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1 INTRODUCTION 

An equational 3-valued generalization of a boolean algebra 

and C-algebra have been introduced by Fernando [1]. The 

aforesaid generalization based on logic functions “and ”, “ or 

” and “ not ”. The algebra of disjoint alternatives ( Ada ) 

(A,∧,∨,(−)∼,(−)π,0,1,2) has been studied by Manes [2], 

building a foundation on C-algebras. An A*-algebra 

(A,∧,∨,(−)∼,(−)π,0,1,2) and its equivalence with algebra of 

disjoint alternatives as well as the association of C-algebras 

and 3-ring has been done by Rao [3]. Moreover, A*-clones, 

If-Then-Else structure over A*-algebra, pre-A* algebra 

(A,∧,∨,(−)∼) and ideal of A*-algebra have been investigated 

[3, 4]. Kalyani [5, 6] have characterized a partial order 

relation on pre-A* algebra, thereby studying representation of 

a pre-A* algebra by a partial order. In this work, we prove 

that if a Pre-A* poset has least element of locally finite length 

which satisfies the Jordan Dedekind chain condition, then the 

pre-A* poset has a dimension function. The theorem is based 

on ascending and descending chain conditions. 

2 Preliminaries 

In this part of the paper, we define the important terms that 

we have used throughout. 

Definition 1 (Pre-A* algebra). [4, Definition 1] A Pre-A* 

algebra is an algebra (A 6= ∅,∧,∨,(−)∼) where A has a 1; ∧ 

and ∨ are binary operations and (−)∼ is a unary operation 

such that the following conditions are satisfied: 

(i). x∼∼ = x for all x ∈ A, 

(ii). x ∧ x = x, for all x ∈ A, 

(iii). x ∧ y = y ∧ x, for all x,y ∈ A, 

(iv). (x ∧ y)∼ = x∼ ∨ y∼ for all x,y ∈ A, 

(v). x ∧ (y ∧ z) = (x ∧ y) ∧ 

z for all x,y,z ∈ A, (vi). x ∧ 

(y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

for all x,y,z ∈ A, 

(vii). x ∧ y = x ∧ (x∼ ∨ y) for all x,y ∈ A. 

Example 1. (i). Let (3 = {0,1,2},∧,∨,(−)∼) be a pre-A* 

algebra. The operations are defined using the laws: 2∼ 

= 2, 1 ∧ x = x for all x ∈ 3, 0 ∨ x = x for all x ∈ 3 and 2 

∧ x = 2 ∨ x = 2 for all x ∈ 3. Hence we obtain Table 1. 

 

Table 1: An illustration of the properties in Example 1(i). 

    
(a) ∧. (b) ∨. (c) (−)∼. 

 

(ii). Let (2 = {0,1},∧,∨,(−)∼) be a pre-A* algebra. The 

operations are defined using the laws: 1∧x = x for all 

x ∈ 2, 0∨x = x for all x ∈ 2. Hence we obtain Table 

2. 

 

Table 2: An illustration of the properties in Example 1(ii). 

 
(a) ∧. (b) ∨. (c) (−)∼. 

∧ 0 1 2 
0 0 2 0 
1 2 1 0 
2 2 2 2 

∨ 1 2 0 
0 0 1 2 
1 1 2 1 
2 2 2 2 

x x ∼  
0 1  
1 0  
2 2  

∧ 1 0 
0 0 0 
1 1 0 

∨ 0 1 
0 0 1 
1 1 1 

x x ∼  
0 1  
1 0  
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Definition 2. [4, Partial order] A relation R on a set A is 

partial order if: 

(i). For all a ∈ A,aRa ( reflexivity ) 

(ii). For all a,b ∈ A,aRb and bRa , then a = b ( anti-symmetry 

) 

(iii). For all a,b,c ∈ A,aRb and bRc, then aRc ( transitivity ). 

The pair (A,R) is a partially ordered set ( poset ). 

