International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 02 February 2024, Page no. – 4062-4068 Index Copernicus ICV: 57.55, Impact Factor: 8.316 DOI: 10.47191/ijmcr/v12i2.09

Jordan Dedekind Chain Condition on Pre-A* Posets with Graphical Aspects

Prof (Dr.) Jonnalagadda Venkateswara Rao^{1*}, Joseph Owuor Owino²

^{1,2} Department of Mathematics, School of Science and Technology, United States International University-Africa, Kasarani, Thika Road, 14634-00800, Nairobi, Kenya.

ARTICLE INFO	ABSTRACT
Published Online:	Jordan Dedekind chain condition on pre-A* posets is studied. We discuss isomorphism of pre-
23 February 2024	A* posets, ascending chain condition and descending chain condition on pre-A* posets. We
Corresponding Author:	also prove that a pre-A* poset possessing a least element of locally finite length which satisfies
Dr. Jonnalagadda	Jordan Dedekind chain condition has a dimension function.
Venkateswara Rao	

KEYWORDS: Pre-A* algebra, poset, chain, isomorphism, ascending chain condition, descending chain condition, Jordan Dedekind chain condition.

MSC Classification: 06E05, 06EXX, 06E10, 05 C 45

1 INTRODUCTION

An equational 3-valued generalization of a boolean algebra and C-algebra have been introduced by Fernando [1]. The aforesaid generalization based on logic functions "and ", " or " and " not ". The algebra of disjoint alternatives (Ada) $(A, \Lambda, \vee, (-)^{\sim}, (-)_{\pi}, 0, 1, 2)$ has been studied by Manes [2], building a foundation on C-algebras. An A*-algebra $(A, \Lambda, V, (-)^{\sim}, (-)_{\pi}, 0, 1, 2)$ and its equivalence with algebra of disjoint alternatives as well as the association of C-algebras and 3-ring has been done by Rao [3]. Moreover, A*-clones, If-Then-Else structure over A*-algebra, pre-A* algebra $(A, \Lambda, V, (-)^{\sim})$ and ideal of A*-algebra have been investigated [3, 4]. Kalyani [5, 6] have characterized a partial order relation on pre-A* algebra, thereby studying representation of a pre-A* algebra by a partial order. In this work, we prove that if a Pre-A* poset has least element of locally finite length which satisfies the Jordan Dedekind chain condition, then the pre-A* poset has a dimension function. The theorem is based on ascending and descending chain conditions.

2 Preliminaries

In this part of the paper, we define the important terms that we have used throughout.

Definition 1 (Pre-A* algebra). [4, Definition 1] A Pre-A* algebra is an algebra (A $6= \emptyset, \Lambda, \vee, (-)^{\sim}$) where A has a 1; Λ and \vee are binary operations and $(-)^{\sim}$ is a unary operation such that the following conditions are satisfied:

(i). $x^{\sim} = x$ for all $x \in A$,

(*ii*). $x \land x = x$, for all $x \in A$,

(iii). $x \land y = y \land x$, for all $x, y \in A$, (iv). $(x \land y)^{\sim} = x^{\sim} \lor y^{\sim}$ for all $x, y \in A$, (v). $x \land (y \land z) = (x \land y) \land$ z for all $x, y, z \in A$, (vi). $x \land$ ($y \lor z$) = ($x \land y$) $\lor (x \land z)$ for all $x, y, z \in A$, (vii). $x \land y = x \land (x^{\sim} \lor y)$ for all $x, y \in A$.

Example 1. (*i*). Let $(\mathbf{3} = \{0,1,2\}, \wedge, \vee, (-)^{\sim})$ be a pre-A* algebra. The operations are defined using the laws: $2^{\sim} = 2$, $1 \wedge x = x$ for all $x \in \mathbf{3}$, $0 \vee x = x$ for all $x \in \mathbf{3}$ and $2 \wedge x = 2 \vee x = 2$ for all $x \in \mathbf{3}$. Hence we obtain Table 1.

Table 1: An illustration of the properties in Example 1(i).

Λ	0	1	2	V	0	1	2	x	x~
0	0	0	2	0 1 2	0	1	2	0	1
1	0	1	2	1	1	1	2	1	1 0 2
2	2	2	2	2	2	2	2	2	2
(a) Λ . (b) \vee . (c) (-)~.									

