International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 02 February 2024, Page no. – 4062-4068 Index Copernicus ICV: 57.55, Impact Factor: 8.316 [DOI: 10.47191/ijmcr/v12i2.09](https://doi.org/10.47191/ijmcr/v12i2.09)

Jordan Dedekind Chain Condition on Pre-A* Posets with Graphical Aspects

Prof (Dr.) Jonnalagadda Venkateswara Rao1*, Joseph Owuor Owin[o](https://orcid.org/0000-0002-4178-736X)²

^{1,2} Department of Mathematics, School of Science and Technology, United States International University-Africa, Kasarani, Thika Road, 14634-00800, Nairobi, Kenya.

KEYWORDS: Pre-A* algebra, poset, chain, isomorphism, ascending chain condition, descending chain condition, Jordan Dedekind chain condition.

MSC Classification: 06E05 , 06EXX , 06E10 , 05 C 45

1 INTRODUCTION

An equational 3-valued generalization of a boolean algebra and C-algebra have been introduced by Fernando [1]. The aforesaid generalization based on logic functions "and ", " or " and " not ". The algebra of disjoint alternatives (Ada) (A*,*∧*,*∨*,*(−)∼*,*(−)*π,*0*,*1*,*2) has been studied by Manes [2], building a foundation on C-algebras. An A*-algebra $(A, A, V, (−) \tilde{}$ _{*,*} $(−)$ _{*π*}, $(0, 1, 2)$ and its equivalence with algebra of disjoint alternatives as well as the association of C-algebras and 3-ring has been done by Rao [3]. Moreover, A*-clones, If-Then-Else structure over A*-algebra, pre-A* algebra (A*,*∧*,*∨*,*(−)∼) and ideal of A*-algebra have been investigated [3, 4]. Kalyani [5, 6] have characterized a partial order relation on pre-A* algebra, thereby studying representation of a pre-A* algebra by a partial order. In this work, we prove that if a Pre-A* poset has least element of locally finite length which satisfies the Jordan Dedekind chain condition, then the pre-A* poset has a dimension function. The theorem is based on ascending and descending chain conditions.

2 Preliminaries

In this part of the paper, we define the important terms that we have used throughout.

Definition 1 (Pre-A* algebra)**.** *[4, Definition 1] A Pre-A* algebra is an algebra (A 6*= $\emptyset, \Lambda, \vee, (-)$ ^o) *where A has a 1;* Λ *and* ∨ *are binary operations and* (−)[∼] *is a unary operation such that the following conditions are satisfied:*

(i). x∼∼ = *x for all x* ∈ *A,*

(ii). x Λ *x* = *x, for all x* ∈ *A,*

(iii). x Λ *y* = *y* Λ *x, for all x,y* ∈ *A*, *(iv).* (*x* ∧ *y*) [∼] = *x* [∼] ∨ *y* [∼] *for all x,y* ∈ *A, (v). x* ∧ (*y* ∧ *z*) = (*x* ∧ *y*) ∧ *z for all x,y,z* ∈ *A, (vi). x* ∧ (*y* ∨ *z*) = (*x* ∧ *y*) ∨ (*x* ∧ *z*) *for all x,y,z* \in *A*, (vii) *. x* Λ *y* = *x* Λ (*x*∼ \lor *y*) *for all x,y* ∈ *A.*

Example 1. *(i). Let* $(3 = \{0,1,2\}, A, V, (-)^{\sim})$ *be a pre-A* algebra. The operations are defined using the laws:* 2 ∼ = 2*,* 1 ∧ *x* = *x for all x* ∈ **3***,* 0 ∨ *x* = *x for all x* ∈ **3** *and* 2 ∧ *x* = 2 ∨ *x* = 2 *for all x* ∈ **3***. Hence we obtain Table 1.*

Table 1: An illustration of the properties in Example 1(i).

(ii). Let (**2** = {0*,*1}*,*∧*,*∨*,*(−)∼) *be a pre-A* algebra. The operations are defined using the laws:* 1∧*x* = *x for all x* ∈ **2***,* 0∨*x* = *x for all x* ∈ **2***. Hence we obtain Table 2.*

Table 2: An illustration of the properties in Example 1(ii).