Example 2. Posets 

(i). Let A = {0,1,2}. Then power set of A given by 

2A = {∅,{0},{1},{2},{0,1},{0,2},{1,2},A} is a poset 

under set inclusion. For for any A0,A1 ⊆ A, we define 

A0 ≤ A1 whenever A0 ⊆ A1. The pair   is a poset. 

(ii). Let P be the set of all real-valued functions on A = {0,1}. 

That is, P = {f | f : A →R}. For any f0,f1 ∈ P let f0 ≤ f1 

as long as for any t ∈ A, then f0(t) ≤ f1(t). The pair (P,≤) 

is a poset. 

Remark 1. Let (A,R) be a poset. Then a0,a1 ∈ A are 

comparable if either a0Ra1 or a1Ra0. Else a0 and a1 are 

incomparable. A poset in which any two members can be 

compared is a chain. For instance: 

(i). Let A 6= ∅ be a set with a power set 2A. Then  is 

a poset as described in Example 2 (i). In particular, if 

A = {0,1}, then 2A = {∅,{0},{1},A}. The elements {0} 

and {1} in 2A are not comparable by set inclusion. So, 

  is merely a poset but not a chain. 

(ii). The Pre-A* algebra (3 = {0,1,2},∧,∨,(−)∼) with R 

defined as a0 ≤ a1 whenever a0∧ a1 = a1∧ a0 = a0 for any 

a0,a1 ∈ 3 is a chain. 

Let (∅6= A0,≤) be any subset of a poset (A,≤). Observe that ≤ 

induces a partial ordering on A0, and hence, (∅6= A0,≤) is a 

poset (a subposet). In the same spirit, any subset of a chain is 

also a chain (a subchain). 

Definition 3. Let (A1,≤1) and (A2,≤2) be posets. A mapping φ : 

A1 → A2 is an order-preserving homomorphism or isotone, if 

 implies that for all

is a bijection and  if and only if 

  for all  (that is, φ and φ−1 are 

order-preserving homomorphisms), then φ is an isomorphism 

(order-preserving isomorphism). An isomorphism from A1 to 

itself is called an automorphism. 

Definition 4. Let (A,≤) be a poset. An element a ∈ A is said to 

be the least ( greatest ) element of A if a ≤ x (x ≤ a) for all x ∈ 

A. If A is a Pre-A* algebra, then c ∈ A is a central element if 

c ∨ c∼ = 1. In the Pre-A* algebra (3 = {0,1,2},∧,∨,(−)∼), 0 and 

1 are central elements whereas 2 is a non-central element. A 

Pre-A* algebra A which satisfies the conditions of a poset is 

a pre-A* poset. We illustrate as follows: 

(i). If A is a pre-A* algebra with 1, 0, and 2, then x ≤ 1 (x∧1 

= 1∧x = x) for all x ∈ A, and 2 ≤ x (x ∧ 2 = 2 ∧ x = 2). 

This shows that 1 is the greatest element and 2 is the 

least element of the poset, since 2 ≤ x ≤ 1. The Hasse 

diagram for the poset (A,≤) is given in Figure 1 below. 

Fig. 1: Hasse diagram of the poset (A,≤) . 

 
 

The chromatic number of the graph in Figure 1 is 2. It 

is thus a bipartite graph. This graph has two nodes of 

odd degree, making it have an Euler path but no 

Euler circuit. 

(ii). Let A × A = {a1 = (1,1),a2 = (1,0),a3 = (1,2),a4 = (0,1),a5 

= (0,0), a6 = (0,2),a7 = (2,1),a8 = (2,0),a9 = (2,2)} be a 

pre-A* algebra under pointwise operation. Then A × A 

has four central elements and the rest noncentral. 

Among them, a9 = (2,2) satisfies the property that

. The Hasse diagram of the poset (A × A,≤) is 

given in Figure 2 below, where a7 is the top element. 

