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This paper is focused on various methodologies of construction of circular models contributed 

by researchers in directional data analysis for modeling angular/periodic data. Several 

methods of construction are discussed in detailed here. These methods can be adopted for 

modeling angular/circular/periodic data which may be occurred in many practical situations 

in various fields. 

1. INTRODUCTION 

        Modeling circular / periodic data is figured out using 

Circular Models.  Due to paucity of circular models, different 

methods of construction are made a mention of it 

[Jammalamadaka and Sen Gupta (2001)].  The following is 

the list of various construction methods cited by them, 

1. Geometrical consideration 

2. Wrapping a linear distribution around the unit 

circle 

3. Using characterization properties such as 

Maximum Entropy or Maximum Likelihood, 

etc., 

4. Offsetting a bivariate linear distribution 

5. Applying inverse stereographic projection to a 

Linear model. 

 Further Girija (2010) have introduced a new 

construction procedure by applying Rising Sun function, yet 

another method based on Differential Approach is introduced 

by Dattatreya Rao et al (2011b).  Applying the above methods, 

new circular models are added to the literature of Circular 

Statistics. 

 This paper is devoted to present detailed 

methodologies of Wrapping, Offsetting, Rising Sun function 

and Differential Approach in constructing circular models 

and also suitable illustrations are included. Further the 

characteristic functions of the respective illustrations along 

with the population characteristics are also presented. As we 

all know that the circular distribution is defined as a 

probability distribution whose total probability is 

concentrated on the unit circle 

 (cos ,sin ) / 0 2      in the plane. Inverse 

Stereographic Projection is well explained in the next two 

chapters as new angular models are constructed by projecting 

on linear models. 

 In this chapter Sections (2) and (3) respectively deal 

with explaining the methodologies of Wrapping and 

Offsetting.  Sections (4) and (5) describe the Rising Sun 

Circular models and differential approach for constructing 

new Circular models respectively.  Sections (6) and (7) 

discuss characteristic functions of Circular models and to 

tabulate population characteristics respectively. 

Definition 1.1:  In the continuous case  2 ,0:g R is the 

probability density function of   a circular distribution iff  g 

has the following basic properties
 

 Non-negative condition, ( ) 0   g                                                           

 Total probability is equal to one, 1 )(

2

0

 



dg                

         

 g is periodic, )2()(  kgg  for any integer k  

(Mardia and Jupp, 2000).               

Since circular model is a probability density 

function, it is customary to define its characteristic function 

in order to study population characteristics.  It is well known 

that the characteristic function for a linear random variate  X  

is defined as 𝐸(𝑒𝑖𝑡𝑥) , 𝑡 ∈ 𝑅 whereas for that of circular 

random variate  C  it is𝐸(𝑒𝑖𝑝𝜃) , 𝑝 ∈ 𝑍 and 𝜃 ∈ [0,2𝜋). 

The moments thus obtained are called pth order trigonometric 

moments. Population characteristics of a circular model can 

be studied using trigonometric moments.  
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Characteristic functions of Circular Models 

A brief definition of the characteristic function of a circular 

model is already mentioned in the earlier section. More 

details including illustrations are given in this section. 

The characteristic function of a circular model with the 

probability density function  g    is defined as𝜑𝑝(𝜃) =

∫ 𝑒𝑖𝑝𝜃𝑔(𝜃)𝑑𝜃  , 𝑝 ∈ 𝑍
2𝜋

0
. 

 The value of the characteristic function p  at an 

integer p is also called the pth trigonometric moment of  . 

The real part and the imaginary part of p are denoted by 

p  and p  respectively. We can also view these 

trigonometric moments in terms of  

 ,cos  pEp     ,sin  pEp   p Z 

The first trigonometric moment namely, 

1
1111

 i
ei   plays a prominent role in 

determining the mean direction and resultant length. 

 

2. METHODOLOGY OF WRAPPING 

[Jammalamadaka and Sen Gupta (2001)] 

 Reducing a linear random variable to its modulo 2
is called wrapping.  The methodology of wrapping by means 

of modulo 2 reduction is explained as follows. 

If X is a r.v. defined on R, then the corresponding circular 

r.v. WX  is defined by the modulo  2  reduction 

        2modXXW    

                              (2.1) 

It is clearly a many valued function given by 

XW )( = {X )2(  k /𝑘 ∈ 𝑍}           

                                 (2.2) 

The wrapped  circular pdf )(g  corresponding to the density 

function f of a linear r.v. X  is defined as, 

             )(g 






k

kf )2( 

)2,0[    ,                                              (2.3) 

The Characteristic Function of Wrapped Circular model  

The pdf of a wrapped circular model can be obtained 

through characteristic function of the linear r.v. X using 

trigonometric moments. Using the inversion theorem of 

characteristic function, one can derive, circular models 

through trigonometric moments. These trigonometric 

moments can be obtained using the following Proposition 

[c.f. p.31, Jammalamadaka and Sen Gupta (2001)]. 