Definition 2. *[4, Partial order] A relation R on a set A is partial order if:*

(i). For all a \in *A, aRa (reflexivity)*

(ii). For all a,b ∈ *A,aRb and bRa, then a* = *b (anti-symmetry)*

(iii). For all $a,b,c \in A$ *, aRb and bRc, then aRc (transitivity). The pair* (*A,R*) *is a partially ordered set (poset).*

Example 2. *Posets*

- *(i). Let* $A = \{0, 1, 2\}$ *. Then power set of A given by* 2 *^A*= {∅*,*{0}*,*{1}*,*{2}*,*{0*,*1}*,*{0*,*2}*,*{1*,*2}*,A*} *is a poset under set inclusion. For for any* $A_0, A_1 \subseteq A$ *, we define* $A_0 \leq A_1$ *whenever* $A_0 \subseteq A_1$ *. The pair* $(2^A, \subseteq)$ *is a poset.*
- *(ii). Let P be the set of all real-valued functions on* $A = \{0,1\}$ *. That is, P* = { $f | f : A \rightarrow \mathbb{R}$ *, For any f*₀*f*₁ \in *P let f*₀ \leq *f*₁ *as long as for any t* ∈ *A, then* $f_0(t) ≤ f_1(t)$ *. The pair* $(P, ≤)$ *is a poset.*

Remark 1. *Let* (A,R) *be a poset. Then* $a_0, a_1 \in A$ *are comparable if either a*0*Ra*1 *or a*1*Ra*0*. Else a*0 *and a*1 *are incomparable. A poset in which any two members can be compared is a chain. For instance:*

- *(i). Let A 6* = \emptyset *be a set with a power set* 2^A *. Then* $(2^A, \subseteq)$ *is a poset as described in Example 2 (i). In particular, if* $A = \{0,1\}$ *, then* $2^A = \{\emptyset, \{0\}, \{1\}, A\}$ *. The elements* $\{0\}$ and $\{1\}$ in 2^A are not comparable by set inclusion. So, $(2^A, \subseteq)$ *is merely a poset but not a chain.*
- *(ii). The Pre-A* algebra* (**3** = {0*,*1*,*2}*,*∧*,*∨*,*(−)∼) *with R defined as* $a_0 \le a_1$ *whenever* $a_0 \wedge a_1 = a_1 \wedge a_0 = a_0$ *for any* $a_0, a_1 \in \mathfrak{Z}$ *is a chain.*

Let (\emptyset 6= *A*₀, \leq) *be any subset of a poset* (*A*, \leq)*. Observe that* \leq *induces a partial ordering on* A_0 *, and hence,* (\emptyset 6= A_0 , \leq) *is a poset (a subposet). In the same spirit, any subset of a chain is also a chain (a subchain).*

Definition 3. *Let* (A_1, \leq_1) *and* (A_2, \leq_2) *be posets. A mapping* φ : $A_1 \rightarrow A_2$ *is an order-preserving homomorphism or isotone, if* $a_1 \leq_1 a'_1$ *implies that* $\phi(a_1) \leq_2 \phi(a'_1)$ *for* $a_1, a'_1 \in A_1$. If ϕ *is a bijection and* $a_1 \leq_1 a'_1$ *if and only if* $\phi(a_1) \leq_2 \phi(a_2')$ *for all* $a_1, a_1' \in A_1$ *(that is,* ϕ *and* ϕ^{-1} *are order-preserving homomorphisms), then φ is an isomorphism (order-preserving isomorphism). An isomorphism from A*1 *to itself is called an automorphism.*

Definition 4. *Let* $(A, ≤)$ *be a poset. An element a* $∈$ *A is said to be the least (greatest) element of A if* $a \leq x$ *(* $x \leq a$ *) for all* $x \in$ *A. If A is a Pre-A* algebra, then* $c \in A$ *is a central element if c* ∨ *c* [∼] = 1*. In the Pre-A* algebra* (**3** = {0*,*1*,*2}*,*∧*,*∨*,*(−)∼)*, 0 and 1 are central elements whereas 2 is a non-central element. A Pre-A* algebra A which satisfies the conditions of a poset is a pre-A* poset. We illustrate as follows:*

(i). If A is a pre-A algebra with 1, 0, and 2, then* $x \le 1$ $(x \wedge 1)$ $= 1 \land x = x$ for all $x \in A$, and $2 \le x$ ($x \land 2 = 2 \land x = 2$). *This shows that* 1 *is the greatest element and* 2 *is the least element of the poset, since* $2 \le x \le 1$ *. The Hasse diagram for the poset* (*A,*≤) *is given in Figure 1 below.*

Fig. 1: Hasse diagram of the poset (A, \le) .

The chromatic number of the graph in Figure 1 is 2. It is thus a bipartite graph. This graph has two nodes of odd degree, making it have an Euler path but no Euler circuit.

