
 

  

4033 Dr. D. Bharathi1, IJMCR Volume 12 Issue 02 February 2024 

 

 International Journal of Mathematics and Computer Research  

 ISSN: 2320-7167  

 Volume 12 Issue 02 February 2024, Page no. – 4033-4037 

 Index Copernicus ICV: 57.55, Impact Factor: 8.316 

 DOI: 10.47191/ijmcr/v12i2.05 

Semiderivations on σ – Prime Rings 
 

Dr. D. Bharathi1, Dr. V. Ganesh2 

1Professor, Department of Mathematics, S.V.University, Tirupati-517502, A.P., India. 
2Assistant Professor, Sri Venkatesa Perumal College of Engineering and Technology - [SVPCET], Puttur, A.P. 

 

ARTICLE INFO ABSTRACT 

Published Online: 

20 February 2024 

 

 

Corresponding Author: 

Dr. D. Bharathi 

In this paper, we derive some results on semiderivation in σ – prime rings. If (R, σ) is a σ-

prime ring with involution σ and char ≠ 2, let d be a nonzero semiderivation with g of R is 

centralizing, then R is commutative. Further we prove that if d commutes with σ and 0 ≠ I in a 

σ- Ideal of R such that either [d(x), d(y)] = 0 or d(xy) = d(yx), for all x, y  I, then R is 

commutative. Finally, a σ-prime ring with char ≠ 2 possessing a nonzero semiderivation under 

surjective conditions must be commutative.  

KEYWORDS: Derivation, Semiderivation, Char≠ 2, Commutator, Center, Commutative Ring, Prime ring, σ – prime ring, σ 

– prime ideal. 

 

I. INTRODUCTION 

The notion of derivation was introduced in rings and 

algebras long back. The theory of derivations and 

semiderivations play an important role not only in ring 

theory, but also in functional analysis and linear differential 

equations. In 1976, I.N.Herstein. [2] proved that an element 

‘a’ of a semi-prime rings R centralizes all commutator sxy-

yx ,x, yR then a  Z ( R ).The study of such mappings was 

initiated by E.C.Posner in [1]. A famous result due to 

Herstein [4] states that if R is a prime ring of char ≠ 2 which 

admits a nonzero derivation d such that [d(x), a] = 0, for all 

x  R, then a  Z. Also Herstein showed that if d(R)  Z, 

then R must be commutative. Many authors have studied 

commutativity of prime and semiprime rings admitting 

derivations and generalized derivations which satisfy 

appropriate algebraic conditions on suitable subsets of the 

rings.  

In [5] Bergen has introduced the notation of semiderivation 

of a ring R which extends the notation of derivation of a ring 

R. 

In 1984, J.C.Chang [6] has given an extension of the 

I.N.Herstein [3] results in the following way. Let f ≠0 be a 

semiderivation of a prime ring R associated with an 

epimorphism  of R such that [f(R), f(R)] = {0}. Then if Char 

R ≠ 2, R is commutative, and if char R = 2, then either R is a 

commutative or R is an order in a simple algebra which is 4-

dimensional over its center. 

In 1990, The structure of semiderivations of prime rings has 

been studied by C.L.Chuang [11] and he proved a structure 

theorem with the help of extended centroid of the classical 

associative rings. The same results have been obtained by 

M.Bresar[12]. 

 

II. PRELIMINARIES: We use these definitions in the 

main section. 

Definition 2.1: An additive mapping d: R→R is called a 

derivation if  

d(xy) = d(x) y+ x d(y), for allx, y  R                                            

Definition 2.2: An additive mapping d: R → R is called a 

semiderivation if there exists a function g: R → R such that  

(i) d(xy) = d(x)g(y) + x d(y) = d(x)y + g(x)d(y) and (ii) 

d(g(x)) = g(d(x))              ( 2.1) 

holds for all x, y  R.  

Note: In case g is an identity map of R then all 

semiderivations associated with g are merely ordinary 

derivations. On the other hand, if g is a homomorphism of R 

such that g ≠ I then d = g – I is a semiderivation which is not 

a derivation. 

