded linear operator on H. Therefore, the operator defined by

T =

[
(α2 + ηαA+A)−1(α+ ηA)

−I + (α2 + ηαA+A)−1(α2 + ηαA)

(α2 + ηαA+A)−1

α(α2 + ηαA+A)−1

]
is a bounded linear operator on H. A simple computation shows that

(αI −A)T = IH, T (αI −A) = ID(A),

and α ∈ ρ(A). This implies that σ(A) ⊆ {ξk, µk}∞k=1 ∪ {−1
η }. Thus, σ(A) = {ξk, µk}∞k=1 ∪

{−1
η }, and (αI −A)−1 = T . The proof of the theorem is complete. �

Corollary 3.1. A is a closed linear operator.

Proof From Theorem 1, we know that ρ(A) 6= ∅. Since for any α ∈ ρ(A), (αI −A)−1 is

a bounded linear operator, it is closed. It follows that λI − A = [(λI − A)−1]−1 is closed,

and hence A is a closed operator.

Corollary 3.2 sup{Re λ|λ ∈ σ(A)} = −ω < 0.

Proof It can be seen from the expressions of ξk and µk that Re ξk < 0 and Re µk < 0 (k =

1, 2, · · · ), and

lim
k→∞

= ξk = −1

η
and lim

k→∞
µk = −∞

and therefore,

lim
k→∞

Re ξk = −1

η
and lim

k→∞
Re µk = −∞.

It follows that sup{Reσn|σn ∈ σp(A)} def
= −ω1 < 0. Thus, we conclude from (i) of Theorem

3.1 that sup{Re µ|µ ∈ σ(A)} = max{−ω1,−1
η }

def
= −ω < 0. �
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Lemma 3.3 The family of the following vectors{(φk1
0

)
,
(

0
φk1

)
, · · · ,

(φkjk
0

)
,
(

0
φkjk

)}∞
k=1

. (3.12)

constitute an orthonormal basis of H.

Proof Since {φk1 , · · · , φkjk }
∞
k=1 is an orthonormal basis of H, we see from Lemma 3.2

that form any
( v
w
)
∈ H, v, w ∈ H,

v =

∞∑
k=1

jk∑
j=1

vkjφkj , where vkj =< v, φkj >H

w =

∞∑
k=1

jk∑
j=1

wkjφkj , where wkj =< w, φkj >H

Hence, (
v

w

)
=

∞∑
k=1

jk∑
j=1

(
vkjφkj
wkjφkj

)
=

∞∑
k=1

jk∑
j=1

[
vkj

(
φkj
0

)
+ wkj

(
0

φkj

)]
,

and ∥∥∥∥( vw
)∥∥∥∥2 =

∞∑
k=1

jk∑
j=1

(
λ2k|vkj |2 + |wkj |2

)
Thus, the family (3.8) of vectors is complete, and therefore it constitutes an orthonormal

basis of H. �

Lemma 3.4 (i) Let η 6= 2λ
− 1

2

k , (k = 1, 2, · · · ) then the set of the pairs eigenvectors of A,

{~φk1 , ~ψk1 , · · · , ~φkjk ,
~ψkjk }

∞
k=1, constitutes a Riesz basis of H.

(ii) If η = 2λ
− 1

2

k∗ for some k∗ (there exist at most one k∗), then the set of eigenvectors of

A,

{~φk1 , ~ψk1 , · · · , ~φkjk ,
~ψkjk }ki 6=k∗ ∪ {

~φk∗1 , · · · , ~φk∗jk∗
} together with {

( 0
φk∗1

)
, · · · ,

( 0
φk∗jk∗

)
}, con-

stitute a basis of H.

Proof (i) Since for arbitrary

(
v

w

)
∈ H, we have from Lemma 3 and the definitions of ~φk

and ~ψk that(
v

w

)
=

∞∑
k=1

jk∑
j=1

[vkj

(
φkj
0

)
+ wkj

(
0

φkj

)
] =

∞∑
k=1

jk∑
j=1

(a
(1)
kj
~φkj + a

(2)
kj
~ψkj )

where

a
(1)
kj

= (−µkvkj − wkj )

√
λ2k + |ξk|2√

(ηλk)2 − 4λk
, a

(2)
kj

= (ξkvkj − wkj )

√
λ2k + |µk|2√

(ηλk)2 − 4λk
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and thus it is an Riesz basis of H[5] .

