
 

  

4008 Peter Arnaud Kidoudou1, IJMCR Volume 12 Issue 02 February 2024 

 

 Volume 12 Issue 02 February 2024, Page no. – 4008-4014 

 Index Copernicus ICV: 57.55, Impact Factor: 8.316 

 DOI: 10.47191/ijmcr/v12i2.02 

Signature Scheme Based on Alternant Codes 
 

Peter Arnaud Kidoudou1, Regis Freguin Babindamana2, Bossoto3, Benjamin Mampassi4 
1,2,3,4Faculté des Sciences et Techniques, Université Marien NGOUABI 

 

ARTICLE INFO ABSTRACT 

Published on: 

07 February 2024 

 

 

Corresponding Author: 

Regis Freguin Babindamana 

In this paper, we present a version of the signature on subcodes of generalized Reed-Solomon 

codes defined on a subfield. We show that the use of alternating codes reduces the key size 

and the use of subcodes has the caracteristic of hiding the code structure. This makes the 

system more secure. 

General Terms 

MSC Classification 2020: 68P30, 94B05, 94A60 

KEYWORDS: code-based cryptography, GRS, Signature, subfield, subcodes, alternant codes. 

INTRODUCTION 

Cryptography based on error-correcting codes [2][16][17] is 

an alternative to modern cryptography based on number 

theory. The McEliece cryptosystem is one of the best-known 

and most robust error-correcting cryptosystems. 

This McEliece cryptosystem is based on binary Goppa codes 

[13][15] which are subcodes of generalized Reed-Solomon 

codes [14]. The enormous key size generated by the McEliece 

cryptosystem makes it unusable in practice. 

This is why we need to look for other code families that can 

reduce key size. 

One of the criteria guaranteed by modern cryptography is the 

non-repudiation of transactions, which is ensured by the 

signature. A signature verifies that a message has been sent 

by the holder of a public key. 

The first code-based signature scheme was developed by 

Courtois-Finiasz-Sendrier [9][7] using binary Goppa codes. 

In this paper, we describe a signature scheme based on the 

subcodes of GRS codes[18][20]   on a subfield. 

The use of alternating codes has the advantage of reducing 

key size and hiding the code structure to avoid structural 

attacks. 

This paper is organized as follows: 

 In the first section we present a background of 

generalized Reed-Solomon codes and subfield. 

 In the second section, we propose a new signature 

protocol. 

 

 

 

1. BACKGROUND ON GENERALIZED REED 

SOLOMON SUB-CODES AND SUBFIELD 

1.1. Error correcting codes 

Definition 1.1. Let be 𝐹𝑞𝑚
𝑛  a finite field. A linear code ∁ of 

length n and of dimension k is a vector subspace of 𝐹𝑞𝑚
𝑛 . 

We denote by d its minimum distance, defined as follows: 

 

d=min {dH (c, c’) |c, c’ ∈ ∁ , c ≠ c’} =min {wt( c) |c  ∈ ∁ 

{0}} 

 

 

One notes [n, k, d] the code parameters. If  ∁ is an [n, k, d] 

code then any matrix 𝐆   ∈ 𝐹𝑞
𝑘×𝑛 such that: 

 

∁= {𝑚𝐆,𝑚 ∈  𝐹𝑞
𝑘} 

 

is called the generating matrix of ∁.The rows of 𝐆 form a basis 

of  ∁ . From another point of view, any matrix  

𝐻 ∈ 𝐹𝑞
(𝑛−𝑘)×𝑛

 such that:  

∁= { 𝑐 ∈  𝐹𝑞
𝑘  𝐻 𝑐𝑇 = 0𝑇} 

 

is called the parity matrix, or control matrix, of ∁ . A parity 

equation is any vector h such that < ℎ, c >= 0 for all 

𝑐 ∈  ∁ . 