 

 
 

The chromatic number of the graph in Figure 2 is 2,making it 

a bipartite graph. It is a planar graph since there are no edge 

crossings, and the planar representation is provided in 

Figure 3. 

1  

0  

2  

2 Fig. for Diagram : Hasse A × A .  

a 1  

a 4 a 2  

a 5 a 7 a 3  

a 8 a 6  

a 9  
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It’s a planar graph with 5 regions. Here we can observe 

that x ≤ a1, x ∧ a1 = a1 ∧ x = x, and a9 ≤ x (x ∧ a9 = a9 ∧ 

x = a9) for all x ∈ A × A. This means that a1 is the 

greatest element and a9 is the least element of A × A. 

(iii). We have that 2×3 = {a1 = (1,1),a2 = (1,0),a3 = (1,0),a4 = 

(0,1),a5 = (0,2),a6 = (1,2)} is a Pre-A* algebra under 

pointwise operation, having four central elements, two 

non-central elements, and no element satisfying the 

property that a∼ = a. The Hasse diagram for (2×3,≤) is 

given below in Figure 4. Observe that x ≤ a1, that is, 

x∧a1 = a1∧x = x, and a5 ≤ x (x∧a5 = a5∧x = a5) for all x 

∈ 2×3. This shows that a1 is the greatest element and a5 

is the least element of 2×3. The graph has a chromatic 

number of 3, hence it is not a bipartite. It’s a planar 

graph with 4 regions as shown in Figure 5. 

 

     

 
Definition 5. Let A 6= ∅ be a set. Then a ∈ A is a minimal 

element if A has no a0 such that a0 < a (or a0 ≤ a implies a0 = 

a). Similarly, a ∈ A is a maximal element if there exists no a0 

∈ A has such that a < a0 (or a ≤ a0 implies a = a0). 

(i). Consider the pre-A* posets represented in the Figures 1 

and 2. In Figure 1, one can observe that 2 is the 

minimal element and 1 is the maximal element. In 

Figure 2, one can observe that a9 is the minimal 

element and a1 is the maximal element. 

(ii). Consider the poset P = {1,2,3,4,5,6} with the definition 

x ≤ y if and only if x divides y for all x,y ∈ P. See the 

Hasse diagram in Figure 6 below. In P, 1 is a minimal 

element and 4, 5, and 6 are maximal elements because 

4, 5, and 6 have no x in P to divide (that is, there is no 

x in P such that 4 < x, 5 < x, 

and 6 < x), whereas 1, 2, and 3 have some x to divide 

(that is 1 ≤ x for all x in P, 2 ≤ 4, 2 ≤ 6, and 3 ≤ 6).This 

graph has a chromatic number of 3 and thus is not 

bipartite. 

Fig. 6: Hasse Diagram representing the relations in P 

Definition 5 (ii) 

 

3 Fig. Figure in graph the representation Planar : of 2 .  

a 1  

a 4 a 2  

a 5 a 7 a 3  

a 8 a 6  

a 9  

4 Fig. for diagram Hasse The : 2 × 3 .  
a 1  

a 2  

a 3 a 4  

a 6  

a 5  

5 Fig. representation Planar The : Figure in graph of 4 .  

a 1  

a 2  

a 3 a 4  

a 6  

a 5  
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Definition 6. Let A be a Pre-A* algebra. The length of a chain 

of the form a0 < a1 < ... < ar−1 consisting of r elements is a 

non-negative integer r − 1. This corresponds to a path of 

length r − 1, connecting the vertices a0 and ar−1. The length 

l(A) of a poset (A,≤) is the least upper bound (lub) of the 

lengths of all subchains of A, that is l(A) = lub{l(C) | C is a 

chain in A}. 

(i). Let us consider the poset represented by the Figure 1. 

In this poset, 2 ≤ 0 ≤ 1 is the chain of length 2. Then, 

the length of the poset A is given by l(A) = lub{l(C) | C 

is a chain in A} = lub{2} = 2. 