(ii). Let $(2 = \{0,1\}, \Lambda, \vee, (-)^{\sim})$ be a pre-A* algebra. The operations are defined using the laws: $1 \wedge x = x$ for all $x \in 2$, $0 \vee x = x$ for all $x \in 2$. Hence we obtain Table 2.

 Table 2: An illustration of the properties in Example 1(ii).

۸	0	1	V	0	1	x	x~
0	0	0 1	0	0 1	1	0	1 0
1	0	1	1	1	1	1	0
(a) /	۱.	(b) V.	(c)	(-)^			

Definition 2. [4, Partial order] A relation R on a set A is partial order if:

(*i*). For all $a \in A$, aRa (reflexivity)

(*ii*). For all $a, b \in A$, aRb and bRa, then a = b (anti-symmetry)

(iii). For all $a,b,c \in A,aRb$ and bRc, then aRc (transitivity). The pair (A,R) is a partially ordered set (poset).

Example 2. Posets

- (i). Let $A = \{0, 1, 2\}$. Then power set of A given by $2^{A} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, A\}$ is a poset under set inclusion. For for any $A_0, A_1 \subseteq A$, we define $A_0 \leq A_1$ whenever $A_0 \subseteq A_1$. The pair $(2^A, \subseteq)$ is a poset.
- (*ii*). Let *P* be the set of all real-valued functions on $A = \{0, 1\}$. That is, $P = \{f \mid f : A \rightarrow R\}$. For any $f_0, f_1 \in P$ let $f_0 \leq f_1$ as long as for any $t \in A$, then $f_0(t) \leq f_1(t)$. The pair (P, \leq) is a poset.

Remark 1. Let (A,R) be a poset. Then $a_0,a_1 \in A$ are comparable if either a_0Ra_1 or a_1Ra_0 . Else a_0 and a_1 are incomparable. A poset in which any two members can be compared is a chain. For instance:

- (i). Let A 6= \emptyset be a set with a power set 2^A . Then $(2^A, \subseteq)$ is a poset as described in Example 2 (i). In particular, if $A = \{0,1\}, then 2^{A} = \{\emptyset, \{0\}, \{1\}, A\}.$ The elements $\{0\}$ and $\{1\}$ in 2^A are not comparable by set inclusion. So, $(2^A, \subseteq)$ is merely a poset but not a chain.
- (*ii*). The Pre-A* algebra $(3 = \{0,1,2\}, \land, \lor, (-)^{\sim})$ with R *defined as* $a_0 \le a_1$ *whenever* $a_0 \land a_1 = a_1 \land a_0 = a_0$ *for any* $a_0, a_1 \in \mathbf{3}$ is a chain.

Let $(\emptyset 6 = A_0, \leq)$ be any subset of a poset (A, \leq) . Observe that \leq induces a partial ordering on A_0 , and hence, $(\emptyset 6 = A_0 \le)$ is a poset (a subposet). In the same spirit, any subset of a chain is also a chain (a subchain).

Definition 3. Let (A_1, \leq_1) and (A_2, \leq_2) be posets. A mapping φ : $A_1 \rightarrow A_2$ is an order-preserving homomorphism or isotone, if $a_1 \leq_1 a'_1$ implies that $\phi(a_1) \leq_2 \phi(a'_1)$ for all $a_1, a'_1 \in A_1$. If ϕ is a bijection and $a_1 \leq_1 a'_1$ if and only if $\phi(a_1) \leq_2 \phi(a'_2)$ for all $a_1, a'_1 \in A_1$ (that is, φ and φ^{-1} are order-preserving homomorphisms), then φ is an isomorphism (order-preserving isomorphism). An isomorphism from A_1 to itself is called an automorphism.

Definition 4. *Let* (A, \leq) *be a poset. An element a* \in *A is said to* be the least (greatest) element of A if $a \le x$ ($x \le a$) for all $x \in$ A. If A is a Pre-A^{*} algebra, then $c \in A$ is a central element if $c \lor c^{\sim} = 1$. In the Pre-A* algebra ($\mathbf{3} = \{0, 1, 2\}, \land, \lor, (-)^{\sim}$), 0 and 1 are central elements whereas 2 is a non-central element. A *Pre-A** algebra A which satisfies the conditions of a poset is a pre-A* poset. We illustrate as follows:

(i). If A is a pre-A* algebra with 1, 0, and 2, then $x \le 1$ (x $\land 1$ $= 1 \land x = x$) for all $x \in A$, and $2 \le x$ ($x \land 2 = 2 \land x = 2$). This shows that 1 is the greatest element and 2 is the *least element of the poset, since* $2 \le x \le 1$ *. The Hasse* diagram for the poset (A, \leq) is given in Figure 1 below.