The rows of 𝐻 therefore form a basis of the orthogonal space 

to ∁. 
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Definition 1.2. Let ∁  an  [n, k, d] code. We denote by C⊥ the 

space of vectors of 𝐹𝑞
𝑛 which are orthogonal to those of  ∁. 

The space 𝐶⊥ is called the dual code of ∁. 

It is a code of length n and of dimension n-k. Its minimum 

distance is denoted by 𝑑𝑇. 

Note that a generating matrix of C⊥ is a parity matrix of ∁ and 

inversely (C⊥)⊥  unlike  R ou C the intersection  C ∩ C⊥  not 

always zero (non-zero isotropic vectors may exist in  𝐹𝑞
𝑛). For 

example (1,1) ∈  𝐹2
2 

Definition 1.3. Let ∁ be an [n, k, d] code and  𝐼 ⊂  [1, 𝑛]  such 

that | 𝐼|=i with cardinal then 1 ≤ 𝑖 ≤ 𝑛 − 1  then 

 

1. Punctured ∁ on 𝐼 is: 

 

 Punct𝐼(∁) = { 𝜋[1,𝑛]\𝐼(𝑐)|𝑐∈∁  } ⊆ 𝐹𝑞
𝑛−𝑖  

 

2. Shortened ∁ on 𝐼 is: 

        Short𝐼(∁) = { 𝜋[1,𝑛]\𝐼(𝑐)|𝑐∈∁  } ⊆ 𝐹𝑞
𝑛−𝑖  

1.2. Property [12] For any code  ∁ and any subset 𝐼 ⊂  [1, 𝑛]  

with cardinal  1 ≤ |𝐼|  ≤ 𝑛 − 1   on has 

   Punct𝐼(∁)
⊥ =  Short𝐼(∁

⊥) 

Definition 1.4. Let ∁ ⊆ 𝐹𝑞
𝑛 be a k-dimensional code. The 

information set of  ∁ is a subset 𝐼 ⊂  [1, 𝑛]    

 of cardinal k    such that 𝜋𝐼(∁)is of dimension k. In short, 𝐼 

contains all the information of the code words. 

1.3. Cyclic code 

Definition 1.5. Cyclic codes are widely used in data 

communication because their structure 

 makes encoder and decoder circuitry simple. Hill in 1986 

defined code ∁ as cyclic [n, k]-code if is a linear code of 

length n over a finite field and if any cyclic shift of a 

codeword is also a codeword. Thus, for a cyclic code ∁, 

(𝑐0, . . . . , 𝑐𝑛−1) ∈ ∁=> (𝑐𝑛 , 𝑐1, . . , 𝑐𝑛−1) ∈ ∁ 

The permutation  σ 

𝜎(𝑐0, . . . . , 𝑐𝑛) = (𝑐𝑛 , . . , 𝑐𝑛−1) is called "shift". 

 

1.4. Bose-Chaudhuri-Hocquenghem (BCH) Codes 

Definition 1.6. A BCH code is a cyclic polynomial code over 

a finite field with a particularly 

chosen generator polynomial. Hamming codes are the subset 

of BCH codes with k= 2m-1 -m and an error correction of 1. 

Generally, a family of t-error correcting codes defined over 

finite fields 𝐹𝑞 where 2t+1<q, are BCH codes or RS codes 

[11]. The main advantage of BCH codes is the ease with 

which they can be decoded using syndrome and many good 

decoding algorithms exist. A well-known decoding algorithm 

is the Berlekamp-Massey algorithm. This allows very simple 

electronic hardware to perform the task, making the need for 

a computer unnecessary. This implies that a decoding device 

may be small and consume little power. BCH codes allow 

control over block length and acceptable error thresholds, 

which makes them very flexible. This indicates that code can 

be designed to meet custom requirements. Another reason 

they are important is that there exist good decoding 

algorithms that correct multiple errors. Hocquenghem, as 

well as Bose and Ray-Chaudhuri, discovered the class of 

BCH codes, but not the decoding. 