Definition 2.3: Let S be a nonempty subset of R. A mapping 

d from R to R is called centralizing on S if [d(x), x]  Z, 

for all x  S and is called commuting on S   if [d(x), x] = 0, 

for all x  S. 

Definition 2.4: A ring R is called prime if xRy = 0 implies 

either x=0 or y=0, for all x, yR. 

Definition 2.5:If there exists a positive integer n such that 

nx = 0 for every element of the ring R, the smallest such 
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positive integer is called the characteristic of R. We define 

a ring R to be characteristic ≠ n if nx = 0 implies x = 0, for 

all x in R. 

Definition 2.6: The commutator [x,y] is defined by [ x , y] 

= xy – yx, for all x, yR  

Definition 2.7: The anticommutator is defined by xoy = xy 

+ yx, for all x, yR  

Definition 2.8: The center Z of R is defined as Z = { z R / 

[z, R] = 0 }  

Definition 2.9: Let R be a semiprime ring and P be a 

nonzero prime ideal of R. If a, b  R such that b  P, then 

either a P or b P. 

Definition 2.10:An ideal L of R is said to be - ideal if (L) 

= L 

Definition 2.11: A ring R equipped involution σ is said to 

be σ-prime ring if for any a,b R aRb=aRσ(b) = 0 a=0 or 

b=0. 

Definition 2.12: A ring R is said to be commutative if 

xy=yx, for all x,yR. 

Also, we will make some extensive use of the basic 

commutator identities: 

[x,yz]=y[x,z]+[x,y]z                             ( 2.2) 

[xy,z]=[x,z]y+x[y,z]                             (2.3) 

 

III.MAIN RESULTS: 

In this paper, we derive some results on semi derivation in σ 

– prime rings 

Throughout this paper R will be σ- prime ring and d be a 

nonzero semiderivation of R associated with surjective 

function g of R.  

Now we prove the following lemmas: 

Lemma 3.1: Let R be a σ- prime ring and let I be a nonzero 

σ- ideal of R. If a, b in R satisfy a I b = a I σ(b) = 0, then a = 

0 or b = 0. 

Proof: Suppose a ≠ 0, there exists some x  I such that ax ≠ 

0 .  

Otherwise a R x = 0 and a R σ(x) = 0, for all x  I and 

therefore a = 0. 

Since a IR b = 0 and a IR σ(b) = 0, we then obtain 

a x Rb = a x R σ(b) = 0. 

In view of the σ- primeness of R this yields b = 0. ♦ 

Lemma 3.2 : Let I be a nonzero σ- ideal of R and 0 ≠ d be a 

semiderivation with surjective g on R which commutes with 

σ. If [x, R] I d(x) = 0, for all x  I, then R is commutative. 

Proof : Let x  I. 

Since k = x - σ(x) I, then [k, r]Id(k) = 0, for all r  R. 

As k Saσ(R), we get 

[k, r] I d(k) = σ([k, r]) I d(k) = 0, for all r  R. 

Which leads, in view of lemma 3.1, to 

d(k) = 0 or [ r, k] = 0, for all r  R. 

If d(k) = 0, then 

d(x - σ(x)) = 0, which implies d(x) = d(σ(x)) = σ(d(x)). 

Therefore [x,r] I d(x) = [x, r] I σ(d(x)) = 0, thus 

d(x) = 0 or [r, x] = 0, for all r  R, by lemma 3.1. 

Consequently, either d(x) = 0 or x  Z(R). 

If [r, k] = 0, for all r  R, then k  Z(R) and thus 

[x, r] = [σ(x), r], for all r  R. 

Hence [x, r] I d(x) = σ([x, r]) I d(x) = 0 

Using lemma 2.3.1 we get d(x) = 0 or x  Z(R). 

In conclusion, for each x  I either d(x) =0 or x  Z(R). 

Let us consider A = { x  I / d(x) = 0} and B = { x  I / x in 

Z(R)}. 

It is clear that A and B are additive subgroups of I such that 

I = AUB. 

But a group cannot be a union of two its proper subgroups 

and hence I=A or I=B. 

If I =A, then d(x) =0, for all x  I. 