(ii). Let $A \times A = \{a_1 = (1,1), a_2 = (1,0), a_3 = (1,2), a_4 = (0,1), a_5 = (0,1), a_6 = (0,1), a_7 = (0,1), a_8 = (0,1), a_9 = (0,1), a_1 = (0,1), a_2 = (0,1), a_3 = (0,1), a_4 = (0,1), a_5 = (0,1), a_6 = (0,1), a_7 = (0,1), a_8 = (0,1), a_9 = (0,1), a_9 = (0,1), a_1 = (0,1), a_1 = (0,1), a_2 = (0,1), a_3$ $= (0,0), a_6 = (0,2), a_7 = (2,1), a_8 = (2,0), a_9 = (2,2)$ *be a pre-A* algebra under pointwise operation. Then* $A \times A$ *has four central elements and the rest noncentral. Among them, a*9 = (2*,*2) *satisfies the property that* $a_9 = a_9^\sim$. The Hasse diagram of the poset $(A \times A, \leq)$ is *given in Figure 2 below, where* a_7 *is the top element.*

The chromatic number of the graph in Figure 2 is 2,making it a bipartite graph. It is a planar graph since there are no edge crossings, and the planar representation is provided in Figure 3.

"Jordan Dedekind Chain Condition on Pre-A* Posets with Graphical Aspects"

Fig. 3: Planar representationof the graph in Figure 2.

It's a planar graph with 5 regions. Here we can observe that $x \le a_1, x \wedge a_1 = a_1 \wedge x = x$, and $a_9 \le x (x \wedge a_9 = a_9 \wedge a_1$ $x = a_9$ *for all* $x \in A \times A$ *. This means that* a_1 *is the greatest element and* a_9 *is the least element of A* \times *A.*

(iii). We have that $2 \times 3 = {a_1 = (1,1), a_2 = (1,0), a_3 = (1,0), a_4 =}$ $(0,1)$, $a_5 = (0,2)$, $a_6 = (1,2)$ *is a Pre-A* algebra under pointwise operation, having four central elements, two non-central elements, and no element satisfying the property that* $a^{\sim} = a$ *. The Hasse diagram for* (2×3 *,*≤) *is given below in Figure 4. Observe that* $x \le a_1$ *, that is,* $x \wedge a_1 = a_1 \wedge x = x$, and $a_5 \leq x$ ($x \wedge a_5 = a_5 \wedge x = a_5$) for all x ∈ **2**×**3***. This shows that a*1 *is the greatest element and a*⁵ *is the least element of* **2**×**3***. The graph has a chromatic number of 3, hence it is not a bipartite. It's a planar graph with 4 regions as shown in Figure 5.*

Definition 5. Let A 6= \emptyset be a set. Then $a \in A$ is a minimal *element if A has no a*⁰ *such that a*⁰ $\lt a$ (*or a*⁰ \leq *a implies a*⁰ \lt *a*). Similarly, $a \in A$ is a maximal element if there exists no a^0 \in *A* has such that $a < a^0$ (or $a \le a^0$ implies $a = a^0$).

- *(i). Consider the pre-A* posets represented in the Figures 1 and 2. In Figure 1, one can observe that 2 is the minimal element and 1 is the maximal element. In Figure 2, one can observe that a₉ is the minimal element and a*1 *is the maximal element.*
- *(ii). Consider the poset P* = {1*,2,3,4,5,6} with the definition* $x \leq y$ *if and only if x divides y for all x,y* \in *P. See the Hasse diagram in Figure 6 below. In P, 1 is a minimal element and 4, 5, and 6 are maximal elements because 4, 5, and 6 have no x in P to divide (that is, there is no x* in *P* such that $4 < x, 5 < x$,

and 6 *< x), whereas 1, 2, and 3 have some x to divide (that is* $1 ≤ x$ *for all x in P,* $2 ≤ 4$ *,* $2 ≤ 6$ *, and* $3 ≤ 6$ *).This graph has a chromatic number of 3 and thus is not bipartite.*

Fig. 6: Hasse Diagram representing the relations in P Definition 5 (ii)

Definition 6. *Let A be a Pre-A* algebra. The length of a chain of the form* $a_0 < a_1 < ... < a_{r-1}$ *consisting of r elements is a non-negative integer r* − 1*. This corresponds to a path of length r* − 1*, connecting the vertices a₀ and a_r−1</sub>. The length l*(*A*) *of a poset* (A, \leq) *is the least upper bound (lub) of the lengths of all subchains of A, that is* $l(A) = \text{lub}\lbrace l(C) \mid C \text{ is a} \rbrace$ *chain in A*}*.*