Peterson developed the first decoding algorithm in 1960 

followed by refinement from Berlekamp, Massey and many 

others [19] 

 

1.5. Theorem 

A Reed-Solomon code of length q-1 and of constructed 

distance d (2 ≤ 𝑑 ≤ 𝑞 − 1)is a cyclic code such that its 

generator polynomial is written as: 

 

𝑔(𝑥) = (𝑥 − 𝛿𝑟)(𝑥 − 𝛿𝑟+1). . . . (𝑥 − 𝛿𝑟+𝑑−2) 

 

Where δ is a primitive element of 𝐹𝑞.Its parameters are [q-1, 

q-d, d]. It is therefore an MDS code. For further details and 

proof, please refer to [9]. 

 

1.6. Reed-Solomon codes. 

Reed-Solomon codes are block-based error correcting codes 

with a wide range of applications in digital 

communications and storage. Reed-Solomon codes are used 

to correct errors in many systems including: 

 Storage devices (including tape, Compact Disk, 

DVD, barcodes, etc) 

 Wireless or mobile communications (including 

cellular telephones, microwave links, etc) 

 Satellite communications 

 High-speed modems such as ADSL, xDSL, etc. 

 

1.7. Generalized Reed Solomon Code (GRS). 

Definition 1.7. Consider nonzero elements (𝑣0, . . . . , 𝑣𝑛−1) ∈

𝐹𝑞
𝑛 and distinct elements (𝛿0, . . . . , 𝛿𝑛−1) ∈ 𝐹𝑞

𝑛. Set  𝑆 =

(𝑣1, . . . . , 𝑣𝑛) 𝑎𝑛𝑑 ∆= (𝛿0, . . . . , 𝛿𝑛). For 1 ≤ 𝑘 ≤ 𝑛  let 

define the generalized Reed-Solomon codes 

 

 GRS𝑛,𝑘(S, ∆): = {(𝑣1𝑓(𝛿1), . . . . , 𝑣𝑛𝑓(𝛿𝑛))|𝑓(𝑥) ∈ 𝐹𝑞
𝑛[𝑥]𝑘} 

 

Here we write 𝐹𝑞
𝑛[𝑥]𝑘 for the set of polynomials ∈ 𝐹𝑞

𝑛[𝑥] of 

degree less than k  (𝐹𝑞
𝑛[𝑥]𝑘 is a vector space of dimension k 

over 𝐹𝑞
𝑛).For fixed n, S and ∆ the various GRS codes enjoy 

the nice embedding property  GRS𝑛,𝑘−1(S, ∆) ≤

 GRS𝑛,𝑘(S, ∆). 

If 𝑓(x) is a polynomial, then we shall usually write 𝒇 for its 

associated codeword. This codeword also depends upon S 

and ∆; so at times we prefer to write unambiguously 

 

 es𝑠,∆(𝑓(x)) = {(𝑣1𝑓(𝛿1), . . . . , 𝑣𝑛𝑓(𝛿𝑛))}. 
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1.7. 1.Theorem 

Any basis (𝑓1(𝑥), . . . . , 𝑓𝑛(𝑥)) of 𝐹𝑞
𝑛[𝑥]𝑘 gives rise to a basis 

(𝒇1 ,….., 𝒇𝑛 ) of the code. A particularly nice polynomial 

basis is the set of monomials 1, 𝑥, . . . . , 𝑥𝑖 , . . . . , 𝑥𝑘−1.The 

corresponding generator matrix, whose 𝑖𝑡ℎ.row (numbering 

rows from 0 to k-1) is: 

 

 es𝑠,∆(𝑥
𝑖) = {(𝑣1𝛿1

𝑖 , . . . 𝑣𝑗𝛿𝑗
𝑖. , 𝑣𝑛𝛿𝑛

𝑖 )}. 