Fig. 1: Hasse diagram of the poset (A, \leq) .

The chromatic number of the graph in Figure 1 is 2. It is thus a bipartite graph. This graph has two nodes of odd degree, making it have an Euler path but no Euler circuit.

(*ii*). Let $A \times A = \{a_1 = (1, 1), a_2 = (1, 0), a_3 = (1, 2), a_4 = (0, 1), a_5 \}$ = (0,0), $a_6 = (0,2), a_7 = (2,1), a_8 = (2,0), a_9 = (2,2)$ be a pre-A* algebra under pointwise operation. Then $A \times A$ has four central elements and the rest noncentral. Among them, $a_9 = (2,2)$ satisfies the property that $a_9 = a_9^{\sim}$. The Hasse diagram of the poset (A × A, \leq) is given in Figure 2 below, where a_7 is the top element.

The chromatic number of the graph in Figure 2 is 2, making it a bipartite graph. It is a planar graph since there are no edge crossings, and the planar representation is provided in Figure 3.

"Jordan Dedekind Chain Condition on Pre-A* Posets with Graphical Aspects"

Fig. 3: Planar representation of the graph in Figure 2.

It's a planar graph with 5 regions. Here we can observe that $x \le a_1$, $x \land a_1 = a_1 \land x = x$, and $a_9 \le x$ ($x \land a_9 = a_9 \land x = a_9$) for all $x \in A \times A$. This means that a_1 is the greatest element and a_9 is the least element of $A \times A$.

(iii). We have that $2\times3 = \{a_1 = (1,1), a_2 = (1,0), a_3 = (1,0), a_4 = (0,1), a_5 = (0,2), a_6 = (1,2)\}$ is a Pre-A* algebra under pointwise operation, having four central elements, two non-central elements, and no element satisfying the property that $a^2 = a$. The Hasse diagram for $(2\times3,\leq)$ is given below in Figure 4. Observe that $x \leq a_1$, that is, $x \wedge a_1 = a_1 \wedge x = x$, and $a_5 \leq x (x \wedge a_5 = a_5 \wedge x = a_5)$ for all $x \in 2\times3$. This shows that a_1 is the greatest element and a_5 is the least element of 2×3 . The graph has a chromatic number of 3, hence it is not a bipartite. It's a planar graph with 4 regions as shown in Figure 5.

Definition 5. Let $A \in \emptyset$ be a set. Then $a \in A$ is a minimal element if A has no a^0 such that $a^0 < a$ (or $a^0 \le a$ implies $a^0 = a$). Similarly, $a \in A$ is a maximal element if there exists no $a^0 \in A$ has such that $a < a^0$ (or $a \le a^0$ implies $a = a^0$).

- (i). Consider the pre-A* posets represented in the Figures 1 and 2. In Figure 1, one can observe that 2 is the minimal element and 1 is the maximal element. In Figure 2, one can observe that a₉ is the minimal element and a₁ is the maximal element.
- (ii). Consider the poset $P = \{1,2,3,4,5,6\}$ with the definition $x \le y$ if and only if x divides y for all $x, y \in P$. See the Hasse diagram in Figure 6 below. In P, 1 is a minimal element and 4, 5, and 6 are maximal elements because 4, 5, and 6 have no x in P to divide (that is, there is no x in P such that 4 < x, 5 < x,

and 6 < x), whereas 1, 2, and 3 have some x to divide (that is $1 \le x$ for all x in P, $2 \le 4$, $2 \le 6$, and $3 \le 6$). This graph has a chromatic number of 3 and thus is not bipartite.

Fig. 6: Hasse Diagram representing the relations in P Definition 5 (ii)

Definition 6. Let A be a Pre- A^* algebra. The length of a chain of the form $a_0 < a_1 < ... < a_{r-1}$ consisting of r elements is a non-negative integer r - 1. This corresponds to a path of length r - 1, connecting the vertices a_0 and a_{r-1} . The length l(A) of a poset (A, \leq) is the least upper bound (lub) of the lengths of all subchains of A, that is $l(A) = lub\{l(C) \mid C \text{ is a} chain in A\}$.