- *(i). Let us consider the poset represented by the Figure 1. In this poset,* $2 \leq 0 \leq 1$ *is the chain of length 2. Then, the length of the poset A is given by* $l(A) = \text{lub}\lbrace l(C) \mid C \rbrace$ *is a chain in A*} = $lub{2} = 2$ *.*
- *(ii). Consider the poset* $(A \times A, \leq)$ *represented in Figure 2. The chains are:* $a_9 \le a_8 \le a_7 \le a_4 \le a_1$; $a_9 \le a_6 \le a_3 \le a_2 \le a_4$ *a*₁*;* $a_9 \le a_8 \le a_5 \le a_2 \le a_1$ *;* $a_9 \le a_6 \le a_5 \le a_4 \le a_1$ *. These are analogous to paths of length 4 connecting vertices* a_9 *and* a_1 *.*
- *(iii). In the Pre-A* poset* **2**×**3***, from Hasse diagram in Figure 4, the chains connecting* a_5 *and* a_1 *are given by:* $a_5 \le a_4$ $\leq a_1$ *;* $a_5 \leq a_2 \leq a_4 \leq a_1$ *;* $a_5 \leq a_6 \leq a_3 \leq a_1$ *; and* $a_5 \leq a_2 \leq a_3$ ≤ *a*1*.*

If C is a subchain in A, then $l(C) \leq l(A)$. The poset (A, \leq) *is of finite length if l*(*A*) *is finite. Observe that all finite posets are of finite lengths. A poset A is of locally finite length if every one of its intervals is of finite length.*

Remark 2. *The interval in a poset is the set of all the elements in between the least and greatest elements, including them. For example,* $a_9 \le a_8 \le a_7 \le a_4 \le a_1$ *is a chain connecting* a_9 *and a*1*. So, the elements of this chain are the elements of the interval* $[a_9, a_1]$ *and hence the length of the interval is computed in a similar way as defined above. In the poset* (*A*×*A,*≤) *represented in Figure 2, we can observe that all intervals connecting a*9 *and a*1 *are of finite length. Therefore, the poset* $(A \times A, \leq)$ *is of locally finite length. Any* $x \in A$ *is an upper (lower) bound of R* \subset (*A, ≤) if a* $\leq x$ *(x* $\leq a$ *) for all a in R. If R has at least one upper (lower) bound, then R is said to be bounded above (below). A subset R of a poset* (*A,*≤)*, which is both bounded and below, is said to be a bounded subset of* (*A*, \leq)*.* If (*A*, \leq) *is a poset, then for a in A,* (*a*] = {*x* \in *A* | *x* \leq *a*} *is the set of all lower bounds of a in* (A,\le) *. Similarly,* $[a] = \{x \}$ \in *A* | *a* \leq *x*} *is the set of all upper bounds of a in (A,* \leq *). Consider the following illustration on posets and boundedness.*

- *(i). In the poset* $(A \times A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}$,≤) *shown in Figure 2, consider the subset R* = ${a_5, a_6, a_8, a_3}$ *. Here* $a_9 \le a_8$ *,* $a_9 \le a_6$ *,* $a_9 \le a_5$ *,* $a_9 \le a_3$ *. So a*9 *is a lower bound of R.*
- *(ii). Consider the subset* $S = \{a_4, a_2\}$ *in the poset* $(A \times A, \leq)$ *in Figure 2. Since* $a_5 \le a_4$ *and* $a_5 \le a_2$ *and* $a_6 \le a_4$ *and* $a_6 \le a_5$ *a*₂*, the set* $\{a_5, a_6\}$ *is a lower bound of S =* $\{a_4, a_2\}$ *.*
- *(iii). As for the set* $\{a_1, a_2, a_4\}$ *in Figure 2, a₁ has no upper bound. In the set* {*a*8*,a*9*,a*6}*, a*9 *has no lower bound.*

Definition 7. Let R be any subset of a poset $A = \{0, 1, 2\}$. If *there exists a lower (upper) bound of R that is also an element of R, then it is called the least (greatest) element of R. Let us denote it by* 2 *(*1*). That is, if a is the least (greatest) element*

of R, then $a \le x$ *(* $x \le a$ *) for all x in R and a in R. The elements other than* 2 *and* 1 *are called inner elements of R. The least and greatest elements together will be called bound elements. Consider the poset A* \times *A as shown in Figure 2 and R =* ${a_1, a_2, a_3, a_4}$ *. The element a₁ is the maximal in R and* $x \le a_1$ *for all x in R. So, R has an upper bound and R has a greatest element. An element x is a greatest lower bound (least upper bound) or infimum (supremum) of R if x is the greatest (least) element of all lower (upper) bounds of R. Consider the subset* $R = \{a_8, a_5, a_6\}$ *in the poset A*×*A as shown in Figure 2. Then* $Sup({a_8, a_6}) = a_5$. *If* $R = {a_8, a_9, a_6}$, then $Inf({a_8, a_6}) = a_9$.