The density and the distribution functions of the 

Wrapped Exponentiated Inverted Weibull Distribution 

(WEIWD) [Srinivasa Subrahmanyam et al (2017)] on 

applying wrapping are as follows  

2.1 WRAPPING OF EXPONENTIATED INVERTED 

WEIBULL DISTRIBUTION (WEIWD) 

[Srinivasa Subrahmanyam et al (2017)] 

A linear random variable X  is said to follow a two 

parameter EIWD, if the distribution function of X  takes the 

following form 

                

( )
cxF x e
   

                                                                             
(2.4) 

where andc   both are shape parameters and

0 and 0, 0.x c         

Hence the probability density function of EIWD is   

             

( 1)
( )

cc xf x c x e




     

 
                                                             

(2.5) 

          
where 0 and 0, 0.x c      

The probability density function, ( )g  of the WEIWD can 

be obtained as 

( 1) ( 2 )
( ) ( 2 )

0

cc k
g c k e

k


 

   
        

                                                   

(2.6)              

 where 0,2 ,   0 and 0.c     

The graph of the pdf of WEIWD for different values of 

parameter c   keeping the parameter   constant at 2.0 is 

plotted here 

 
Fig 1. PDF of WEIWD (Linear Representation for 

different values of c  ) 

 

The circular representation of pdf of WEIWD for different 

values of parameter c  keeping the parameter    constant at 

2.0 is shown below:  
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Fig 2. PDF of WEIWD (Circular Representation for 

different values of c ) 

 

The CDF, ( )G  of the WEIWD is 

                

(2 )( 2 )( ) ( )
0

cc kkG e e
k

   
    

                                  

(2.7) 

 where 0,2 and 0, 0.c       

At different values for parameters c  and   the graph of 

CDF for WEIWD is obtained as below 

 

 
Fig 3. CDF of WEIWD 

 

The characteristic function of the wrapped Exponentiated 

Inverted Weibull distribution is hence given by 

 
2

0
( )

ip

dw gp e


                                                                             

( 1) ( 2 )

0

2

0
( 2 )( )

ip cc k

k

dc k ew p e


 


  


   



 
       

 
                   (2.8) 

To obtain trigonometric moments for WEIWD, the equation 

(2.8) has to be evaluated. That can be achieved from the 

characteristic function of EIWD. 

𝜙𝑋(𝑡) = ∫ 𝑒𝑖𝑡𝑥
∞

0
𝑓(𝑥)𝑑𝑥 ,    𝑡 ∈ 𝑅                                                                                                                                                   

( 1)

0
( ) ( )

citx c x
dxX cxt e e 


                                                            

(2.9) 

Taking   
c

x u


     and carrying out necessary 

transformations, the equation (2.9) will reduce to 

( 1/ )

!0
0

( )

k
c

v
it

v

X k
k

dvt e




 
  
        



      =

∑
(𝑖𝑡𝜆1 𝑐⁄ )

𝑘!

𝑘
∞

𝑘=0

∫ 𝑒−𝑣𝑣−𝑘/𝑐
∞

0
𝑑𝑣                                                 

            

 
 

1/

1 /
!

0

c

k c

k
it

k
k








 
                                                                     

(2.10) 

                  where 0 and 0c     

The characteristic function of the Exponentiated Inverted 

Weibull distribution is feasible only when the right hand side 

of the equation (2.10) is convergent. But it can be noticed that 

the series in (2.10) fails to converge at least for some values 

of .c  For example when 𝑐 =
1

𝑛
, n > 0, n ∈ 𝑍+.To overcome 

this for evaluating the characteristic function of 

Exponentiated Inverted Weibull distribution, for obtaining 

the trigonometric moments of Wrapped Exponentiated 

Inverted Weibull distribution, a numerical integration method 

known as n – point Gauss – Laguerre quadrature formula as 

given in Rao and Mitra (1975) is applied.   

After evaluating the characteristic function of the 

WEIWD using the above said method for p , the real and 

imaginary parts 
p  and 

p  respectively are obtained. The 

following are the graphs for the characteristic function of the 

WEIWD showing the real part and imaginary part separately 

for different values of parameters andc  . 