(ii) If η = 2λ
− 1

2

k∗ , we can obtain from Theorem 1 that ξk∗ = µk∗ = λ
1
2

k∗ , and the

eigenvectors corresponding to ξk∗ and µk∗ are as follows

~φk∗j = ~ψk∗j =
1√

λ2k∗ + λk∗

( φk∗j

−λ
1
2

k∗φk∗j

)
(j = 1, 2, · · · , jk∗)

Then

vk∗j

(
φk∗j
0

)
+ wk∗j

(
0

φk∗j

)
= (λ

1
2

k∗vk∗j + wk∗j )

(
0

φk∗j

)
+ vk∗j

(
φk∗

−λ
1
2

k∗φk∗j

)
= b

(1)
k∗j

(
0

φk∗j

)
+ b

(2)
k∗j
~φk∗j (j = 1, 2, · · · , jk∗)

where

b
(1)
k∗j

= λ
1
2

k∗vk∗j + wk∗j , b
(2)
k∗j

= vk∗j

√
λ2k∗ + λk∗

Thus, for every

(
v

w

)
∈ H, we have

(
v

w

)
=

∞∑
k=1

jk∑
j=1

[vkj

(
φkj
0

)
+ wkj

(
0

φkj

)
]

=

jk∗∑
j=1

[b
(1)
k∗j

(
0

φk∗j

)
+ b

(2)
k∗j
~φk∗j ] +

∞∑
k=1
k 6=k∗

jk∑
j=1

(a
(1)
kj
~φkj + a

(2)
kj
~ψkj ),

and so the conclusion of (ii) of Lemma 3.4 is obtained. �

The semigroup generation of A is stated and proved in next theorem.

Theorem 3.2 The operator A is an infinitesimal generator of a C0-semigroup T (t) on H,

and there are constants M > 0 such that

‖T (t)‖ ≤Me−ωt (3.13)

where −ω = sup{Reµ|µ ∈ σ(A)} < 0.

Proof We shall prove Theorem 3.2 in two different cases,

Case 1. η 6= 2λ
− 1

2

k (k = 1, 2, · · · ). For the sake of simplicity, we denote the eigenpairs of A

by {σn, ~en}, n = 1, 2, · · · . For every real λ, λ > −ω = sup{Re µ|µ ∈ σ(A)}, we see that
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λ ∈ ρ(A). For any ~u ∈ H, since {~en} constitutes a Riesz basis of H (see (i) of Lemma 4),

~u =
∑∞
n=1 an~en. A simple computation shows that

(λI −A)−1~u =

∞∑
n=1

an
1

λ− σn
~en

and

‖[λI −A)−1]m~u‖ = ‖
∞∑
n=1

an
1

(λ− σn)m
~en‖

= ‖
∞∑
n=1

an
(λ+ ω)m

(λ− σn)m
1

(λ+ ω)m
~en‖

It should be noted that |(λ+ ω)m/(λ− σn)m| ≤ 1 because −ω = sup{Re µ|µ ∈ σ(A)} and

λ > −ω. Therefore,

‖[λI −A)−1]m~u‖ ≤ 1

(λ+ ω)m
‖
∞∑
n=1

an~en‖ =
1

(λ+ ω)m
‖~u‖

We thus arrive at the following result:

‖[(λI −A)−1]m‖ ≤ 1

(λ+ ω)m
, λ > −ω, m = 1, 2, · · ·

It follows from [14] that A is the infinitesimal generator of a C0-Semigroup T (t) on H, and

‖T (t)‖ ≤Me−ωt, where M ≥ 1.

Case 2. η = 2λ
− 1

2

k∗ for some positive integer k∗. We see from (ii) of Lemma 3.4 that for any

~u ∈ H,

~u =

∞∑
k=1
k 6=k∗

nk∑
j=1

(a
(1)
kj
~φkj + a

(2)
kj
~ψkj ) +

nk∗∑
j=1

[b
(1)
k∗j

(
0

φk∗j

)
+ b

(2)
k∗j
~ψk∗j ]

Since

A~ψk∗j = µk∗ ~ψk∗j , j = 1, 2, · · · , jk∗

and

A
(

0

φk∗j

)
=

(
0

−A
I

−ηA

)(
0

φk∗j

)
=

(
φk∗j

−ηAφk∗j

)
=

( φk∗j

−2λ
1
2

k∗Aφk∗j

)

=

( φk∗j

−λ
1
2

k∗φk∗j

)
+

(
0

−λ
1
2

k∗φk∗j

)
.
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Since η = 2λ
− 1

2

k∗ , we refer to (i) of Theorem 3.1 to find

µk∗ = (−ηλk∗ −
√

(ηλk∗)2 − 4λk∗)/2 = (−2λ
1
2

k∗ −
√

(2λ
1
2

k∗λk∗)2 − 4λk∗)/2 = (−2λ
1
2

k∗ −
√

4λk∗ − 4λk∗)/2

= −2λ
1
2

k∗/2 = −λ
1
2

k∗ ,

and so

A
(

0

φk∗j

)
=

(
φk∗j

µk∗j φk∗j

)
+ (−λ

1
2

k∗)

(
0

φk∗j

)
=
√
λ2k∗ + λk∗ ~ψk∗j + (−λ

1
2

k∗)

(
0

φk∗j

)
.

Hence, the space spanned by

{
~ψk∗1 , · · · , ~ψk∗jk∗

}
∪
{(

0
φk∗1

)
, · · · ,

(
0

φk∗jk∗

)}
is an invariant

subspace of 2jk∗ dimensions of A, denoted by Mk∗ . From theory of finite dimensional space,

we assert that

σ(A|Mk∗) = σp(A|Mk∗) ⊆ σp(A) ⊆ σ(A),

and therefore −ω∗ = sup{Re µ|µ ∈ σ(A|Mk∗)} ≤ sup{Re µ|µ ∈ σ(A)} = −ω. Actually, we

can arrange the vectors spanning Mk∗ as follows(
0

φk∗1

)
, ~ψk∗1 ,

(
0

φk∗2

)
, ~ψk∗2 , · · · ,

(
0

φk∗jk∗

)
, ~ψk∗jk∗

.