 

is the canonical generator matrix for  GRS𝑛,𝑘(S, ∆): 

 

(

 
 

v1 . . v𝐽 . v𝑛
v1𝛿1. . . vj𝛿j . v𝑛𝛿𝑛

v1𝛿1
𝑖 . . . vj𝛿j

𝑖 . v𝑛𝛿𝑛
𝑖

v1𝛿1
𝑘−1 . . v𝑗𝛿j

𝑘−1 . v𝑛𝛿𝑛
𝑘−1
)

 
 

 

 

1.8. Notion of subcodes on a subfield of a code 

The subfield subcode ∁∗ over  𝐹𝑞. of a 𝐹𝑞𝑚 linear code ∁  

defined   is the set of words of ∁ that have components over  

𝐹𝑞. 

1.8.1. Construction of a subfield ∁∗ on 𝑭𝒒  by   using a 

generator matrix 

Suppose that the code  ∁ on  F𝑞𝑚 is defined by a parity matrix 

H. Let  𝐻 = (𝐻𝑖𝑗) with (𝐻𝑖𝑗) ∈  𝐹𝑞𝑚  1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑛 

. H is 𝑎𝑇therefore an  𝑟 × 𝑛 matrix. The code ∁∗ on 𝐹𝑞. 

consists of all the vectors a = (a0, . . . . , a𝑛) ,with each a𝑖 ∈

 𝐹𝑞 such that 𝐻 = 0 

1.8.2. Another construction 

 Let (𝛼1, . . . . , 𝛼𝑛)  be a basis of  𝐹𝑞𝑚  over 𝐹𝑞. And 

ℎ𝑖𝑗 =∑ℎ𝑖𝑗𝑙

𝑛

𝑖=1

𝛼𝑙    ℎ𝑖𝑗𝑙 ∈  𝐹𝑞  

One defines a matrix 𝐻∗  of size 𝑟𝑚 × 𝑛 obtained by 

replacing each entry in ℎ𝑖𝑗 by the corresponding column 

vector (ℎ𝑖𝑗1, . . . . , ℎ𝑖𝑗𝑚)
𝑇 of  𝐹𝑞 and so 

 

𝐻∗ = (

ℎ111 . . ℎ121 . ℎ1𝑛1
ℎ112 . . ℎ122 . ℎ1𝑛2
ℎ11𝑛. . . ℎ12𝑚 . ℎ1𝑛𝑚
ℎ𝑟1𝑛. . . ℎ𝑟2𝑚 . ℎ𝑟𝑛𝑚

) 

 

Then  a ∈ ∁∗ 

{

<=> ∑ ℎ𝑖𝑗
𝑛
𝑖=1 𝑎𝑖  𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑟

<=> ∑ ℎ𝑖𝑗𝑙
𝑛
𝑖=1 𝑎𝑖  𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑟 𝑙 = 1, . . . , 𝑚

<=> 𝐻∗𝑎𝑇 = 0                                        

 

 

The rank of 𝐻∗ over 𝐹𝑞𝑚 is at most equal to  𝑟𝑚.Thus ∁∗ is 

an [n, k ≥ n-rm] code assuming 𝑟𝑚 ≤  𝑛. 

Definition 1.8. Let  𝛽 = {𝛽0, . . . . , 𝛽𝑛−} ∈  𝐹𝑞𝑚  and denote by  

𝜃𝛽: 𝐹𝑞𝑚−>𝐹𝑞
𝑚. 

𝜃𝛽 can be extended in the space 𝐹𝑞𝑚
𝑛  

 

if ∁= (c1, . . . . , c𝑛)  ∈  𝐹𝑞𝑚
𝑛    then  𝜃𝛽 (∁) =

(𝜃𝛽(c1), . . . . , 𝜃𝛽(c𝑛)).The q-ary image of a code  ∁ in relation 

to the base 𝛽 is the image: 

 I𝑚𝑞(∁) = 𝜃𝛽 (∁) 

 I𝑚𝑞(∁) is a linear code of length 𝑛𝑚.This code depends 

on the choice of the base 𝛽 

In order to construct a generator matrix 𝑔  of  I𝑚𝑞(∁) on 𝐹𝑞𝑚 

with  I𝑚𝑞(∁) ≠  𝐹𝑞𝑚 ,it is necessary to take all the multiples 

of  𝐆  simply take 𝑛, a multiple of 𝐹𝑞 linear). 