                 

 
Fig 4 Characteristic Function of WEIWD 

at 2and 2c    

Population Characteristics of WEIWD 

The Population Characteristics for the WEIWD are 

computed. For computation of characteristics some arbitrary 

values are taken for the parameters andc  .  
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3. METHODOLOGY OF OFFSETTING 

 As mentioned earlier, the method of transforming a 

bivariate linear r.v. to its directional component is called 

OFFSETTING and the respective directional component is 

called offset distribution. This is done by accumulating 

probabilities over all different lengths for a given direction. 

Jammalamadaka and Sen Gupta (2001) established that the 

bivariate random vector (X, Y) can be transformed into polar 

coordinates (R, ) and is integrated over R for a given  . If 

f (x, y) denotes the joint density distribution on the plane, then 

the resulting circular offset distribution, say  g  is given 

by  

    
0

cos , sing f r r r dr  


      

          (3.1) 

The density and the distribution functions of the Offset 

Pearson Type II model  [Radhika et al (2013)] by offsetting a 

bivariate linear model are as follows 

The Offset Pearson Type II Model  

 The Bivariate Pearson Type II distribution arises in 

many statistical problems including analysis of variance and 

experimental design in general and two-stage estimation 

procedures, but is rarely used to fit data. The Offset Pearson 

Type II      (OP-II) distribution is derived from the Bivariate 

Pearson Type II distribution
  

[Balakrishnan and Chin (2008), 

p. 371].  

The pdf    and  the cdfg G   of the Offset 

Pearson Type II model for the Bivariate Pearson Type II 

distribution with parameters q > 1 and where 1    and 

 0,2  are respectively given by  

  
 

2
1

2 1 sin 2
g




  





                                                                  

(3.2) 

and

        

 

1 1

2 2

1 1

2 2

1 1

2 2

1 tan
tan tan , 0,

2 21 1

1 tan 3
tan tan , ,

2 2 21 1

1 tan
2 tan tan

2 1 1

G

   


  

    
  

  

  


  

 

 

 

                        

                          

          
        

3
, ,2

2


 










        

    (3.3) 

The Characteristic Function of the Offset Pearson Type 

II model [Radhika et al (2013)] 

The characteristic function of the Offset Pearson Type II 

distribution is derived here. 

     

 
2

0

i p

p
e g d




  






 

2

2

0

1

2 1 sin 2

i p
e

d







 

  
















  
  

              

            

 

 

2

2
1

2 1 sin 2

ip t
e

d t
t

 


 





 

  




















     

taking  t
 






    

  

2 1

2

2

1

12 1
2

ip p

C

e z dz

i z
i z

 
 

















 

  
 

, 
itz e and C is closed unit circle. 

 To evaluate this integration the notion of Residue at 

a finite point is applied.  

 

 
2 1

2

2

1
 

12
1

2

ip pe z
f z

i
z

i z

 





 
 
 

  
     

is 

analytic in C except at its singular points within C, so that 

  2
C

f z dz i


  (sum of residues at the singular points 

within C). If 
2 2and   are the roots of the denominator, 

then the poles of f within C are 

 2
2 21 1

, where and clearly 1i


  


 
    

 
 
 

 . 

      2
C

f z dz i



 {sum of residues at the singular 

points within C} 
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 

 

2

2 2

1
2

2

p p
ip

i e

 
   


   

         
    

      

  
2

2

1
2

2 1
2

ip p p
i e

i

  
 






 
     
     
    

 

         
 

2

p p
ip

C

f z d z e

 
  




 


   

                              𝜑𝜌     = 𝑒𝑖𝑝𝜇   
𝛽𝜎𝑝  +  (− 𝛽)𝜎𝑝

2
  for  𝑝 ∈

𝑍 , 𝜃, 𝜇 ∈ [0,2𝜋) and  |𝜌| < 1     (3.4) 

The graph of the characteristic function of the Offset Pearson 

Type II model is plotted.  

                                 

 
Fig 5. Graph of the Characteristic function of Offset 

Pearson Type II  distribution with  = 0.1 

The population characteristics of the Offset Pearson Type II 

model for various values of   are evaluated in MATLAB. 

 

4. THE RISING SUN CIRCULAR MODELS 

      The Rising Sun function (RSF) of a bounded function 

𝑓: [𝑎, 𝑏] → 𝑅 is  defined by   

 btxtfxf  :)(sup)(
 
 [Van Rooij 

and Schikoff (1982)]           (4.1) 

It is easy to show that 

 when  f  is nonnegative then f is nonnegative 

 when  f  is continuous then f  is continuous 

 f  is monotonically decreasing , hence f = f  

when  f  is decreasing and f  is the smallest 

monotonically decreasing function such that f =  

f. 

