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3D Isodoselines and Isodosezones were presented in previous publication. Isodosezones were 

put out and applied on prostate tumors. In this further improvement, 3D Isodosezones are got 

with programming innovation with new software-engineering programming for lung cancer. 

BED model for radiotherapy hypofractionated treatment planning optimization is used. Interior 

Optimization (IO) for lung tumor BED model hyperfractionated Treatment Planning 

Optimization (TPO) application is further demonstrated. The implemented data was got with 

additional-dual constrained evolutionary algorithm for BED-LQ model (Biological Effective 

Dose) in this cancer type. Results for TPO with 3D IO-Graphical Optimization show a number 

of surfactal IO 3D Isodoselines/zones with proven accuracy-feasibility of the novelty of the 

technique. Programming software for surfactal-isodoselines/zones methods solutions show a 

series of 3D IO graphs for TPO. Applications for lung tumors radiotherapy and stereotactic 

radiosurgery treatments are briefed. 
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Therapy (RT), Initial Tumor Clonogenes Number Population ( N0 ), Effective Tumor Population Clonogenes Number ( NEffective ),  

Linear Quadratic Model (LQ), Integral Equation (IE), Tumor Control Probability (TCP), Normal Tissue Complications 

Probability (NTCP), Biological Effective model (BED), Tumor Control Cumulative Probability (TCCP), Radiation Photon-

Dose (RPD), Nonlinear Optimization, Radiotherapy Treatment Planning Optimization (TPO), Nonlinear Optimization, 

Treatment Planning Optimization (TPO), Artificial Intelligence (AI), Pareto-Multiobjective Optimization (PMO), Genetic 
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I. INTRODUCTION AND OBJECTIVES 

3D Isodosezones (Casesnoves imaging-software and 

optimization invention, 2022) are developed from a previous 

3D Isodoselines and 3D Isodosezones, published definition-

invention [101], for prostate treatment planning optimization 

(TPO), a primary group of demonstrating graphs were shown. 

This study deals with an extension/improvement of 3D 

Graphical-Interior Optimization obtained with perfected 

software. Isodoselines and Isodosezones are proven be 

practical and complementary useful in TPO. 

Advantages and inconvenients of BED model as a several 

variables function to be optimized are explained. A series of 

imaging processing 3D charts are presented for Isodosezones 

in lung cancer BED model for TPO. The BED parameters used 

are based on in vivo tumor radiobiological parameters ( α , β ),  

Treatment-Time variable, TK (delay) , and TPotential ones, Table 1, 

[98]. The research presented is based/intended on 3D charts to 

prove TPO usage, rather than a numerical series results. 

Original Fowler model has got an extensive number of 

variations and types along the literature. This study is 

grounded on a number of previous research in biological 

models optimization contributions, and contains innovations 

of software developed in other science areas [1-21, 28, 

86,88,89,99,101] .   

The radiotherapy TPO applications outcome for this 

Isodosezones involves optimization of main parameter 

magnitudes, namely, number of fractions, total dose, treatment 

total time, and others for BED model. 

Results comprise illustrative examples for BED model 

TPO refined with 3D Isodosezones series for several 

magnitudes of total doses. Numerical values are detailed. 

https://doi.org/10.47191/ijmcr/v12i2.04
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In brief, a number of 3D imaging processing graphics for lung 

tumors TPO by using BED model are proven and explained. 

Confirmation of findings of [101] is got. Applications for lung 

tumor radiotherapy TPO are briefed. 

 

II. MATHEMATICAL AND PROGRAMMING 

METHOD 

This section comprises the dataset that was used for 

programming improvements from [100]. The mathematical 

algorithms and software methods are also developed from 

[86,88,89,99,101]. The basic dataset reminder of in vivo is 

included in Table 1 from [98]. 

Definition 1.- In RT-3D Treatment Planning, a 3D 

Isodoseline is demarcated by a line whose dose-distribution 

parameters can vary for optimal planner choice while keeping 

constant the total dose delivery magnitude [ Casesnoves, 

2022] . 

Definition 2.- In RT-3D Treatment Planning, a 3D 

Isodosezone is demarcated by a polygon whose dose-

distribution parameters can vary for optimal planner choice 

while keeping constant the total dose delivery magnitude 

[ Casesnoves, 2022] . 

As in constrained GA optimization previous dataset was 

detailed, [86, 88, 89, 99, 101],  Table 1. Constraints matrix 

algebra are implemented through [Algorithms 1-5 from 86, 

88, 89, 99, 101]. In Matlab and other similar systems, the 

constraints can be set as a matrix equation. Main simulation 

dataset comes from [20-25,68,74,75,80,81,85-94,99,101] . 

The GA simulations results that were done [98,99,101] with 

numerical-experimental interval-data for GA implemented 

arrays were used for imaging process. TPotential in lung for in 

vivo experimental data is about [ 26 , 30 ] days. That Table 1 

shows all dataset implemented with references for in vivo 

parameters at BED-LQ model at hyperfractionated low dose 

fractions [numerical experimental data from refs in 86, 88, 89, 

99, 101]. 

