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Diophantine Equations named after ancient Greek mathematician Diophantus, plays a vital role not 

only in number theory but also in several branches of science. In this paper, we have solved an quadratic 

Diophantine equations where the right hand side are positive integral powers of 37 and provide its 

integer solutions. The method adopted to solve the given equation is using the concept of polar form 

of a particular complex number. This concept can be generalized for solving similar equations.  
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1. INTRODUCTION  

Diophantine Equations were equations whose solutions must 

be in integers. Since the solutions are integers and most often 

positive integers, such equations have more practical 

applications compared to other equations in mathematics. In 

this paper, we will solve one of the quadratic Diophantine 

equations involving positive integral powers of 37 in a novel 

way and present its complete solution in a compact form.   

     

2. QUADRATIC DIOPHANTINE EQUATION  

In this paper, we will provide methods to solve the quadratic 

Diophantine equation  12x2 + y2 = 37n   (1), where x, y are 

positive integers. We will try to obtain a general solution of 

(1) in closed form. For doing this, we will make use of a 

particular complex number and a wonderful method proposed 

by the greatest mathematician of all times, Leonhard Euler.   

 

3. SOLUTIONS TO THE EQUATION  

We will try to obtain all positive integer solutions (x, y) 

satisfying (1) for any given natural number n. Now, we will 

try to determine 

the polar form of  5 2 3
n

i  5 2 3 cos sin cos 5, sin 2 3i r i r r          

From this, we obtain 
2 1 2 3

25 12 37 37, tan (2)
5

r r  
 

        
 

 

Hence the polar form of  5 2 3
n

i is given by  

 
1 2 3

i t
525 2 3 37 (3)

n ann
ni e

  
  
    

Now using Euler’s Formula in (3), we obtain  

  2 1 12 3 2 3
5 2 3 37 cos tan sin tan (4)

5 5

n
ni n i n 
       

                       
 

If we now assume  2 3 5 2 3 (5)
n

y i x i   then  2 3 5 2 3 (6)
n

y i x i    
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Now multiplying (5) and (6), we get  

       2 3 2 3 5 2 3 5 2 3
n n

y i x y i x i i        

Simplifying, we obtain 
2 212 37nx y   which is (1), the original problem which we have considered. Thus the solutions to (1) 

are given by equating real and imaginary parts of (5). Now using (4) in (5), and for 1n we get  

2
2 1 12 3 37 2 3

2 3 37 sin tan sin tan (7)
5 52 3

n
nx n x n 

      
              

      
 

2 1 2 12 3 2 3
37 cos tan 37 cos tan (8)

5 5

n ny n y n 
      

              
      

 

Now from (7) and (8), if we consider  ,x y then these pairs would provide all positive integer solutions to the given Quadratic 

Diophantine Equation
2 212 37nx y   for any natural number n.  

 

4. CONCLUSION  

Considering a quadratic Diophantine equation
2 212 37nx y  , we have used a novel method to solve it completely in this paper. 

In particular, equations (7) and (8) provide all required positive integer solutions to the given equation. Further, by considering the 

polar form of a particular complex number, I have obtained nice closed expressions for the given equations.  

In fact, from (7) and (8), we notice that for 1n , all positive integer solutions to 
2 212 37nx y  are given by  

2
1 2 137 2 3 2 3

sin tan , 37 cos tan (9)
5 52 3

n
nx n y n 

      
             

      
 

Thus, for n = 1, 2, 3, 4, 5, 6, 7, 8, . . .  all positive integer 

solutions (x, y) to 
2 212 37nx y  are given respectively 

by (1,5); (10,13); (63,55); (260,1031); (269,8275); 

(6930,44603); (79253,139855); (536120,251761);  . . .    

Thus the values of x and y from expression (9) provides all 

possible positive integer solutions to the given quadratic 

Diophantine equation
2 212 37nx y  . We can adopt 

similar methods to solve other types of quadratic Diophantine 

equations using polar forms of suitable complex numbers.   
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