Proposition 1.1.[12] 

If 𝑔 =𝛼𝑖𝑗 is a generator matrix of size  𝑘 × 𝑚 then   𝑚𝑘 × 𝑛𝑚 

a matrix 𝐆 obtained by replacing each 𝛼𝑖𝑗  by matrix  𝑚 × 𝑛  

corresponding 𝑴𝛼𝑖𝑗 
.We denote by 𝑴𝛼  the matrix of the 

corresponding endomorphism: with obvious notations, if 

𝜃𝛽 (x) = (x1, . . . . , x𝑚) then 𝜃𝛽 (αx) = (x1, . . . . , x𝑚) 𝑴𝛼 . 

 

1.9. Subcodes on generalized subspaces 

Definition 1.9. let  ∁  be a linear m-block of length n. Let k be 

an integer smaller than m. Let  (v1, . . . . , v𝑛)  a set of k-

dimensional subspaces of E = 𝐹𝑞
𝑚 . We have  �̅� =

(v1, . . . . , v𝑛)  with n-tuple. 

Generalization of a k-subspace on the subcodes of ∁ in 

relation to  �̅� is ∁|𝑉= ∁ ∩ �̅�  

 

Proposition 1.2.[6] 

A subcode on the generalized subspaces of an m-block code 

∁   is a subcode subspace of a code ∁′ which is 

multiplicatively equivalent to ∁.   

However, the parameter limits obtained by considering the  

CSS𝑣(∁) code as a shortened code apply to the subcodes of 

the generalized subspaces. 

We propose an algorithm (Algorithm 1)   to efficiently 

compute a generating matrix of a subcode on generalized 

subspaces.
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1.10.Alternant codes 

Definition 1.10. An alternant code is a subfield subcode of a 

GRS code. It inherits the decoding algorithm of the 

underlying Reed-Solomon code. 

 

1.11. Example: let n=7, k=6, d=3   α a root of  α3  +  α2  +

 1. 

 
The systematic matrix is: 

 
The q-ary image (binary image) of the generator matrix G in 

the basis 

{1 = (100), α = (010), 𝛼2 = (001)}  is: 

 

 
With  

𝑀0 = (
0 0 0
0 0 0
0 0 0

)𝑀1 = (
1 0 0
0 1 0
0 0 1

)𝑀𝛼𝑖

= (
0 1 0
0 0 1
1 1 0

) , for all  𝑖 ∈ {1, . . . ,6} 

 

1.12. Remark 

As we can see, we have a so-called hollow matrix with many 

zero elements and a few non-zero elements. This makes 

difficult to structure the original code used. We have thus the 

following generator matrix: 

 
 

2. SIGNATURE SCHEME 

2.1. Description 

A signature verifies that a message has been sent by the holder 

of a "public key". This cryptographic process enables anyone 

to verify the identity of the author of a document and to ensure 

that it has not been altered. 

This cryptographic process enables anyone to verify the 

identity of the author of a document and guarantee that it has 

not been altered. The process is based on a pair of keys: one 

is private and known only to its holder, the other is public and 

accessible to all. The signature is generated using the private 

key. The public key is used to verify the signature. This 

verification can therefore be carried out by anyone with 

access to the public key. 
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A signature scheme is composed of two algorithms: 

 a signature algorithm 

 a verification algorithm 

Signature scheme is a quintuplet   (𝜌, 𝐴, 𝐾, 𝛿, 𝑉) 