(ii). Consider the poset (A × A,≤) represented in Figure 2. 

The chains are: a9 ≤ a8 ≤ a7 ≤ a4 ≤ a1; a9 ≤ a6 ≤ a3 ≤ a2 ≤ 

a1; a9 ≤ a8 ≤ a5 ≤ a2 ≤ a1; a9 ≤ a6 ≤ a5 ≤ a4 ≤ a1. These 

are analogous to paths of length 4 connecting vertices 

a9 and a1. 

(iii). In the Pre-A* poset 2×3, from Hasse diagram in Figure 

4, the chains connecting a5 and a1 are given by: a5 ≤ a4 

≤ a1; a5 ≤ a2 ≤ a4 ≤ a1; a5 ≤ a6 ≤ a3 ≤ a1; and a5 ≤ a2 ≤ a3 

≤ a1. 

If C is a subchain in A, then l(C) ≤ l(A). The poset (A,≤) is of 

finite length if l(A) is finite. Observe that all finite posets are 

of finite lengths. A poset A is of locally finite length if every 

one of its intervals is of finite length. 

Remark 2. The interval in a poset is the set of all the elements 

in between the least and greatest elements, including them. 

For example, a9 ≤ a8 ≤ a7 ≤ a4 ≤ a1 is a chain connecting a9 and 

a1. So, the elements of this chain are the elements of the 

interval [a9,a1] and hence the length of the interval is 

computed in a similar way as defined above. In the poset 

(A×A,≤) represented in Figure 2, we can observe that all 

intervals connecting a9 and a1 are of finite length. Therefore, 

the poset (A × A,≤) is of locally finite length. Any x ∈ A is an 

upper (lower) bound of R ⊂ (A,≤) if a ≤ x (x ≤ a) for all a in 

R. If R has at least one upper (lower) bound, then R is said to 

be bounded above (below). A subset R of a poset (A,≤), which 

is both bounded and below, is said to be a bounded subset of 

(A,≤). If (A,≤) is a poset, then for a in A, (a] = {x ∈ A | x ≤ a} 

is the set of all lower bounds of a in (A,≤). Similarly, [a) = {x 

∈ A | a ≤ x} is the set of all upper bounds of a in (A,≤). 

Consider the following illustration on posets and 

boundedness. 

(i). In the poset (A × A = {a1,a2,a3,a4,a5,a6,a7,a8,a9},≤) 

shown in Figure 2, consider the subset R = 

{a5,a6,a8,a3}. Here a9 ≤ a8, a9 ≤ a6, a9 ≤ a5, a9 ≤ a3. So 

a9 is a lower bound of R. 

(ii). Consider the subset S = {a4,a2} in the poset (A × A,≤) in 

Figure 2. Since a5 ≤ a4 and a5 ≤ a2 and a6 ≤ a4 and a6 ≤ 

a2, the set {a5,a6} is a lower bound of S = {a4,a2}. 

(iii). As for the set {a1,a2,a4} in Figure 2, a1 has no upper 

bound. In the set {a8,a9,a6}, a9 has no lower bound. 

Definition 7. Let R be any subset of a poset A = {0,1,2}. If 

there exists a lower (upper) bound of R that is also an element 

of R, then it is called the least ( greatest ) element of R. Let us 

denote it by 2 (1). That is, if a is the least (greatest) element 

of R, then a ≤ x (x ≤ a) for all x in R and a in R. The elements 

other than 2 and 1 are called inner elements of R. The least 

and greatest elements together will be called bound elements. 

Consider the poset A×A as shown in Figure 2 and R = 

{a1,a2,a3,a4}. The element a1 is the maximal in R and x ≤ a1 

for all x in R. So, R has an upper bound and R has a greatest 

element. An element x is a greatest lower bound (least upper 

bound) or infimum (supremum) of R if x is the greatest (least) 

element of all lower (upper) bounds of R. Consider the subset 

R = {a8,a5,a6} in the poset A×A as shown in Figure 2. Then 

Sup({a8,a6}) = a5. If R = {a8,a9,a6}, then Inf({a8,a6}) = a9. 