For any t  R, replace x by xt in d(x) =0, we get 

d(xt) = 0 implies d(x)g(t) + xd(t) = 0 ( by 2.1). 

xd(t) = 0, for all x  I, t  R so that 

Id(t) = 0, for all t  R.  

In particular 1 I d(t) = σ(1) I d(t), for all t  R. 

By lemma 3.1 gives d = 0, a contradiction. 

Hence I = B so that I Z(R). 

Let r, t  R and x  I, from rtx = trx we conclude that [r, t] I 

= 0 and then 

[r, t] I 1 = [r, t] I σ(1) = 0. 

Therefore by lemma 3.1, [r, t]=0, for all r, t  R and 

consequently, R is commutative ring. ♦  

Lemma 3.3: Let I be a nonzero σ- ideal of R. If R admits a 

semiderivation d with surjective function g such that d2(I) = 

0 and d commutes with σ on R then d = 0. 

Proof : If d ≠ 0 and let t0 R such that d(t0) ≠ 0. 

For any x  I we have d2(x) = 0 

Replacing x by xy, we obtain 

d(d(x)g(y)+ xd(y)) = 0 ( by 2.1). 

d2(x) g2(y) + d(x)g(d(y)) + d(x)d(g(y)) + x d2(y) = 0, for all 

x, y  I ( by 2.1). 

Since d2(I) = 0 with char≠ 2, we get 

d(x)g(d(y)) = 0, for all x, y  I.  

In particular d(x)g(d(y t0)) = 0 

d(x)g(d(y))g(t0) + d(x)g(y)g(d(t0)) = 0 ( by 2.1). 

Since g is on to we have 

d(x)yd(t0) = 0, for all y  I, t0 R. 

Thus d(x) I d(t0) = 0. 

As d commutes with σ, the fact that I is a σ –ideal gives 

σ(d(x)) I d(t0) = 0. 

Consequently d(x) I d(t0) = σ(d(x)) I d(t0) = 0. 

By lemma 3.1, we have d(x) = 0, for all x  I     (3.1) 

Replace x by x, t0 in (3.1), then we get 

d(xt0) = 0, 

d(x)g(t0) + x d(t0) = 0 which implies ( by 2.1). 

xd(t0) = 0, for all x  I 

i.e I d(t0) = 0. 
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In particular, 1 I d(t0) = σ(1) I d(t0) = 0. 

So that d(t0) = 0, a contradiction. 

Consequently, d = 0. ♦ 

Theorem 3.1:Let R be a σ- prime ring with char ≠ 2 and let 

d be a nonzero semiderivation associated with surjective g 

of R . If [d(x), x]  Z(R), for all x  R, then R is 

commutative. 

Proof : Linearizing [d(x), x]  Z(R) gives 

[d(x), y] + [d(y), x]  Z(R), for all x, y  R. (3.2) 

Replacing y by x2 in (3.2) 

x[d(x), x] +[d(x), x]x + d(x)[g(x), x]+ [d(x), x]g(x) + x[d(x), 

x] +[x, x]d(x)  Z(R) 

 ( by 2.2, 2.1 & 2.3). 

Since char ≠ 2 and g is on to, we have 

x[d(x), x]  Z(R) which implies 

[r, x[d(x), x]] = 0. 

Henceforth [r, x] [d(x), x] = 0, for all x  R. 

Replacing r by d(x), we obtain 

[d(x), x]2 = 0. 

Since [d(x), x] in Z(R), then 

[d(x), x] R [d(x), x] σ([d(x), x]) = 0. 

As [d(x), x] σ([d(x), x]) Saσ(R), and R is σ-prime, then 

[d(x), x] = 0 or [d(x), x] σ([d(x), x]) = 0. 

Assume [d(x), x] σ([d(x), x]) = 0, the fact that [d(x), x]  

Z(R) gives 

 [d(x), x] R σ([d(x), x]) = [d(x), x] R [d(x), x] = 0. 