- (i). Let us consider the poset represented by the Figure 1. In this poset, $2 \le 0 \le 1$ is the chain of length 2. Then, the length of the poset A is given by $l(A) = lub\{l(C) \mid C$ is a chain in $A\} = lub\{2\} = 2$.
- (ii). Consider the poset $(A \times A, \leq)$ represented in Figure 2. The chains are: $a_9 \leq a_8 \leq a_7 \leq a_4 \leq a_1$; $a_9 \leq a_6 \leq a_3 \leq a_2 \leq a_1$; $a_9 \leq a_8 \leq a_5 \leq a_2 \leq a_1$; $a_9 \leq a_6 \leq a_5 \leq a_4 \leq a_1$. These are analogous to paths of length 4 connecting vertices a_9 and a_1 .
- (iii). In the Pre-A* poset 2×3 , from Hasse diagram in Figure 4, the chains connecting a_5 and a_1 are given by: $a_5 \le a_4$ $\le a_1$; $a_5 \le a_2 \le a_4 \le a_1$; $a_5 \le a_6 \le a_3 \le a_1$; and $a_5 \le a_2 \le a_3$ $\le a_1$.

If C is a subchain in A, then $l(C) \leq l(A)$. The poset (A, \leq) is of finite length if l(A) is finite. Observe that all finite posets are of finite lengths. A poset A is of locally finite length if every one of its intervals is of finite length.

Remark 2. The interval in a poset is the set of all the elements in between the least and greatest elements, including them. *For example,* $a_9 \le a_8 \le a_7 \le a_4 \le a_1$ *is a chain connecting* a_9 *and* a₁. So, the elements of this chain are the elements of the interval $[a_9,a_1]$ and hence the length of the interval is computed in a similar way as defined above. In the poset $(A \times A, \leq)$ represented in Figure 2, we can observe that all intervals connecting *a*₉ and *a*₁ are of finite length. Therefore, the poset $(A \times A, \leq)$ is of locally finite length. Any $x \in A$ is an upper (lower) bound of $R \subset (A, \leq)$ if $a \leq x$ ($x \leq a$) for all a in R. If R has at least one upper (lower) bound, then R is said to *be bounded above (below). A subset R of a poset (A,\leq), which* is both bounded and below, is said to be a bounded subset of (A,\leq) . If (A,\leq) is a poset, then for a in A, $(a] = \{x \in A \mid x \leq a\}$ is the set of all lower bounds of a in (A, \leq) . Similarly, $[a] = \{x\}$ $\in A \mid a \leq x$ is the set of all upper bounds of a in (A, \leq) . Consider the following illustration on posets and boundedness.

- (i). In the poset $(A \times A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}, \leq)$ shown in Figure 2, consider the subset $R = \{a_5, a_6, a_8, a_3\}$. Here $a_9 \leq a_8$, $a_9 \leq a_6$, $a_9 \leq a_5$, $a_9 \leq a_3$. So a_9 is a lower bound of R.
- (ii). Consider the subset $S = \{a_4, a_2\}$ in the poset $(A \times A, \leq)$ in Figure 2. Since $a_5 \leq a_4$ and $a_5 \leq a_2$ and $a_6 \leq a_4$ and $a_6 \leq a_2$, the set $\{a_5, a_6\}$ is a lower bound of $S = \{a_4, a_2\}$.
- (iii). As for the set {a1,a2,a4} in Figure 2, a1 has no upper bound. In the set {a8,a9,a6}, a9 has no lower bound.

Definition 7. Let R be any subset of a poset $A = \{0,1,2\}$. If there exists a lower (upper) bound of R that is also an element of R, then it is called the least (greatest) element of R. Let us denote it by 2 (1). That is, if a is the least (greatest) element of *R*, then $a \le x$ ($x \le a$) for all *x* in *R* and *a* in *R*. The elements other than 2 and 1 are called inner elements of *R*. The least and greatest elements together will be called bound elements. Consider the poset A×A as shown in Figure 2 and *R* = $\{a_1,a_2,a_3,a_4\}$. The element a_1 is the maximal in *R* and $x \le a_1$ for all *x* in *R*. So, *R* has an upper bound and *R* has a greatest element. An element *x* is a greatest lower bound (least upper bound) or infimum (supremum) of *R* if *x* is the greatest (least) element of all lower (upper) bounds of *R*. Consider the subset $R = \{a_8,a_5,a_6\}$ in the poset A×A as shown in Figure 2. Then $Sup(\{a_8,a_6\}) = a_5$. If $R = \{a_8,a_9,a_6\}$, then $Inf(\{a_8,a_6\}) = a_9$.