 𝜌: Set of messages 

 𝐴: 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 

 𝐾:𝐾𝑒𝑦 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡  

 𝛿: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 𝑉: 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 

for   k  ∈ 𝐾 there is a signature algorithm Sgn𝑘 ∈ 𝛿 and a 

verification algorithm Verify ∈ 𝑉 

 

2.2. Signature scheme based on the subcodes of 

generalized subspaces  

 

Fiat-Shamir obtains signatures by transforming the zero-

knowledge identification scheme. We use the Fiat-Shamir 

transformation [10] to implement the new signature scheme 

based on the subcodes of generalized subspaces. We propose 

the following algorithms. 
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2.2.1. Example: Let : G  be an |21,18,3], code 𝑃 ∈  𝐹𝑞𝑚
𝑛   𝑎𝑛𝑑 𝑆 ∈  𝐹𝑞𝑚

𝑘  

The public generator matrix  𝐺𝑝𝑢𝑏 = 𝑆𝐺𝑃 

 

 

 

The private key is: sk= (e, l) with  

 

e= (0 0 0 0 0 0 0 1 01 0 0 0 0 1 0 0 0 0 0 0) l= (1 1 0 1 1 0 1 1 

0 1 1 0 0 1 0 0 11). 

 

The public key is: pk= (1 11 0 0 01 0 0 0 0 1 10 1 0 0 0 0 11).  

 

We use a hash function: hash let:  

commitments ch: 

 

3635780394363946408480713917344480713650181-

8787340603405549986480713650243-

922337155614112558 

 

the answers rep: 

'[12, 9, 14, 10, 1, 5, 17, 16, 3, 11, 8, 6, 18, 15, 2, 7, 4, 13](0, 

0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1)[3, 1, 14, 5, 13, 11, 

15, 9, 8, 2, 7, 10, 4, 17, 18, 12, 16, 6](0, 0, 0, 1, 1, 0, 1, 0, 1, 

1, 0, 1, 0, 1, 0, 0, 1, 1)'. 

 

The final signature is composed of :(ch, rep) 

'3635780394363946408480713917344480713650181-

8787340603405549986480713650243-

9223371556141125581[12, 9, 14, 10, 1, 5, 17, 16, 3, 11, 8, 6, 

18, 15, 2, 7, 4, 13](0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 

1)[3, 1, 14, 5, 13, 11, 15, 9, 8, 2, 7, 10, 4, 17, 18, 12, 16, 6](0, 

0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1)'. 

 

Proposed parameters 

Size of secret key 𝑚 × 𝑘 +𝑚 × 𝑛 

Public key size 𝑚 × 𝑛 + 𝑙𝑜𝑔2(𝑟)  

Matrix size 𝑚 × 𝑛 × 𝑘 

Total number of bits 

exchanged 
𝛿(3h + 2 +

2

3
(𝑚𝑘

+ 𝑘)) 

 

2.3. Security parameter 

The main strength of this system is that it is used to mount 

structural attacks against code-based cryptosystems. 

In our zero-knowledge system [8] [1] [5][15] the Veron 

scheme [3][4] (with several rounds) probability of cheating is 

2/3 for the security of 280, 150 rounds are required. The 
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number of rounds reduces the probability of identity theft 

according to our needs. In general, to achieve a level of 

security with a probability of identity theft, the number of 

rounds 𝛿 = 𝑙𝑜𝑔𝑞(1/2
𝑙) is determined. 

ISO/IEC-9798-5 specifies two probability values: 2-16 and 2-

32 or 28 and 56 rounds. 

 

CONCLUSION 

Alternant codes are generalized Reed Solomon codes, like the 

Goppa codes used in code-based cryptography schemes. The 

use of these codes in cryptography results in secure 

cryptosystems with reasonable key sizes. Our signature 

scheme presents within its generalized subdomains leads to 

the theory and hiding of codes. it has an advantage in terms 

of low communication cost and resilience against quantum 

computer attacks. No secret information can be deduced in 

polynomial time during scheme execution thanks to zero-

knowledge. 