Set

A =

(
−λ

1
2

k∗

0

√
λ2k∗ + λk∗

λk∗

)
,

then A|Mk∗ has the form

A|Mk∗ =

[
A
0

. . .
0

A

]
(there arejk∗A′s in the diagonal)

Applying the Theorem 1.5.3 of [13], we can conclude that A generates a C0-semigroup T1(t)

satisfying ‖T1(t)‖ ≤M1e
−ω∗t, and so

‖T1(t)‖ ≤M1e
−ωt (3.14)

On the other hand, since the family {~φk1 , ~ψk1 , · · · , ~φkjk ,
~ψkjk }k 6=k∗ consists of the eigen-

vectors of A, the subspace M spanned by them is an invariant subspace of A, and this family
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is just a Riesz basis of M (see Lemma 4). Thus, form case 1, it is aware of the fast that A

generates a C0-Semigroup T2(t), (t ≥ 0) in M. For M ∈ ρ(A), we have

(µI −A)−1~φkj =
1

µ− ξk
~φkj , (µI −A)−1~ϕkj =

1

µ− µk
~ψkj (j = 1, 2, · · · , nk; k 6= k∗)

and (µI−A)−1Mk ⊂Mk, it follows from [16] that σ(A|Mk) ⊆ σ(A) and−ω2 = sup{Re µ|µ ∈

σ(A|Mk)} ≤ sup{Re µ|µ ∈ σ(A)} = −ω. Thus, there is M2 such that

‖T2(t)‖ ≤M2e
−ωt (3.15)

Since Mk∗ is finite dimensional, it is a closed subspace of H, and so H = Mk∗ ⊕Mk,

where ⊕ expresses orthogonal sum in Hilbert space H. Now, we define T (t)
def
= T1(t)⊕T2(t)

(obviously, T1(t)T2(t) = T2(t)T1(t) = 0). We shall next prove an interesting result that T (t)

is exactly a C0-semigroup on H generated by A. The semigroup properties of T (t) can be

easily presented as follows:

(i) T (0) = T1(0)⊕ T2(0) = IMk∗ ⊕ IMk
= IH

(ii) T (t+ s) = T1(t+ s)⊕ T2(t+ s) = [T1(t)T1(s)⊕ [T2(t)T2(s)]

= [T1(t)⊕ T2(t)][T1(s)⊕ T2(s)] = T (t)T (s) (t, s ≥ 0)

(iii) For every x ∈ H, x = xk∗ ⊕ xk, where xk∗ ∈Mk∗ , xk ∈Mk,

lim
t→0+

T (t)x = lim
t→0+

[T1(t)⊕ T2(t)](xk∗ ⊕ xk)

= lim
t→0+

T (t)x lim
t→0+

[T1(t)⊕ T2(t)]xk∗ ⊕ [T1(t)⊕ T2(t)]xk

= lim
t→0+

[T1(t)xk∗ ⊕ T2(t)xk]

= ( lim
t→0+

T1(t)xk∗)⊕ ( lim
t→0+

T2(t)xk)

= xk∗ ⊕ xk

= x

(iv) For any x ∈ D(A), we have x = xk∗ ⊕ xk, xk∗ ∈Mk∗ and xk ∈Mk, and

Ax = A(xk∗ ⊕ xk) = Axk∗ ⊕Axk

=

(
lim
t→0+

T1(t)xk∗ − xk∗
t

)
⊕
(

lim
t→0+

(T1(t)xk∗ ⊕ T2(t)xk∗)− (xk∗ ⊕ xk)

t

)
= lim

t→0+

Tx− x
t
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Thus, T (t) defined by the orthogonal sum of T1(t) and T2(t) is exactly C0-Semigroup on H

generated by A. Taking M = max{M1,M2} from (3.10) and (3.11), leads to the following

result

‖T (t)‖ ≤Me−ωt (t ≥ 0)

The Theorem 3.2 is established now. �//

We have now seen from the discussion above that the robot system (3.1) satisfies all

conditions for the system (2.1), and hence we can apply the optimal control theorem 2.1 to

the the robot system (3.1) and obtain a result as be stated as follows:

Theorem 3.3 An optimal energy control to the robot system (3.1) defined by means of the

( ) exists uniquely.

4 Conclusion

In this paper, we have investigated a kind of optimal energy control for infinite dimensional

dynamic system. We proposed and proved the significant and important results that the

minimum energy control of infinite dimensional space exists uniquely in terms of semigroup

approach of linear operators and geometric method of Banach space. As a byproduct, we

find that the minimum energy control element can be obtained by finding a weak limit

of the admissible control set. In the last part of the paper, we studied a Euler-Bernoulli

robot beam system by means of spectral analysis and semigroup theory, and showed that

the optimal control theorem and procedure proposed in this paper are viable to the robot

system.
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