Definition 8. Let (A, \leq) be a poset. Then A satisfies the minimum (maximum) condition or descending chain condition (DCC) (ascending chain condition (ACC)) if for any descending (ascending) sequence $a_1 \geq a_2 \geq a_3 \geq ...$ $(a_1 \leq a_2 \leq a_3 \leq ...)$ of elements of A, there exists a positive integer n such that $a_n = a_{n+1} = ...$ Every finite poset satisfies ACC and DCC. One can observe ACC and DCC in the finite posets $(A \times A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}, \leq)$ in Figure 2 and $(A = \{0, 1, 2\}, \leq)$ shown in Figure 1.

Definition 9. Let (A, \leq) be a Pre-A* poset. For any $a, b \in A$ such that a < b, let C be a subchain of A having a as the least element and b as the greatest element. Then we say that C is situated between the elements a and b, or C connects a and b. Graphically, we note that the path C is situated between a and b, or C connects a and b.

Definition 10. Let A be a Pre-A* algebra. If for every pair of elements a,b such that $a \le b$ in a Pre-A* poset (A, \le) , it is true that all maximal chains connecting the elements a and b are of the same length, then (A, \le) is said to satisfy the Jordan Dedekind Chain condition (JDCC), that is, all the maximal paths connecting the elements a and b are of the same length. **Definition 11.** Let (A, \le) be a pre-A* poset which is bounded below. Let $a \in A$. We define the height h(a) or dimension of the element a as the length of the maximal chain that connects the least element a^0 and a. That is, $h(a) = l([a^0, a])$.

Definition 12. Let (A, \leq) be a pre-A* poset which is bounded below and of locally finite length satisfying JDCC. Then x < y if and only if $x \leq y$ and h(x) + 1 = h(y). (Here x < y will be called "x covered by y" and it means that there is no element z between x and y such that $x \leq z \leq y$). For instance, from Figure 2:

- (*i*). It can be observed that $a_2 \prec a_1$ if and only if $a_2 \leq a_1$ and $h(a_2) + 1 = h(a_1)$. This implies, $h(a_1) = 3 + 1 = 4$.
- (*ii*). Further, $a_9 \prec a_6$ if and only if $a_9 \leq a_6$ and $h(a_9) + 1 = h(a_6)$. This implies, $h(a_6) = 0 + 1 = 1$.

Definition 13. Let (A, \leq) be a pre-A* poset (not necessarily bounded below) and let $d : A \longrightarrow Z \cup \{\pm \infty\}$ be an integer valued function whose co-domain includes integers and one or both of symbols $\pm \infty$. Then d is called the dimension function of A if x < y if and only if $x \leq y$ and d(x) + 1 = d(y) for all x,y in A.

3 MAIN RESULTS

We use this section to present main results in the manuscript. **Lemma 1.** Let A be a pre-A* algebra. Define a relation \leq on A by $x \leq y$ if and only if $y \land x = x \land y = x$. Then (A, \leq) is a poset. Proof. Since $x \land x = x$, $x \leq x$ for all $x \in A$. Therefore, \leq is reflexive. For all $x, y \in A$, whenever $x \leq y$, and $y \leq x$, then $y \land x = x \land y = x$ and $y \land x = x \land y = y$. So x = y and \leq is antisymmetric. Now let $x, y, z \in A$ such that $x \leq y$ and $y \leq z$. Then $y \land x = x \land y = x$ and $z \land y = y \land z = y$. Now, $x = x \land y = x \land y$ $\land z = x \land z$, which means that $x \land z = z \land x = x$. Therefore, $x \leq z$. Consequently, \leq is transitive and (A, \leq) is a poset.

Proposition 1. Let $A = \{0,1,2\}$ and 2^A be the power set of A. Then 2^A is a bounded set.