Since R is a σ-prime, we have [d(x), x] = 0, for all x  R. (3.3) 

[d(x), y] + [d(y), x] = 0, for all x, y  R. (3.4) 

Replace y by xy in (3.4) and using (3.4), we get 

x[d(x), y] + [d(x), x]y + d(x)[g(y), x] +[d(x),x]g(y) + x[d(x), 

x] + [x, x]d(y) = 0 

 ( by 2.2, 2.1 & 2..3). 

d(x)[g(y), x] = 0, g is on to gives 

d(x)[y, x] = 0, for all x, y  R (3.5) 

Replace y by yz in (3.5), we get 

d(x) y [z, x] = 0, for all x, y, z  R ( by 2.3 ). 

And hence d(x) R [z, x] = 0, for all x, z  R. 

In particular, 

d(σ(x) R [σ(z), σ(x)] = σ(d(x)) R σ([z, x]). 

Because d commutes with σ. Applying σ to this last 

equality, we obtain 

[z, x] R d(x) = 0, for all x, z  R. 

Hence by lemma 3.2, R is commutative. ♦ 

Theorem 3.2 : Let R be a σ- prime ring with char ≠ 2 and 

let I be a nonzero σ-ideal of R. If R admits a nonzero 

semiderivation d associated with surjective function g such 

that [d(x), d(y)]=0, for all x, y  I and d commutes with σ, 

then R is commutative. 

Proof : By hypothesis we have  

[d(x), d(y)] = 0, for all x, y  I (3.6) 

Replace y by xy in (3.6), we get 

[d(x), d(x)g(y)+xd(y)] = 0, for all x, y  I ( by 2.1 ). 

d(x)[d(x), g(y)] + [d(x), x]d(y) = 0 ( by 2.2 ). 

Since g is on to we have 

d(x)[d(x), y] + [d(x), x]d(y) = 0, for all x, y  I. (3.7) 

Replace y by yr, r  R in the above equation 

d(x)[d(x), yr] + [d(x), x]d(yr) = 0, for all x, y  I, r  R. 

d(x)[d(x), y]r + d(x)y[d(x), r] + [d(x), x]d(y)g(r) + [d(x), x] 

y d(r) = 0, for all x, y  I, r  R.     (by 2.2 & 2.1) 

Using (3.7) and g is on to we obtain 

d(x)y[d(x), r] + [d(x), x] y d(r) = 0, for all x, y  I, r  R.  

Substitute r by d(z) in the above equation 

d(x)y[d(x), d(z)] + [d(x), x] y d(d(z)) = 0, for all x, y, z  I. 

Using the hypothesis, we get 

[d(x), x] y d2(z) = 0, for all x, y, z  I. 

So that [d(x), x] I d2(z) = 0, for all x, z  I 

As d commutes with σ and I is a σ-ideal, then 

[d(x), x] I d2(z) = σ( [d(x), x]) I d2(z) = 0. 

By lemma 3.1, we say that either 

d2(z) = 0, for all z  I or [d(x), x] = 0, for all x  I 

If d2(z) = 0, for all z  I, then by lemma 3.3 assures d= 0 

which is impossible. 

Now suppose that  

[d(x), x] = 0, for all x  I (3.8) 

Linearizing (3.8), we get 

[d(x), y] + [d(y), x] = 0, for all x, y  I (3.9) 

Replace y by yx in(3.9) and using (3.9), we get 

[y, x]d(x) = 0. 

Hence [x, y]d(x) = 0, for all x, y  I 

Again replace y by ry, r  R, we get 

[x, r] y d(x) = 0, for all x, y  I, r  R and thus (by 2.2). 

[x, r] I d(x) = 0, for all x  I, r  R. 

Then by lemma 3.2, R is commutative. ♦ 

 

Theorem 3.3: Let R be a σ- prime ring with char ≠ 2 and let 

I be a nonzero σ-ideal of R. If R admits a nonzero 

semiderivation d associated with surjective function g such 

that d(xy) =d(yx), for all x, y  I and d commutes with σ, 

then R is commutative. 

Proof : Since d[x, y] = 0, for all x, y  I, the condition that  

d([x, y]z) = d(z[x,y]), for all x, y, z  I yields  

d[x,y]g(z) + [x, y] d(z) = d(z)g([x, y]) + z d([x, y]) ( by 2.1). 