 

REFERENCES 

1. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-

knowledge code based identification scheme with 

reduced communication. In: 2011 IEEE Information 

Theory Workshop. pp. 648–652. IEEE (2011)) 

2. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., 

Zémor, G.: Durandal: a rank metric based signature 

scheme. In: Annual International Conference on the 

Theory and Applications of Cryptographic 

Techniques. pp. 728–758. Springer (2019 

3. Aragon, N.: Cryptographie à base de codes 

correcteurs d’erreurs en métrique rang et 

application. Ph.D. thesis, Université de Limoges 

(2020) 

4. Bellini, E., Caullery, F., Hasikos, A., Manzano, M., 

Mateu, V.: Code-based signature schemes from 

identification protocols in the rank metric. In: 

International Conference on Cryptology and 

Network Security. pp. 277–298. Springer (2018). 

5. Bellini, E., Gaborit, P., Hasikos, A., Mateu, V.: 

Enhancing code based zero-knowledge proofs using 

rank metric. In: Cryptology and Network Security: 

19th International Conference, CANS 2020, Vienna, 

Austria, December 14–16, 2020, Proceedings 19. 

pp. 570–592. Springer (2020) 

6. Berger, T.P., Gueye, C.T., Klamti, J.B.: Generalized 

subspace subcodes with application in cryptology. 

IEEE Transactions on Information Theory 65(8), 

4641–4657 (2019) 

7. Cayrel, P.L., Alaoui, S.: Dual construction of stern-

based signature scheme 63,98–103 (03 2010).  

8. Cayrel, P.L., Véron, P., El Yousfi Alaoui, S.M.: A 

zero-knowledge identification scheme based on the 

q-ary syndrome decoding problem. In: International 

Workshop on Selected Areas in Cryptography. pp. 

171–186. Springer (2010) 

9. Courtois, N.T., Finiasz, M., Sendrier, N.: How to 

achieve a mceliece-based digital signature scheme. 

In: International Conference on the Theory and 

Application of Cryptology and Information 

Security. pp. 157–174. Springer (2001) 

10. Fiat, A., Shamir, A.: How to prove yourself: 

Practical solutions to identification and signature 

problems. In: Conference on the theory and 

application of cryptographic techniques. pp. 186–

194. Springer (1986) 

11. Hill, R.: A first course in coding theory. Oxford 

University Press (1986) 

12. Huffman, W.C., Pless, V.: Fundamentals of error-

correcting codes. Cambridge university press (2010) 

13. Loidreau, P.: Etude et optimisation de 

cryptosystèmes à clé publique fondés sur la théorie 

des codes correcteurs. Ph.D. thesis (5 2001) 

14. McWilliams, F., Sloane, N.: The theory of error 

correcting codes, north mathematical library, vol. 16 

(1983) 

15. Misoczki, R., Barreto, P.S.: Compact mceliece keys 

from goppa codes. In: International Workshop on 

Selected Areas in Cryptography. pp. 376–392. 

Springer (2009) 

16. Moufek, H.: Les codes correcteurs pour la 

cryptographie. Ph.D. thesis, Faculté de 

Mathématiques (2017) 

17. Richmond, T. : Implantation sécurisée de protocoles 

cryptographiques basés sur les codes correcteurs 

d’erreurs. (secure implementation of cryptographic 

protocols based on error-correcting codes) (2016) 

18. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of 

cryptosystems based on generalized reed-solomon 

codes (1992) 

19. Trappe, W.: Introduction to cryptography with 

coding theory. Pearson Education India (2006) 

20. Wieschebrink, C.: Cryptanalysis of the niederreiter 

public key scheme based on grs subcodes. In: Post-

Quantum Cryptography: Third International 

Workshop, PQCrypto 2010, Darmstadt, Germany, 

May 25-28, 2010. Proceedings 3. pp. 61–72. 

Springer (2010) 

 

 