Proof. For any A_0, A_1 in 2^A , define $A_0 \le A_1$ whenever $A_0 \subseteq A_1$. Clearly, $\emptyset \subseteq A_0$ for all A_0 in 2^A . Then, $\emptyset \le A_0$ for all $A_0 \in 2^A$. Thus, \emptyset is the lower bound of 2^A . Moreover, for any $A_0 \in 2^A$, $A_0 \subseteq A$ for all $A_0 \in 2^A$. Then $A_0 \le A$ for all $A_0 \in 2^A$. Thus, A is the upper bound of 2^A and $\emptyset \le A_0 \le A$ for all $A_0 \in 2^A$. Hence, 2^A is a bounded set.

Lemma 2. Let A be any poset. If A has a lower (upper) bound, then it has at most one lower (upper) bound.

Proof. We prove uniqueness of the lower bound and the same idea can be adopted to suit the upper bound case. Suppose that *A* has two lower bounds, say *a* and *b*. Since *a* is a lower bound of *A*, then

 $a \leq b$. (1)

Since b is a lower bound of A, then

 $b \leq a$. (2)

 $b \le a$. Since \le is antisymmetric, then by Equations (1)-(2), it follows that a = b. Similarly, it can be shown that A has at most one upper bound.

Corollary 1. In a poset (A, \leq) , if A has a least (greatest) element, then it is the only minimal (maximal) element of A. *Proof.* Let A have a least element *a*. Then

 $a \le x$, (3)

for all $x \in A$ and $a \in A$. We claim that *a* is the minimal element of *A*. Assume to the contrary that *a* is not a minimal element of *A*. Then, there exists *x* in *A* such that

 $x \le a.$ (4)

Since (A, \leq) is a poset, Equations (3)-(4) and anti-symmetry imply that a = x is the minimal element of A. Since a is the least element of A, a is unique by Lemma 2. Therefore, a is the only minimal element of A. Similarly, we prove that if Ahas a greatest element, then it is the only maximal element of A.

Theorem 2. Let A_1 and A_2 be posets and let ϕ be an order isomorphism of A_1 onto

A₂. If a subset R_1 of A_1 has an infimum in A_1 , then the set $R_2 = \{\phi(x) \mid x \in R_1\}$ has an infimum in A_2 . That is, $\inf_{A_2}(R_2) = \phi(\inf_{A_1}(R_1))$ or $\inf_{A_2}(\phi(R_1)) = \phi(\inf_{A_1}(R_1))$.

Proof. Let $\inf_{A_1}(R_1) = a$. This implies that for every *x* in R_1 , $a \le x$ in A_1 . Since ϕ is an order isomorphism, we have that $\phi(a) \le \phi(x)$, (5)

in A_2 for all x in R_1 . Hence, $\phi(a)$ is a lower bound of $\phi(R_1)$. We prove that

 $\phi(a) = \text{glb}(\phi(R_1)). (6)$

Let $t \in A_2$ be any other lower bound of $\phi(R_1)$. Since ϕ is onto, there exists *b* in A_1 such that $\phi(b) = t$. Therefore, $t = \phi(b)$ is a lower bound of $\phi(R_1)$. Since *x* is any element of $R_1, \phi(b) \le \phi(x)$ for all *x* in R_1 , implies that $b \le x$ (since ϕ is order preserving) for all *x* in R_1 . Then *b* is a lower bound of R_1 . Hence, $b \le a$, since $a = \text{glb}(R_1)$. So, $\phi(b) \le \phi(a)$. This implies, $t \le \phi(a)$. (7)

By (5), (6), and (7), we conclude that $\phi(a)$ is a lower bound of $\phi(R_1)$, and for any lower bound *t* of $\phi(R_1)$, we have that $t \leq \phi(a)$. Therefore, $\phi(a) = \text{glb}_{A2}(\phi(R_1)) = \inf_{A2}(\phi(R_1))$. That is, $\phi(\inf_{A1}(R_1)) = \inf_{A2}(\phi(R_1))$.

Theorem 3. If a poset (A, \leq) satisfies the minimum (maximum) condition, then for any x in A, there exists one element m of A such that $m \leq x$ ($x \leq m$).