Definition 8. *Let* (A, \leq) *be a poset. Then A satisfies the minimum (maximum) condition or descending chain condition (DCC) (ascending chain condition (ACC)) if for any descending (ascending) sequence* $a_1 \ge a_2 \ge a_3 \ge \dots (a_1 \le a_2)$ $\leq a_3 \leq ...$) of elements of A, there exists a positive integer n *such that* $a_n = a_{n+1} = ...$ *Every finite poset satisfies ACC and DCC. One can observe ACC and DCC in the finite posets* $(A \times A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}, \leq)$ *in Figure 2 and (A =* $\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}$ *)* {0*,*1*,*2}*,*≤) *shown in Figure 1.*

Definition 9. *Let* (A, \leq) *be a Pre-A* poset. For any a,b* \in *A such that a < b, let C be a subchain of A having a as the least element and b as the greatest element. Then we say that C is situated between the elements a and b, or C connects a and b. Graphically, we note that the path C is situated between a and b, or C connects a and b.*

Definition 10. *Let A be a Pre-A* algebra. If for every pair of elements a,b such that a* $\leq b$ *in a Pre-A* poset* (*A,* \leq)*, it is true that all maximal chains connecting the elements a and b are of the same length, then* (*A,*≤) *is said to satisfy the Jordan Dedekind Chain condition (JDCC), that is, all the maximal paths connecting the elements a and b are of the same length.* **Definition 11.** Let (A, \leq) be a pre-A* poset which is bounded *below. Let a* ∈ *A.* We define the height $h(a)$ *or dimension of the element a as the length of the maximal chain that connects the least element* a^0 *and* a *. That is,* $h(a) = l([a^0, a])$ *.*

Definition 12. *Let* (A, \leq) *be a pre-A* poset which is bounded below and of locally finite length satisfying JDCC. Then* $x \leq$ *y if and only if* $x \le y$ *and h*(x) + 1 = *h*(y)*.* (*Here* $x \le y$ *will be called "x covered by y" and it means that there is no element z* between *x* and *y* such that $x \le z \le y$ *). For instance, from Figure 2:*

- *(i). It can be observed that* $a_2 \le a_1$ *if and only if* $a_2 \le a_1$ *and* $h(a_2) + 1 = h(a_1)$ *. This implies,* $h(a_1) = 3 + 1 = 4$ *.*
- *(ii). Further,* $a_9 < a_6$ *if and only if* $a_9 \le a_6$ *<i>and h*(a_9) + 1 = *h*(a_6)*. This implies, h*(a_6) = 0 + 1 = 1*.*

Definition 13. Let (A, \leq) be a pre-A* poset (not necessarily *bounded below) and let d* : *A* −→Z∪{±∞} *be an integer valued function whose co-domain includes integers and one or both of symbols* ±∞*. Then d is called the dimension function of A if* $x \leq y$ *if and only if* $x \leq y$ *and* $d(x) + 1 = d(y)$ *for all x,y in A.*

3 MAIN RESULTS

We use this section to present main results in the manuscript. **Lemma 1.** Let A be a pre-A* algebra. Define a relation \leq on *A by* $x \leq y$ *if and only if y* $\land x = x \land y = x$. Then (A, \leq) *is a poset. Proof.* Since $x \wedge x = x$, $x \leq x$ for all $x \in A$. Therefore, \leq is reflexive. For all $x, y \in A$, whenever $x \leq y$, and $y \leq x$, then $y \wedge y$ $x = x \land y = x$ and $y \land x = x \land y = y$. So $x = y$ and \leq is antisymmetric. Now let *x*, *y*, *z* \in *A* such that *x* \le *y* and *y* \le *z*. Then *y* ∧ *x* = *x* ∧ *y* = *x* and *z* ∧ *y* = *y* ∧ *z* = *y*. Now, *x* = *x* ∧ *y* = *x* ∧ *y* \land *z* = *x* \land *z*, which means that *x* \land *z* = *z* \land *x* = *x*. Therefore, *x* ≤ *z*. Consequently, \leq is transitive and (A,\leq) is a poset.