Definition 8. Let (A,≤) be a poset. Then A satisfies the 

minimum (maximum) condition or descending chain 

condition (DCC) (ascending chain condition (ACC)) if for 

any descending (ascending) sequence a1 ≥ a2 ≥ a3 ≥ ... (a1 ≤ a2 

≤ a3 ≤ ...) of elements of A, there exists a positive integer n 

such that an = an+1 = .... Every finite poset satisfies ACC and 

DCC. One can observe ACC and DCC in the finite posets 

(A×A = {a1,a2,a3,a4,a5,a6,a7,a8,a9},≤) in Figure 2 and (A = 

{0,1,2},≤) shown in Figure 1. 

Definition 9. Let (A,≤) be a Pre-A* poset. For any a,b ∈ A 

such that a < b, let C be a subchain of A having a as the least 

element and b as the greatest element. Then we say that C is 

situated between the elements a and b, or C connects a and b. 

Graphically, we note that the path C is situated between a and 

b, or C connects a and b. 

Definition 10. Let A be a Pre-A* algebra. If for every pair of 

elements a,b such that a ≤ b in a Pre-A* poset (A,≤), it is true 

that all maximal chains connecting the elements a and b are 

of the same length, then (A,≤) is said to satisfy the Jordan 

Dedekind Chain condition (JDCC), that is, all the maximal 

paths connecting the elements a and b are of the same length. 

Definition 11. Let (A,≤) be a pre-A* poset which is bounded 

below. Let a ∈ A. We define the height h(a) or dimension of 

the element a as the length of the maximal chain that connects 

the least element a0 and a. That is, h(a) = l([a0,a]). 

Definition 12. Let (A,≤) be a pre-A* poset which is bounded 

below and of locally finite length satisfying JDCC. Then x ≺ 

y if and only if x ≤ y and h(x) + 1 = h(y). (Here x ≺ y will be 

called ”x covered by y” and it means that there is no element 

z between x and y such that x ≤ z ≤ y). For instance, from 

Figure 2: 

(i). It can be observed that a2 ≺ a1 if and only if a2 ≤ a1 and 

h(a2) + 1 = h(a1). This implies, h(a1) = 3 + 1 = 4. 

(ii). Further, a9 ≺ a6 if and only if a9 ≤ a6 and h(a9) + 1 = 

h(a6). This implies, h(a6) = 0 + 1 = 1. 

Definition 13. Let (A,≤) be a pre-A* poset (not necessarily 

bounded below) and let d : A −→Z∪{±∞} be an integer 

valued function whose co-domain includes integers and one 

or both of symbols ±∞. Then d is called the dimension function 

of A if x ≺ y if and only if x ≤ y and d(x) + 1 = d(y) for all x,y 

in A. 
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3 MAIN RESULTS 

We use this section to present main results in the manuscript. 

Lemma 1. Let A be a pre-A* algebra. Define a relation ≤ on 

A by x ≤ y if and only if y ∧ x = x ∧ y = x. Then (A,≤) is a poset. 

Proof. Since x∧x = x, x ≤ x for all x ∈ A. Therefore, ≤ is 

reflexive. For all x,y ∈ A, whenever x ≤ y, and y ≤ x, then y ∧ 

x = x ∧ y = x and y ∧ x = x ∧ y = y. So x = y and ≤ is anti-

symmetric. Now let x,y,z ∈ A such that x ≤ y and y ≤ z. Then 

y ∧ x = x ∧ y = x and z ∧ y = y ∧ z = y. Now, x = x ∧ y = x ∧ y 

∧ z = x ∧ z, which means that x ∧ z = z ∧ x = x. Therefore, x ≤ 

z. Consequently, ≤ is transitive and (A,≤) is a poset.   