Proof. Suppose that *A* satisfies the minimum condition (DCC). Let $x \in A$. If *x* is minimal, then x = m. If *x* is not minimal, then there exists $x_1 \in A$ such that $x_1 \leq x$. If x_1 is not minimal, then there exists $x_2 \in A$ such that $x_2 \leq x_1 \leq x$. If we continue this process, then we have a descending sequence of elements of *A*. But by hypothesis, *A* satisfies the minimum condition (DCC). Therefore, the above process must be terminated at a certain stage, say x_r , and no element of *A* will be less than x_r . Hence, x_r is a minimal element of *A*. That is, $x_r \leq x$ for all *x* in *A*. Similarly, we can prove that if a poset *A* satisfies the maximum condition, then it has a maximal element.

Corollary 2. Let (A, \leq) be a chain. Then every subchain of (A, \leq) satisfying the maximum (minimum) condition has a greatest (least) element.

Proof. Suppose that a poset *A* satisfies the maximum condition. Then, every subset of *A* also satisfies the maximum condition. Since every subchain of a poset *A* is also a subset of *A*, every subchain of *A* satisfies the maximum condition. We know that a chain does not have more than one maximal element, and that maximal element is the greatest element of the chain. Therefore, every subchain of *A* satisfies the maximum condition. Every chain of the form $a_1 < a_2 < a_3 \dots$ does not contain an infinite number of elements. Therefore, after a certain stage, that is, after a finite number of steps, we obtain a maximal element, which is also the greatest element. Similarly, we can prove that every subchain of a poset satisfying the minimum condition has a least element.

Theorem 4. Let (A, \leq) be a poset. Then (A, \leq) can satisfy both the maximum and minimum conditions if and only if every one of its subchains is of finite length.

Proof. Suppose *A* is a poset that satisfies both the maximum and minimum conditions. Let *C* be a subchain of *A*. We prove that *C* is of finite length. Since *A* satisfies the minimum condition, then by Corollary 2, *C* has a minimal element, say x_1 , and hence x_1 is a least element of *C*. Define $C_1 = C \setminus \{x_1\}$. Then C_1 is again a subchain of *A*. Let x_2 be the least element

of C_1 . Therefore, we have $x_1 < x_2$. If we continue this process, we obtain an ascending sequence $x_1 < x_2 < x_3$... of elements of *C* and hence elements of *A*. But *A* satisfies the maximum condition. Therefore, the above sequence must be finite. Therefore, *C* is finite. That is, every subchain of *A* is of finite length. Conversely, suppose that every subchain of a poset *A* is of finite length. We prove that *A* satisfies both the maximum and minimum conditions. Assume to the contrary that *A* does not satisfy the minimum condition. Then there exists x_0 in *A* such that starting from x_0 , we can obtain an infinite number of elements $x_1 > x_2 > x_3$ Put

 $C = \{x_r\}_{r=0}^{\infty}$. Then clearly C is a subchain of A that is infinite, which contradicts the fact that every subchain of a poset is finite. Therefore, A satisfies the minimum condition. Similarly, we can prove that A satisfies the maximum condition.

In view of the pre-A* poset $A \times A$, with 9 elements defined as in Figure 2, we have the following theorem.

Theorem 5. If a Pre-A* poset ($A \times A = a_1, a_2, ..., a_9, \leq$) with least element of locally finite length satisfies JDCC, then it has a dimension function.

Fig. 7: An illustration of Theorem 5.

Proof. Let $(A \times A = \{a_1, a_2, ..., a_9\}, \leq)$ be a poset of locally finite length satisfying

JDCC. If $A \times A$ contains an element u such that $\inf\{u, x\}$ exists for all $x \in A$, then a dimension function can be defined on A in the following way: For any element u, define

$$d(u) = d_0,$$

$$d(x) = d_0 - r_{1x} + r_{2x},$$

$$d(y) = d_0 - r_{1y} + r_{2y}.$$

The lengths of maximal chains connecting $\inf\{u, x\}$ with *u* and *x* are r_{1x} and r_{2x} respectively. We have to show that *d* satisfies the following: $x \prec y$ if and only if $x \leq y$ and d(x) + 1 = d(y) for all *x*, *y* in $A \times A$. Let $x, y \in A \times A$ such that $x \prec y$.