Brief Review of Algorithms 

The GA algorithms used are approximately the same than in 

previous prostate cancer publication, [98,101, Casesnoves, 

2022]. The sequence of the formulas development, with few 

numerical variations, is as follows, 

 
(Algorithm 1) 

where 

F(x) : Main function to be optimized. 

fi ( x ) : Every function of same variables ( x ). 

Ki  (x) : Constraints functions such as in general N ≠ M . 

BED nonlinear-quadratic model has been adapted for in vivo 

parameter TPot  magnitude. Then, PMO in lung, [ 24,88,89,98, 

101 ] tumors simplest BED model reads, 

 

 
(Algorithm 2) 

 

where, 

BED : The basic algorithm for Biological Effective Dose 

initially developed by Fowler et Al. [ 22-25, 89-94,98 ]. 

k : Optimal Number of fractions for hyperfractionated TPO. 

Optimization parameter. [22-25,89-94,98 ]. 

d : Optimal Dose magnitude for every fraction. Optimization 

Parameter [ Gy ]. [ 22-25, 89-94 ]. 

α : The basic algorithm constant for Biological Effective Dose 

models. Radiobiological experimental parameter in vivo. 

[ Gy-1 ]. [ 22-25, 89-94 ]. 

β : The basic algorithm constant for Biological Effective Dose 

models in vivo. Radiobiological experimental parameter . 

[ Gy-2 ]. Note that it is very usual to set in biological models  

[ α / β in Gy]. 

TTreatment  : The overall TPO time. This parameter varies 

according to authors’ and institutions/hospitals criteria. [ 22-

25, 89-94,98 ]. 

TDelay  : The overall TPO time delay for clonogens re-

activation. This parameter varies according to authors’ 

experimental research. 

TPotential  : The potential time delay for tumor cell duplication. 

This parameter varies according to authors’ experimental-

theoretical research. 

DOSE : The dose magnitudes for lung cancer simulation 

algorithm for Biological Effective Dose [ 22-25, 89-94,98 ]. 

Software patterns were calculated around intervals DOSE ϵ  

[ 70 , 80 ] Gy. 
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Algorithm 2 [Fowler mainly, modified by Casesnoves, 98].-

Prostate PMO algorithm [1-25,85-90, 99, 101] implemented 

in software. Table 1 shows these intervals for optimization 

parameters details. Programming was developed in Matlab 

system. The constraints algebraic algorithm developed for 

Pareto-Multiobjective problem, [Algorithms-3-5, 

Casesnoves 2023] reads, 

 

 
( Algorithm 3) 

 

where 

SLOWER : Summatory of all lower constraints for parameters  

[ K, d, T ]. 

SUPPER : Summatory of all upper constraints for parameters  

[ K, d, T ]. 

Ki  : Dose fraction number parameter for [ i = 1, 2 ] . 

di : Dose fraction magnitude parameter for [ i = 1, 2 ] . 

TTREATMENT : Treatment time magnitude parameter for [ i = 1, 

2 ] . 

The subroutines programming strategy, as in [99,101], which 

are implemented reads, 

 
Algorithm 4) 

where, 

SK,d,T : Upper (maximum) and Lower boundaries for 

parameters  [ K, d, T ], according to Algorithms 1-2. 

A1,2 : Matrices for numerical values, Table 1. 

Software used for this study continues previous algorithms 

papers and literature data [1-20,24,68,74,88,89,98,99, 101] 

with modifications, and addition of IO programs. For GA-

PMO modeling,  Equation 1 and Algorithms 1-4 are 

implemented on 3D programs, with application of Algorithm 

5 basic model formula. Algorithm 2 was programmed with 

Algorithm 3 matrix constraints subroutines-functions. Table 

1 shows Constrained GA Optimization in vivo parameters, in 

Algorithms 1-5. From all these numbers, 3D IO and 2D 

Genetic Algorithms Graphical Optimization imaging-

processing charts, error determinations, pareto-distance, get 

precise approximations for hyperfractionated PMO-BED 

model. In general, precision obtained is more than expected. 

The algorithm function mathematical analysis for 3D IO 

charts and numerical optimization 

The algorithm function constitutes a several variables one, 

[101]. This implies that the 3D IO can be made selecting 3 of 

them for the IO graph, to chose the most convenient TPO data, 

Figures 1-3. 

The optimization for BED model, in order to obtain 3D 

graphs for Isodosezones, should get 3 variables. However, in 

the BED model the parameters number could be higher. These 

mathematical options imply that graphical optimization 

process could be set in a number of graphs, where everyone 

holds any convenient 3 variables combination. In terms of 

software, the task is more complicated for constraints and 

precision. Figures 1-3, show these different options.      