Proposition 1. Let $A = \{0, 1, 2\}$ and 2^A be the power set of A. *Then* 2 *^Ais a bounded set.*

Proof. For any A_0, A_1 in 2^A , define $A_0 \leq A_1$ whenever $A_0 \subseteq A_1$. Clearly, $\emptyset \subseteq A_0$ for all A_0 in 2^A . Then, $\emptyset \leq A_0$ for all $A_0 \in 2^A$. Thus, \emptyset is the lower bound of 2^A . Moreover, for any $A_0 \in 2^A$, $A_0 \subseteq A$ for all $A_0 \in 2^A$. Then $A_0 \subseteq A$ for all $A_0 \in 2^A$. Thus, A is the upper bound of 2^A and $\emptyset \leq A_0 \leq A$ for all $A_0 \in 2^A$. Hence, 2^A is a bounded set.

Lemma 2. *Let A be any poset. If A has a lower (upper) bound, then it has at most one lower (upper) bound.*

Proof. We prove uniqueness of the lower bound and the same idea can be adopted to suit the upper bound case. Suppose that *A* has two lower bounds, say *a* and *b*. Since *a* is a lower bound of *A*, then

 $a \leq b$. (1)

Since *b* is a lower bound of *A*, then

 $b \le a$. (2)

 $b \le a$. Since \le is antisymmetric, then by Equations (1)-(2), it follows that $a = b$. Similarly, it can be shown that *A* has at most one upper bound.

Corollary 1. *In a poset* (A, \leq) *, if A has a least (greatest) element, then it is the only minimal (maximal) element of A. Proof.* Let *A* have a least element *a*. Then

 $a \leq x$, (3)

for all $x \in A$ and $a \in A$. We claim that a is the minimal element of *A*. Assume to the contrary that *a* is not a minimal element of *A*. Then, there exists *x* in *A* such that

 $x \le a$. (4)

Since (A,\leq) is a poset, Equations $(3)-(4)$ and anti-symmetry imply that $a = x$ is the minimal element of *A*. Since *a* is the least element of *A*, *a* is unique by Lemma 2. Therefore, *a* is the only minimal element of *A*. Similarly, we prove that if *A* has a greatest element, then it is the only maximal element of *A*.

Theorem 2. Let A_1 and A_2 be posets and let ϕ be an order *isomorphism of A*1 *onto*

*A*₂*. If a subset* R_1 *of* A_1 *has an infimum in* A_1 *, then the set* $R_2 =$ ${\phi(x) \mid x \in R_1}$ *has an infimum in A₂. That is,* $\inf_{A_2}(R_2) =$ $\phi(\inf_{A_1}(R_1))$ *or* $\inf_{A_2}(\phi(R_1)) = \phi(\inf_{A_1}(R_1)).$

Proof. Let $\inf_{A_1}(R_1) = a$. This implies that for every *x* in R_1 , *a* $\leq x$ in A_1 . Since ϕ is an order isomorphism, we have that $\phi(a) \leq \phi(x)$, (5)

in *A*₂ for all *x* in *R*₁. Hence, $\phi(a)$ is a lower bound of $\phi(R_1)$. We prove that

 $\phi(a) = \text{glb}(\phi(R_1))$. (6)

Let *t* ∈ *A*₂ be any other lower bound of $\phi(R_1)$. Since ϕ is onto, there exists *b* in *A*₁ such that $\phi(b) = t$. Therefore, $t = \phi(b)$ is a lower bound of $\phi(R_1)$. Since *x* is any element of $R_1, \phi(b) \leq \phi(x)$ for all *x* in R_1 , implies that $b \leq x$ (since ϕ is order preserving) for all *x* in R_1 . Then *b* is a lower bound of R_1 . Hence, $b \le a$, since $a = \text{glb}(R_1)$. So, $\phi(b) \leq \phi(a)$. This implies,

 $t \leq \phi(a)$. (7)

By (5), (6), and (7), we conclude that $\phi(a)$ is a lower bound of $\phi(R_1)$, and for any lower bound *t* of $\phi(R_1)$, we have that $t \leq$ $\phi(a)$. Therefore, $\phi(a) = \text{glb}_{A2}(\phi(R_1)) = \inf_{A_1}(\phi(R_1))$. That is, $\phi(\inf_{A1}(R_1)) = \inf_{A2}(\phi(R_1)).$

Theorem 3. *If a poset* (A, \leq) *satisfies the minimum (maximum) condition, then for any x in A, there exists one element m of A such that m* \leq *x* (*x* \leq *m*).