Therefore, $\inf\{u,x\} \le \inf\{u,y\}$. There exists a maximal chain between $\inf\{u,x\}$ and u which includes $\inf\{u,y\}$. Then the length of the maximal chain between $\inf\{u,x\}$ and $\inf\{u,y\}$ is $r_{1x} - r_{1y}$ as illustrated in Figure 7. Let us denote the length of the maximal chain between x and y by t. By definition, we have:

$$d(y) = d_0 - r_{1y} + r_{2y}, \quad (11)$$

$$d(x) = d_0 - r_{1x} + r_{2x}. \quad (12)$$

Therefore,

 $d(y) - d(x) = (r_{1x} - r_{1y}) + (r_{2y} - r_{2x}).$ (13)

Since our poset satisfies JDCC, the lengths of all maximal chains between $\inf\{u, x\}$ and *y* are equal, that is,

$$r1x - r1y + r2y = r2x + t. \quad (14)$$

From Equations (13) and (14), we have

$$d(y) - d(x) = t. \quad (15)$$

Therefore, $x \prec y$ if and only if $x \le y$ and there is no *z* such that $x \le z \le y$. This is equivalent to saying that $x \le y$ and the lengths of maximal chains connecting *x* and *y* is 1. That is, $x \le y$ and t = 1 and hence, $x \le y$ and by Equation (15), we have that d(y) = d(x) + 1. Thus, $x \prec y$ if and only if $x \le y$ and d(x) + 1 = d(y) for all $x, y \in A$. This completes the proof.

Remark 3 (Graphical aspect of Figure 7). The graph has a chromatic number of 2 and is bipartite. Furthermore, the graph in Figure 7 is a subgraph of the bipartite graph $G = A \times A$ in Figure 3. Additionally, the graph in Figure 7 is a planar graph with 2 regions.

4 TECHNICAL ASPECT

The significance of the crucial element 2 in a Pre-A* algebra is to extend the Boolean two valued logic to three valued logic. That is, if the Boolean elements 0 and 1 stand for false and true statements respectively, then 2 stands for divergence as neither true nor false. The best example of this is a traffic signal system the two basic signals (green light and red light) that can be further extended to another signal (different from green light and red light) depending on a particular situation. The similar logic can be observed in washing machines (Fuzzy logic control systems). The present work is an algebraic study of this logic.

5 APPLICATIONS

Our study on pre-A* posets directly links to graph theory. Given the applications of bipartite graphs in areas such as cancer detection, advertising, e-commerce rankings, prediction of preferences (such as food and movies), and matching problems (such as the stable marriage problem), this work has a lot of potential real-life applications. In fact, we have developeted new way to study graphs using pre-A* poset structures. Tht⁹ has of bipartite graphs to represent binary relations betw(*et*0) disjoint sets invites applications of pre-A* posets to medicine and biology, such as bipartite life cycles and bipartite patella for a split kneecap.

6 CONCLUSIONS

We have proven that if a pre-A* poset *A* has least element of locally finite length and satisfies the Jordan Dedekind chain conditions, then *A* has a dimension function. We have also established the relationship between pre-A* algebras and graph theory, by giving an analysis of Hasse diagrams. The graph in Figure 7 is subgraph of the one in Figure 2 and both have chromatic number of 2, making them bipartite graphs. The graph in Figure 3 is a planar graph with 5 regions whereas its subgraph in Figure 7 is planar graph with 2 regions.

DECLARATIONS

- Funding: There was no funding.
- Conflict of interest : There is no conflict of interest.
- Consent for publication : All authors have consented.
- Availability of data and materials : No data was used.
- Code availability : No code was used.
- Authors' contributions: All the authors contributed to the work.

REFERENCES

- 1. Fernando, G., Craig, C.S.: The algebra of conditional logic. Algebra Universalis 27
- 2. Manes, E.G.: Ada and the equational theory of ifthen-else. Algebra Universalis 30, 373–394 (1993)
- Koteswara, R.P.: A*-Algebra, an If-Then-Else Structures (Doctoral Thesis). Nagarjuna University, A.P., India, (1994)
- 4. Venkateswara, R.J.: On A*-algebras (Doctoral Thesis). Nagarjuna University, A.P., India, (2000)
- Kalyani, D., Rami, R.B., Venkateswara, R.J., Satyanarayana, A.: Characterization of a partial order relation on pre-a*- algebra. International Journal of Mathematical Archive 4(11), 87–296 (2013)
- Kalyani, D., Rami, R.B., Venkateswara, R.J., Satyanarayana, A.: Representation of pre a*- algebra by a partially order. Journal of Scientific and Innovative Mathematical Research 1(3), 200–210 (2013)