Proposition 1. Let A = {0,1,2} and 2A be the power set of A. 

Then 2A is a bounded set. 

Proof. For any A0,A1 in 2A, define A0 ≤ A1 whenever A0 ⊆ A1. 

Clearly, ∅⊆ A0 for all A0 in 2A. Then, ∅≤ A0 for all A0 ∈ 2A. 

Thus, ∅ is the lower bound of 2A. Moreover, for any A0 ∈ 2A, 

A0 ⊆ A for all A0 ∈ 2A. Then A0 ≤ A for all A0 ∈ 2A. Thus, A is 

the upper bound of 2A and ∅≤ A0 ≤ A for all A0 ∈ 2A. Hence, 2A 

is a bounded set.   

Lemma 2. Let A be any poset. If A has a lower (upper) bound, 

then it has at most one lower (upper) bound. 

Proof. We prove uniqueness of the lower bound and the same 

idea can be adopted to suit the upper bound case. Suppose that 

A has two lower bounds, say a and b. Since a is a lower bound 

of A, then 

a ≤ b. (1) 

Since b is a lower bound of A, then 

b ≤ a. (2) 

b ≤ a. Since ≤ is antisymmetric, then by Equations (1)-(2), it 

follows that a = b. Similarly, it can be shown that A has at 

most one upper bound.   

Corollary 1. In a poset (A,≤), if A has a least (greatest) 

element, then it is the only minimal (maximal) element of A. 

Proof. Let A have a least element a. Then 

a ≤ x, (3) 

for all x ∈ A and a ∈ A. We claim that a is the minimal element 

of A. Assume to the contrary that a is not a minimal element 

of A. Then, there exists x in A such that 

x ≤ a. (4) 

 Since (A,≤) is a poset, Equations (3)-(4) and anti-symmetry 

imply that a = x is the minimal element of A. Since a is the 

least element of A, a is unique by Lemma 2. Therefore, a is 

the only minimal element of A. Similarly, we prove that if A 

has a greatest element, then it is the only maximal element of 

A.   

Theorem 2. Let A1 and A2 be posets and let ϕ be an order 

isomorphism of A1 onto 

A2. If a subset R1 of A1 has an infimum in A1, then the set R2 = 

{ϕ(x) | x ∈ R1} has an infimum in A2. That is, infA2(R2) = 

ϕ(infA1(R1)) or infA2(ϕ(R1)) = ϕ(infA1(R1)). 

Proof. Let infA1(R1) = a. This implies that for every x in R1, a 

≤ x in A1. Since ϕ is an order isomorphism, we have that 

ϕ(a) ≤ ϕ(x), (5) 

in A2 for all x in R1. Hence, ϕ(a) is a lower bound of ϕ(R1) . 

We prove that 

ϕ(a) = glb(ϕ(R1)). (6) 

Let t ∈ A2 be any other lower bound of ϕ(R1) . Since ϕ is onto, 

there exists b in A1 such that ϕ(b) = t. Therefore, t = ϕ(b) is a 

lower bound of ϕ(R1). Since x is any element of R1, ϕ(b) ≤ ϕ(x) 

for all x in R1, implies that b ≤ x (since ϕ is order preserving) 

for all x in R1. Then b is a lower bound of R1. Hence, b ≤ a, 

since a = glb(R1). So, ϕ(b) ≤ ϕ(a). This implies, 

t ≤ ϕ(a). (7) 

By (5), (6), and (7), we conclude that ϕ(a) is a lower bound of 

ϕ(R1), and for any lower bound t of ϕ(R1), we have that t ≤ 

ϕ(a). Therefore, ϕ(a) = glbA2(ϕ(R1)) = infA2(ϕ(R1)). That is, 

ϕ(infA1(R1)) = infA2(ϕ(R1)).   