Imagine the Rising Sun on x – axis. Then 

{(𝑥, 𝑦) ∈ 𝑅2: 𝑦 ≥ 𝑓𝛩(𝑥)} is illuminated by the sun whereas 

{(𝑥, 𝑦) ∈ 𝑅2: 𝑦 < 𝑓𝛩(𝑥)} is covered by darkness. The set 

       , :x f x f x f x  is the collection of those 

points of the graph of f  that receive light from the sun. 

A new construction procedure of a class of Circular 

Models using RSF is obtained in the following theorem. 

These distributions are named as ‘Rising Sun Circular 

models’.  

Theorem 4.1: [Girija (2010)]: If g is the pdf and G is the cdf 

of a random variable of a circular distribution then the Rising 

Sun function g , gives rise to the pdf gc of a circular 

model. The distribution function of gc  is given by 

cG

 

 

 1  1  1  1

 1  1

1
 ( ) ( ) ( )        for  

K

1
 g( )                                    for  

K

g G G     

   

  









         (4.2) 

 

 

THE RISING SUN VON MISES MODEL [Radhika 

(2014)] 

 The von Mises distribution was introduced by von 

Mises (1918), in order to study the deviations of measured 

atomic weights from integral values. A technique is proposed 

in which each of these microphone-pair determined azimuths 

are further combined into a mixture of the von Mises 

distributions, thus producing a practical probabilistic 

representation of the microphone array measurement. It is 

shown that this distribution is inherently multimodal and that 

the system at hand is non-linear, which required a discrete 

representation of the distribution function by means of 

particle filtering [Ivan Markovi´c, and Ivan Petrovi´c (2010)]. 

Procedures for the estimation of parameters of the proposed 

distribution include the method of moments, and pseudo 

likelihood; the efficiency of the latter is investigated in two 

and three dimensions. The methods are applied to real protein 

data of conformational angles. 

 The pdf of von Mises distribution [Jammalamadaka 

and Sen Gupta (2001)] is  

   

 
0

1
( ) exp cos( ) ,

2 ( )
g k

I k
  


                                             

(4.3)                                 

where 0I  denotes the Modified Bessel function of the  first 

kind and order zero, which can be defined by 

   

2

cos

0

0

1
( )

2

kI k e d



 


  .                                                           

The function 0I  has power series expansion 
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2

0 2
0

1
( )

( !) 2

r

r

k
I k

r





 
  

 


                                                             

 

The parameter 𝜇 is the mean direction and the parameter k is 

known as the concentration parameter. The mean resultant 

length 𝜌 is A(k) where A is the function defined by 
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The Rising Sun function of the von Mises distribution is 

given by   
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Normalizing this function with the constant K1 =
2

0

( )  g d



    the pdf of the Rising Sun von Mises 

distribution (RSVM) is obtained.  

 

                

 

 
1

Sup exp cos( ) : 2
2 ( )

0

2
( )  

0

k t t
I k

g
c

g d

  





 

 
   
 
 



 

                        (4.5) 

 

 
Fig. 6 Graph of von Mises  pdf and the Rising Sun von 

Mises  pdf 

 

The Characteristic Function of the Rising Sun Circular 

model  

Result 4.2: Let g and p  be the pdf and the characteristic 

function of a circular model and 1  be the mode of g. Then 

the characteristic function of the corresponding Rising Sun 

circular model with pdf cg is  
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              (4.6) 

where g  is the Rising Sun function of g,   and 

2

0

( )  k g d


    

 

The graph of the characteristic function of the Rising Sun von 

Mises model is presented here. 

 

Fig 7 Graph of the Characteristic function of the Rising 

Sun von Mises distribution 

 

As the pdf of the Rising Sun von Mises model is not in closed 

form, the values of the characteristic function can be 

evaluated using numerical methods in MATLAB. The 

population characteristics for the Rising Sun von Mises 

model are computed based on their respective trigonometric 

moments.   

 

5. DIFFERENTIAL APPROACH FOR 

CONSTRUCTING CIRCULAR MODELS [Dattatreya 

Rao et al (2011b)] 

CARDIOID DISTRIBUTION THROUGH A 

DIFFERENTIAL EQUATION 

 By making use of certain assumptions on arbitrary 

constants in the general solution of a differential equation, we 

construct the pdf of the Cardioid model. 

Theorem 5.1: The solution of the initial value problem  

   
2

2

1 1 2 cos sin
, 0 , 0

2 2

d y
y y y

d

   

   


          

admits  

i)    the   particular  integral which is  a Uniform 

distribution  on the unit circle      

      and   

ii)   probability density function of the Cardioid 

distribution  
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1

1 2 cos
2

y    


  

where -   ,  <  and 0.5.     
 

On these lines other circular models could be tried by 

changing initial conditions. 
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