Using the hypothesis and g is on to we have 

[x, y] d(z) = d(z)[x, y], for all x, y, z  I. (3.10) 

By hypothesis d(xy) =d(yx), for all x, y  I 

d(x)g(y) + xd(y) = d(y)g(x) + yd(x), for all x, y  I ( by 

2.1.1). 

Which implies 

[d(x), y] = [d(y), x], for all x, y  I.  (3.11) 

In particular [d(x2), y] = [d(y), x2], for all x, y  I 

[d(x)g(x), y] + [xd(x), y] = x[d(y), x] + [d(y), x]x ( by 2.1). 

Since g is onto 

d(x)[x, y] + [d(x), y]x + x[d(x), y] + [x, y]d(x) = x[d(y), x] + 

[d(y), x]x 

Using (3.11), we obtain 
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d(x)[x, y] + [x, y]d(x) = 0, for all x, y  I. 

Using (3.10) in the above equation 

[x, y]d(x) = 0, for all x, y  I.  (3.12) 

For any r in R, replace y by ry in (3.12), we obtain 

[x, r] y d(x) = 0, for all x, y  I. 

Hence [x, R] I d(x) = 0, for all x  I. 

By lemma 3.2 we conclude that R is commutative. ♦ 

Theorem 3.4 : Let R be a σ- prime ring with char ≠ 2 and 

let I be a nonzero σ-ideal of R. If R admits a nonzero 

semiderivation d associated with surjective function g. If r  

Saσ(R) satisfies [d(x), r]=0, for all x  I, then r  Z(R). 

Furthermore, if d(I)  Z(R), then R is commutative. 

Proof : 

By hypothesis [d(x), r] = 0, for all x  I 

Replace x by xy implies [d(xy), r] = 0, for all x, y  I  

[d(x)g(y) + xd(y), r] = 0, for all x, y  I ( by 2.1). 

d(x)g(y)r + xd(y)r – rd(x)g(y) – rxd(y) = 0,  

d(x)[g(y), r] + [x, r]d(y) = 0     ( by 2.3). 

Since g is on to we have 

d(x)[y, r] + [x, r]d(y) = 0, for all x, y  I (3.13) 

Taking y by yr, r  Saσ(R) in (3.13) 

d(x)[yr, r] + [x, r]d(yr) = 0, 

d(x)[y, r]r + [x, r]d(y)g(r) + [x, r]yd(r) = 0    ( by 2.3 & 2.1). 

Since g is on to and using (3.13), we get 

[x, r]yd(r) = 0, we conclude that [x, r] Id(r) = 0. 

The fact that I is a σ-ideal together with r  Saσ(R), give 

σ ([x, r]) Id(r) = [x, r] Id(r) = 0. 

Using lemma 3.1, either d(r) = 0 or [x, r] = 0. 

If d(r) ≠ 0, then [x, r] = 0, for all x  I 

Replace x by tx, t  R, we get [t, r]x= 0 ( by 2.1.3). 

Let 0 ≠ x0 I, as [t, r] R x0 = [t, r] R σ(x0), then [t, r] = 0. 

Since R is a σ- prime, which proves r  Z(R). 

Now d(r) = 0, then d([x, y]) = [d(x), r] = 0 and consequently 

d( [I, r]) = 0, (3.14) 

Replace y by yw, w  I in(3.13), we get 

d(x)[yw, r] + [x, r]d(yw) = 0, for all x, y, w  I, 

d(x)y[w, r] + d(x)[y, r]w + [x, r]d(y)g(w) + [x, r]yd(w) = 0  ( 

by 2.3 & 2.1). 

Since g is on to and using (3.13), we get 

d(x)y[w, r] + [x, r]yd(w) = 0. (3.15) 

Now taking [w, r] instead of w in (3.15) and using (3.14), 

we get 

d(x)y[[w, r], r] = 0, for all x, y, w  I, so that 

d(x) I [[w, r], r] = 0 = d(x)I σ([[w, r], r]), for all x, y, w  I, r 

Saσ(R). 

By lemma 3.1, we have either d(I) = 0 or [[w, r], r] = 0. 

If d(I) = 0, then for any t  R, we get 

d(tu) = 0, for all t  R, u  I, 

d(t)u + g(t)d(u) = 0, which gives d(t)u = 0, for all t  R, u  

I. 