Theorem 3. If a poset (A,≤) satisfies the minimum (maximum) 

condition, then for any x in A, there exists one element m of A 

such that m ≤ x (x ≤ m). 

Proof. Suppose that A satisfies the minimum condition 

(DCC). Let x ∈ A. If x is minimal, then x = m. If x is not 

minimal, then there exists x1 ∈ A such that x1 ≤ x. If x1 is not 

minimal, then there exists x2 ∈ A such that x2 ≤ x1 ≤ x. If we 

continue this process, then we have a descending sequence of 

elements of A. But by hypothesis, A satisfies the minimum 

condition (DCC). Therefore, the above process must be 

terminated at a certain stage, say xr, and no element of A will 

be less than xr. Hence, xr is a minimal element of A. That is, xr 

≤ x for all x in A. Similarly, we can prove that if a poset A 

satisfies the maximum condition, then it has a maximal 

element.   

Corollary 2. Let (A,≤) be a chain. Then every subchain of 

(A,≤) satisfying the maximum (minimum) condition has a 

greatest (least) element. 

Proof. Suppose that a poset A satisfies the maximum 

condition. Then, every subset of A also satisfies the maximum 

condition. Since every subchain of a poset A is also a subset 

of A, every subchain of A satisfies the maximum condition. 

We know that a chain does not have more than one maximal 

element, and that maximal element is the greatest element of 

the chain. Therefore, every subchain of A satisfies the 

maximum condition. Every chain of the form a1 < a2 < a3 ... 

does not contain an infinite number of elements. Therefore, 

after a certain stage, that is, after a finite number of steps, we 

obtain a maximal element, which is also the greatest element. 

Similarly, we can prove that every subchain of a poset 

satisfying the minimum condition has a least element.  

Theorem 4. Let (A,≤) be a poset. Then (A,≤) can satisfy both 

the maximum and minimum conditions if and only if every one 

of its subchains is of finite length. 

Proof. Suppose A is a poset that satisfies both the maximum 

and minimum conditions. Let C be a subchain of A. We prove 

that C is of finite length. Since A satisfies the minimum 

condition, then by Corollary 2, C has a minimal element, say 

x1, and hence x1 is a least element of C. Define C1 = C \{x1}. 

Then C1 is again a subchain of A. Let x2 be the least element 
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of C1. Therefore, we have x1 < x2. If we continue this process, 

we obtain an ascending sequence x1 < x2 < x3 ... of elements 

of C and hence elements of A. But A satisfies the maximum 

condition. Therefore, the above sequence must be finite. 

Therefore, C is finite. That is, every subchain of A is of finite 

length. Conversely, suppose that every subchain of a poset A 

is of finite length. We prove that A satisfies both the 

maximum and minimum conditions. Asuume to the contrary 

that A does not satisfy the minimum condition. Then there 

exists x0 in A such that starting from x0, we can obtain an 

infinite number of elements x1 > x2 > x3 .... Put 

. Then clearly C is a subchain of A that is 

infinite, which contradicts the fact that every subchain of a 

poset is finite. Therefore, A satisfies the minimum condition. 

Similarly, we can prove that A satisfies the maximum 

condition.   

In view of the pre-A* poset A × A, with 9 elements defined as 

in Figure 2, we have the following theorem. 

Theorem 5. If a Pre-A* poset (A×A = a1,a2,...,a9,≤) with least 

element of locally finite length satisfies JDCC, then it has a 

dimension function. 

 

Fig. 7: An illustration of Theorem 5. 

 
Proof. Let (A × A = {a1,a2,...,a9},≤) be a poset of locally finite 

length satisfying 

JDCC. If A×A contains an element u such that inf{u,x} exists 

for all x ∈ A, then a dimension function can be defined on A 

in the following way: For any element u, define 

d(u) =d0, (8) 

d(x) =d0− r1x + r2x, (9) 

d(y) =d0− r1y + r2y. (10) 

The lengths of maximal chains connecting inf{u,x} with u and 

x are r1x and r2x respectively. We have to show that d satisfies 

the following: x ≺ y if and only if x ≤ y and d(x) + 1 = d(y) for 

all x,y in A × A. Let x,y ∈ A × A such that x ≺ y. 