Proof. Suppose that *A* satisfies the minimum condition (DCC). Let $x \in A$. If x is minimal, then $x = m$. If x is not minimal, then there exists $x_1 \in A$ such that $x_1 \leq x$. If x_1 is not minimal, then there exists $x_2 \in A$ such that $x_2 \le x_1 \le x$. If we continue this process, then we have a descending sequence of elements of *A*. But by hypothesis, *A* satisfies the minimum condition (DCC). Therefore, the above process must be terminated at a certain stage, say *xr*, and no element of *A* will be less than x_r . Hence, x_r is a minimal element of A. That is, x_r \leq *x* for all *x* in *A*. Similarly, we can prove that if a poset *A* satisfies the maximum condition, then it has a maximal element.

Corollary 2. *Let* (A, \leq) *be a chain. Then every subchain of* (*A,*≤) *satisfying the maximum (minimum) condition has a greatest (least) element.*

Proof. Suppose that a poset *A* satisfies the maximum condition. Then, every subset of *A* also satisfies the maximum condition. Since every subchain of a poset *A* is also a subset of *A*, every subchain of *A* satisfies the maximum condition. We know that a chain does not have more than one maximal element, and that maximal element is the greatest element of the chain. Therefore, every subchain of *A* satisfies the maximum condition. Every chain of the form $a_1 < a_2 < a_3...$ does not contain an infinite number of elements. Therefore, after a certain stage, that is, after a finite number of steps, we obtain a maximal element, which is also the greatest element. Similarly, we can prove that every subchain of a poset satisfying the minimum condition has a least element.

Theorem 4. Let (A, \leq) be a poset. Then (A, \leq) can satisfy both *the maximum and minimum conditions if and only if every one of its subchains is of finite length.*

Proof. Suppose *A* is a poset that satisfies both the maximum and minimum conditions. Let *C* be a subchain of *A*. We prove that *C* is of finite length. Since *A* satisfies the minimum condition, then by Corollary 2, *C* has a minimal element, say *x*₁, and hence *x*₁ is a least element of *C*. Define $C_1 = C \setminus \{x_1\}$. Then *C*1 is again a subchain of *A*. Let *x*2 be the least element of C_1 . Therefore, we have $x_1 < x_2$. If we continue this process, we obtain an ascending sequence $x_1 < x_2 < x_3$... of elements of *C* and hence elements of *A*. But *A* satisfies the maximum condition. Therefore, the above sequence must be finite. Therefore, *C* is finite. That is, every subchain of *A* is of finite length. Conversely, suppose that every subchain of a poset *A* is of finite length. We prove that *A* satisfies both the maximum and minimum conditions. Asuume to the contrary that *A* does not satisfy the minimum condition. Then there exists x_0 in *A* such that starting from x_0 , we can obtain an infinite number of elements $x_1 > x_2 > x_3$ Put

 $C = \{x_r\}_{r=0}^{\infty}$. Then clearly *C* is a subchain of *A* that is infinite, which contradicts the fact that every subchain of a poset is finite. Therefore, *A* satisfies the minimum condition. Similarly, we can prove that *A* satisfies the maximum condition.

In view of the pre-A* poset $A \times A$, with 9 elements defined as in Figure 2, we have the following theorem.

Theorem 5. *If a Pre-A* poset* $(A \times A = a_1, a_2, \ldots, a_9, \leq)$ *with least element of locally finite length satisfies JDCC, then it has a dimension function.*

Fig. 7: An illustration of Theorem 5.

Proof. Let $(A \times A = \{a_1, a_2, \ldots, a_9\}$, \leq be a poset of locally finite length satisfying

JDCC. If $A \times A$ contains an element *u* such that inf{*u,x*} exists for all *x* ∈ *A*, then a dimension function can be defined on *A* in the following way: For any element *u*, define

$$
d(u) = d_0,
$$

\n
$$
d(x) = d_0 - r_{1x} + r_{2x},
$$

\n
$$
d(y) = d_0 - r_{1y} + r_{2y}.
$$

The lengths of maximal chains connecting inf{*u,x*} with *u* and *x* are r_{1x} and r_{2x} respectively. We have to show that *d* satisfies the following: $x \le y$ if and only if $x \le y$ and $d(x) + 1 = d(y)$ for all *x*, *y* in *A* × *A*. Let *x*, *y* \in *A* × *A* such that *x* < *y*.