Therefore, d(t) RI = d(t)R σ(I) = 0,  

And as I ≠ 0, then d(t) = 0 in such way that d = 0. 

Consequently, [[w, r], r] = 0. (3.16) 

Replace w by wu in (3.16), we obtain 

[[wu, r], r] =[w[u, r] +[w, r]u, r]     ( by 2.3) 

                 =w[[u, r], r] + [w, r][u, r] + [w, r][u, r] + u[[w, r], 

r]. 

Since R is a char≠ 2 and using (3.16), we get 

[w, r][u, r] = 0. 

Hence [tw, r][u, r] = [t, r] w [u, r] = 0 and consequently 

[t, r] I [u, r] = 0, for all u  I. 

Therefore [t, r] I [u, r] = [t, r] I σ ([u, r]) = 0. 

Again using lemma 3.1, we see that [t, r] = 0 or [u, r] = 0. 

If [t, r] = 0 then r  Z(R). 

If [u, r] = 0, for all u  I, then for any t  R 

[tu, r] = t[u, r] + [t, r]u = 0, which implies [t, r]u = 0. 

Hence [t, r]I =[t, r] I 1 = [t, r]I σ(1) = 0. 

Again using lemma .3.1, we conclude that [t, r] = 0, which 

proves that r Z(R). 

Now suppose that d(I)  Z(R)and letr  R. 

From the first part of the theorem we conclude Saσ(R) 

Z(R). 

Using the fact that r + σ(r) and r – σ(r) are elements of 

Saσ(R). 

We then obtain r + σ(r)  Z(R) and r – σ(r)  Z(R) and 

hence 2r  Z(R). 

Since R is char≠ 2, then r  Z(R). 

Hence we conclude that R is commutative. ♦ 

Theorem 2.3.5 : Let R be a σ- prime ring with char ≠ 2 and 

let a  Saσ(R). If R admits a nonzero semiderivation d 

associated with surjective function g such that d([R, a]) = 0, 

then    a  Z(R). In particular, if d(xy) – d(yx) = 0, for all x, 

y R, then R is commutative ring.  

Proof : 

If d(a) = 0, from our hypothesis, we have for any r  R. 

d([r, a]) = 0, (3.17) 

d(ra) – d(ar) = 0, 

d(r)a + g(r)d(a) – d(a)r –g(a)d(r) = 0 ( by 2.1) 

Since g is on to, which gives  

[d(r), a] = 0, for all r  R 

Now using Theorem 3.4 we say a  Z(R) and the proof is 

complete. 

Next assume that d(a) ≠ 0. 

Replace r by ar, r  R in (.3.16), we get d[ar, a] = 0. 

d(a[r, a]) = d(a)[r, a] + g(a)d([r, a]) = 0   ( by 2.3 & 2.1). 

Using (3.17) we get d(a)[r, a] = 0. (2.3.18) 

Replace r by rt, t  R in (3.18), we get 

d(a)r[t, a] + d(a)[r, a]t = 0  ( by 2.3). 

Using (3.18) implies d(a) r [t, a] = 0, so that 

d(a) R [t, a] = 0, for all t  R. 

Since a  Saσ(R), then 

d(a) R [t, a] = d(a) R σ([t, a]) = 0.  

Therefore R is a σ-primeness yields that [t, a] =0, which 

proves a  Z(R).  
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Now assume that d([x, y]) = 0, for all x, y  R. 

Using the first part of our theorem, then we get 

Saσ(R)Z(R). 

By the fact that r + σ(r) and r – σ(r) are elements of Saσ(R) 

We then obtain r + σ(r)  Z(R) and r – σ(r)  Z(R) and 

hence 2r  Z(R). 

Since R is char≠ 2, then r  Z(R). 

Hence we conclude that R is commutative. ♦ 

 

IV COCLUSION 

The study of commutative rings has innovative results not 

only in algebra but also other branches of Mathematics. A 𝜎 

-prime ring R of Char ≠ 2 possessing a nonzero 

semiderivation under some conditions is shown as 

Commutative. 
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