Therefore, inf{u,x}≤ inf{u,y}. There exists a maximal chain 

between inf{u,x} and u which includes inf{u,y}. Then the 

length of the maximal chain between inf{u,x} and inf{u,y} is 

r1x − r1y as illustrated in Figure 7. Let us denote the length of 

the maximal chain between x and y by t. By definition, we 

have: 

d(y) =d0− r1y + r2y, (11) 

d(x) =d0− r1x + r2x. (12) 

Therefore, 

d(y) − d(x) = (r1x − r1y) + (r2y − r2x). (13) 

Since our poset satisfies JDCC, the lengths of all maximal 

chains between inf{u,x} and y are equal, that is, 

r1x − r1y + r2y = r2x + t. (14) 

From Equations (13) and (14), we have 

d(y) − d(x) = t. (15) 

Therefore, x ≺ y if and only if x ≤ y and there is no z such that 

x ≤ z ≤ y. This is equivalent to saying that x ≤ y and the lengths 

of maximal chains connecting x and y is 1. That is, x ≤ y and 

t = 1 and hence, x ≤ y and by Equation (15), we have that d(y) 

= d(x) + 1. Thus, x ≺ y if and only if x ≤ y and d(x) + 1 = d(y) 

for all x,y ∈ A. This completes the proof.   

Remark 3 (Graphical aspect of Figure 7). The graph has a 

chromatic number of 2 and is bipartite. Furthermore, the 

graph in Figure 7 is a subgraph of the bipartite graph G = A 

× A in Figure 3. Additionally, the graph in Figure 7 is a 

planar graph with 2 regions. 

 

4 TECHNICAL ASPECT 

The significance of the crucial element 2 in a Pre-A* algebra 

is to extend the Boolean two valued logic to three valued 

logic. That is, if the Boolean elements 0 and 1 stand for false 

and true statements respectively, then 2 stands for divergence 

as neither true nor false. The best example of this is a traffic 

signal system the two basic signals (green light and red light) 

that can be further extended to another signal ( different from 

green light and red light) depending on a particular situation. 

The similar logic can be observed in washing machines 

(Fuzzy logic control systems). The present work is an 

algebraic study of this logic. 

 

5 APPLICATIONS 

Our study on pre-A* posets directly links to graph theory. 

Given the applications of bipartite graphs in areas such as 

cancer detection, advertising, e-commerce rankings, 

prediction of preferences (such as food and movies), and 

matching problems (such as the stable marriage problem), this 

work has a lot of potential real-life applications. In fact, we 

have developed a new way to study graphs using pre-A* poset 

structures. The use of bipartite graphs to represent binary 

relations between disjoint sets invites applications of pre-A* 

posets to medicine and biology, such as bipartite life cycles 

and bipartite patella for a split kneecap. 

 

a 9  

inf { u,x }  

inf { a 7 ,a 6 }  

a 8  

inf { u,y }  

a 7 ( u )  

r 1 y r 2 y t  

a 5 ( y )  

a 6 ( x )  

r 1 x 
r 2 x  
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6 CONCLUSIONS 

We have proven that if a pre-A* poset A has least element of 

locally finite length and satisfies the Jordan Dedekind chain 

conditions, then A has a dimension function. We have also 

established the relationship between pre-A* algebras and 

graph theory, by giving an analysis of Hasse diagrams. The 

graph in Figure 7 is subgraph of the one in Figure 2 and both 

have chromatic number of 2, making them bipartite graphs. 

The graph in Figure 3 is a planar graph with 5 regions whereas 

its subgraph in Figure 7 is planar graph with 2 regions. 
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