Therefore, $\inf\{u, x\} \leq \inf\{u, y\}$. There exists a maximal chain between $\inf\{u, x\}$ and *u* which includes $\inf\{u, y\}$. Then the length of the maximal chain between $\inf\{u, x\}$ and $\inf\{u, y\}$ is $r_{1x} - r_{1y}$ as illustrated in Figure 7. Let us denote the length of the maximal chain between x and y by t . By definition, we have:

$$
d(y) = d_0 - r_{1y} + r_{2y}, \quad (11)
$$

$$
d(x) = d_0 - r_{1x} + r_{2x}. \quad (12)
$$

Therefore,

 $d(y) - d(x) = (r_{1x} - r_{1y}) + (r_{2y} - r_{2x})$. (13)

Since our poset satisfies JDCC, the lengths of all maximal chains between inf{*u,x*} and *y* are equal, that is,

$$
r1x - r1y + r2y = r2x + t. (14)
$$

From Equations (13) and (14) , we have

$$
d(y) - d(x) = t. \qquad (15)
$$

Therefore, $x \leq y$ if and only if $x \leq y$ and there is no *z* such that $x \le z \le y$. This is equivalent to saying that $x \le y$ and the lengths of maximal chains connecting *x* and *y* is 1. That is, $x \le y$ and *t* = 1 and hence, $x \le y$ and by Equation (15), we have that $d(y)$ $d(x) + 1$. Thus, $x \le y$ if and only if $x \le y$ and $d(x) + 1 = d(y)$ for all $x, y \in A$. This completes the proof.

Remark 3 (Graphical aspect of Figure 7)**.** *The graph has a chromatic number of* 2 *and is bipartite. Furthermore, the graph in Figure 7 is a subgraph of the bipartite graph* $G = A$ \times *A in Figure 3. Additionally, the graph in Figure 7 is a planar graph with* 2 *regions.*

4 TECHNICAL ASPECT

The significance of the crucial element 2 in a Pre-A* algebra is to extend the Boolean two valued logic to three valued logic. That is, if the Boolean elements 0 and 1 stand for false and true statements respectively, then 2 stands for divergence as neither true nor false. The best example of this is a traffic signal system the two basic signals (green light and red light) that can be further extended to another signal (different from green light and red light) depending on a particular situation. The similar logic can be observed in washing machines (Fuzzy logic control systems). The present work is an algebraic study of this logic.

5 APPLICATIONS

 $d(u) = d_0$, have developed ∂u new way to study graphs using pre-A* poset $d(x) = d_0 - r_{1x} + r_{2x}$ (structures. The use of bipartite graphs to represent binary $d(y) = d_0 - r_{1y} + r_{2y}$ relations between disjoint sets invites applications of pre-A* Our study on pre-A* posets directly links to graph theory. Given the applications of bipartite graphs in areas such as cancer detection, advertising, e-commerce rankings, prediction of preferences (such as food and movies), and matching problems (such as the stable marriage problem), this work has a lot of potential real-life applications. In fact, we posets to medicine and biology, such as bipartite life cycles and bipartite patella for a split kneecap.

6 CONCLUSIONS

We have proven that if a pre-A* poset *A* has least element of locally finite length and satisfies the Jordan Dedekind chain conditions, then *A* has a dimension function. We have also established the relationship between pre-A* algebras and graph theory, by giving an analysis of Hasse diagrams. The graph in Figure 7 is subgraph of the one in Figure 2 and both have chromatic number of 2, making them bipartite graphs. The graph in Figure 3 is a planar graph with 5 regions whereas its subgraph in Figure 7 is planar graph with 2 regions.

DECLARATIONS

- Funding: There was no funding.
- Conflict of interest : There is no conflict of interest.
- Consent for publication : All authors have consented.
- Availability of data and materials : No data was used.
- Code availability : No code was used.
- Authors' contributions: All the authors contributed to the work.

REFERENCES

- 1. Fernando, G., Craig, C.S.: The algebra of conditional logic. Algebra Universalis 27
- 2. Manes, E.G.: Ada and the equational theory of ifthen-else. Algebra Universalis 30, 373–394 (1993)
- 3. Koteswara, R.P.: A*-Algebra, an If-Then-Else Structures (Doctoral Thesis). Nagarjuna University, A.P., India, (1994)
- 4. Venkateswara, R.J.: On A*-algebras (Doctoral Thesis). Nagarjuna University, A.P., India, (2000)
- 5. Kalyani, D., Rami, R.B., Venkateswara, R.J., Satyanarayana, A.: Characterization of a partial order relation on pre-a*- algebra. International Journal of Mathematical Archive 4(11), 87–296 (2013)
- 6. Kalyani, D., Rami, R.B., Venkateswara, R.J., Satyanarayana, A.: Representation of pre a*- algebra by a partially order. Journal of Scientific and Innovative Mathematical Research 1(3), 200–210 (2013)