Computational Implemented Dataset 

In Table 1, software implemented dataset for GA 

programming with source references [38,43-45,98,100]. 

 

Table 1.- Software implemented dataset for GA 

programming with source references [38,43-45,98]. 

 

III. 3D ISODOSEZONES- RESULTS 

In this extended study, 3D Interior and Graphical 

Optimization methods are used in parallel-refinement to 

confirm results from [98,101], with the in vivo dataset from 
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[23,24,97,98,101] . The 3D imaging process, Figures 1-3, 

programming demonstrate the results got with 3D IO in [101]. 

3D Isodosezones are cursor-marked inset within every 3D 

graph. The radiotherapy planner obtains the desired 

combination of fractions (k), and fraction dose (d), for a fixed 

total BED dose delivery. That is considered a consistent, easy, 

fast, and simple advance in modern TPO and RT research. 

 

 
Figure 1.- 3D Isodosezone for two variables, at XY plane, 

number of fractions and dose per fraction, the choice. Namely, 

Number of fractions and dose per fraction in lung TPO.  series 

of BED doses. Namely, marked inset, [70,80] Gy. The 

Isodosezone fundamentals for IO calculations are 

implemented into a 3D surface with two examples. Pattern 

intervals for plotting were taken from PMO but with in vivo 

lung tumor parameters. Each BED total dose is fixed along 

3D Isodozone, while ( k ) and ( d ) parameters vary when 

cursor is moved over this Isodosezone. This software 

numerical method was also developed in F # and Fortran. 

Enhanced in Appendix. 

 

Figure 2.- 3D Isodosezone for two variables. Namely, the 

choice is number of fractions and total treatment time in lung 

TPO.  series of BED doses. Namely, marked inset, [70,80] Gy. 

The 3D Isodosezone fundamentals for IO calculations is 

implemented into a 3D surface with two examples. Pattern 

intervals for plotting were taken from PMO but with in vivo 

lung tumor parameters. Each BED total dose is fixed along 

3D Isodozone, while ( k ) and ( d ) parameters vary when 

cursor is moved over this Isodosezone. 

 

 
Figure 3.- Prostate tumor review of previous publication, 

[101 ]. Parameters selection at XY is number of fractions and 

dose per fraction. 3D Isodosezone fundamentals for IO 

calculations within interval of total BED prostate dose [60,70] 

Gy. In this area the planner can select any convenient choice 

for the patient treatment. 

 

IV. RADIOTHERAPY MEDICAL PHYSICS 

APPLICATIONS 

Table 2, modified/improved from [101], shows radiotherapy 

applications for RT treatment based on biological models, and 

specifically also for this study. Medical physics principal 

applications for radiotherapy TPO are explained briefly. 

 

Table 2.- From previous publications, [23,24,97,98,101], 

brief of  radiotherapy and radioprotection applications 

derived from imaging results. 

 

V. DISCUSSION AND CONCLUSIONS 

The objective of the study was to get a series of 3D 

Isodosezones charts to evidence and verify the results from 

[98,101] in prostate cancer, but for lung tumors 

hyperfractionated RT treatment with BED-LQ model and in 

vivo parameters dataset. An improved and rather difficult 

software for 3D Interior Optimization to determine optimal 
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surfaces and Isodosezones was designed. All imaging 

processing results confirm the previous studies [98,101]. 

The programming method has the inconvenient that the 3D 

surfaces are specific for each and every model and cancer 

type. However, to change formulas and/or parameters in 

software is not complicated. Running time for 3D surfactal 

Isodoselines is acceptable. 

The research presented is based/intended on 3D imaging-

processing to prove TPO usage, rather than a numerical series 

results. Therefore, results can be considered acceptable at 

present. 

The radiotherapy TPO applications outcome for this 

Isodosezones involves optimization of main parameter 

magnitudes, namely, number of fractions, total dose, treatment 

total time, and others for BED model. The mathematical 

analysis for the model variables was justified. 

Succintly, an extensive lung cancer constrained RT-BED 

hyperfractionation model with 3D imaging processing and in 

vivo data was performed with 3D Isodosezones software 

engineering work. 3D Isodosezones constitute a practical 

result for BED RT accurate planning. Applications for 

hyperfractionated dose delivery in lung tumors and radiation 

therapy optimal TPO in general arise from all the study.    
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APPENDIX 

 
Figure 1. enhanced.- 3D Isodosezone for two variables, at XY plane, number of fractions and dose per fraction, the choice. Namely, 

Number of fractions and dose per fraction in lung TPO.  series of BED doses. Namely, marked inset, [70,80] Gy. The Isodosezone 

fundamentals for IO calculations are implemented into a 3D surface with two examples. Pattern intervals for plotting were taken 

from PMO but with in vivo lung tumor parameters. Each BED total dose is fixed along 3D Isodozone, while ( k ) and ( d ) parameters 

vary when cursor is moved over this Isodosezone. This software numerical method was also developed in F # and Fortran.  

 

 


