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The effect of magnetic field on an incompressible (Kuvshiniski – Type) viscoelastic rotating 

fluid heated and soluted from below is considered. For the case of stationary convection 

medium permeability and stable solute gradient have destabilizing and stabilizing effect on the 

thermosolutal convection. Magnetic field and stable solute gradient have stabilizing effect, 

where as medium permeability has destabilizing effect in absence of rotation and having both 

stabilizing as well as destabilizing effect in the thermosolutal kuvshiniski viscoelastic rotating 

fluid. It is also found that rotation, magnetic field and stable solute gradient introduce 

oscillatory modes in the system, where as in their absence principal of exchange of stabilities 

is satisfied. Graphs also have been plotted by giving some numerical values to the parameters.   

KEYWORDS: Thermosolutal Instability, Kuvshiniski – Type Viscoelastic Incompressible Fluid, Effect of Rotation, 

Magnetic Field and Porous Medium. 

 

INTRODUCTION 

The thermal instability of a fluid layer heated from 

below plays an important role in geophysics, oceanography, 

atmospheric physics, etc., and has been investigated by 

many authors, e.g. Benard (1), Rayleigh (2) and Jeffreys (3). 

A detailed account of the theoretical and experimental 

studies of so called Benard convection in Newtonian Fluids 

has been given by Chandrasekhar (4). The Boussinesq 

approximation, which states that the density can be treated 

as a constant in all terms of the equation of motion except 

the external force term, has been used throughout.  

 There has been considerable interest in recent years 

in the study of the breakdown of the stability of a layer of 

fluid subject to a vertical temperature gradient in a porous 

medium and the possibility of convective flow. The stability 

of flow of a single component fluid through a porous 

medium taking into account the Darcy resistance has been 

considered by Lapwood (5) and Wooding (6). The Darcy 

equation describes the incompressible flow of a Newtonian 

fluid of viscosity  through a macroscopically 

homogeneous and isotropic porous medium of permeability 

1k . If v


is the filter velocity of the fluid, the resistance term 

v
k












1


 replaces the usual viscous term in the equation 

of fluid motion. There is mounting evidence, both 

theoretical and experimental, that suggests the Darcy’s 

equation sometimes provides an unsatisfactory description 

of the hydrodynamic conditions, particularly near 

boundaries of a porous medium, Beavers et. al. (7) 

demonstrated experimentally the existence of shear within 

the porous medium near a surface where the porous medium 

is exposed to a freely flowing fluid, thus forming a zone of 

shear – induced fluid flow.  

 Since viscoelastic fluids play an important role in 

polymers and electrochemical industry, the studies on waves 

and stability in different viscoelastic fluid dynamical 

configurations has been carried out by several researchers. 

Chaudhary and Singh (8) considered the flow of a dusty 

viscoelastic ( Kuvshiniski Type) fluid down an inclined 

plan. The effect of a magnetic field on the flow of a dusty 

viscoelastic ( Kuvshiniski Type) fluid down an inclined plan 

studied by Johari and Gupta (9). Varshney and Dwivedi (10) 

studied the unsteady effect on MHD free convection and 

mass transfer flow of a Kuvshiniski fluid through a porous 

medium with constant suction, heat and mass flux. Kumar 

and Singh (11)  studied a viscoelastic fluid heated from 
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below in a porous medium, Kumar and Singh (12) also 

studied thermal instability of a Kuvshiniski viscoelastic fluid 

with fine dust through porous medium. 

Prakash et. al. (13) studied MHD free convective flow of a 

flat plate under the influence of radiative heat transfer 

moving with velocity decreasing exponentially with time. 

Kumar (14) studied magneto – rotatory stability of a two 

stratified fluid layers of a Kuvshiniski viscoelastic 

superposed fluid in a porous medium. Kumar and Kumar 

(15) also studied the effect of the magnetic field on an 

incompressible ( Kuvshiniski - Type) viscoelastic rotating 

fluid heated from below through a porous medium. Singh 

(16) have studied thermal instability of Kuvshiniski fluid 

with suspended particles saturated in a porous medium in 

the presence of a magnetic field.  

 Keeping in mind the importance and applications 

of non – Newtonian fluids in modern technology and 

industries and owing to the importance of variable magnetic 

field, rotation and porous medium in chemical engineering 

and geophysics, the present paper attempts to study the 

thermosolutal instability ofa  Kuvshiniski  viscoelastic fluid 

through a porous medium.  

 

 

PERTURBATION EQUATIONS 

 Consider an infinite horizontal layer of Kuvshiniski viscoelastic fluid of depth d in porous medium, heated and solute 

concentrated from below and acted on by gravity force ),0,0( gg 


. 

                

Figure: Basic figure of Kuvshiniski Magneto Rotatory  Fluid Through Porous Layer 

 

Let  andwvuqp ),,,(,,  denote respectively the perturbations in density  , pressure p, filter velocity (zero initially), 

temperature T and solute concentration C. Then the linearized thermosolutal perturbations equations through porous medium, 

following Boussinesq approximation are [ in study of Kuvshiniski ( 16) and Mandal et. al. (17)]. 
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Here   









dz

dC
 ,,,/ 0 stand for the kinematic viscosity, the thermal diffusivity, the solute diffusivity, uniform 

temperature gradient and uniform solute concentration gradient, respectively.  
v

ss

c

c
E

0

1



 where 

ssv candc  ,, stand for density, specific heat of fluid and solid matrix, respectively. E is an analogous solute constant. 

 The equation of state  

 

                                    ,1 000 CCTT                                                    (5) 

 

contains a thermal coefficient of expansion   and an analogous solvent coefficient . The suffix zero refers to value at the 

reference level z = 0. The change in density , caused by the perturbations  and in temperature and concentration, is given 

by  

 

                                  0 .                                                                             (6) 

 

Eliminating p between the three component equations of (1) and using (2), we obtain 
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ktyx
g
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w



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Let us assume both the boundaries to be free. The case of two free boundaries is a little artifical except in stellar atmospheres 

(Spiegel [18]). However, this assumption allows us to obtain the analytical solution without affecting the essential feature of the 

problem. The boundary conditions appropriate for the problem are (Chandrasekhar [4], Lapwood [5]): 

                    .00
2

2

dzandzat
z

w
w 




                                                          (8) 

 

DISPERSION RELATION AND DISCUSSION 

 Analyzing the disturbances into normal modes, we assume that the perturbation quantities are of the form 

 

           ),exp()(),(),(,, ntyikxikzzzWw yx                                            (9) 

 

where yx kk ,  are wave numbers along x- and y-directions, respectively, 




 

22

yx kkk  

is the resultant wave number and n is , in general, a complex constant.  

 Assume that x, y, z stand for the coordinates in the new unit of length d and letting  

dzdDanddkpqpdFndkda l //,/,/,/,/, 2

11

22   , equations (3), (4) and (7) using 

expression (9), in non-dimensional form become 
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

2

1

22 d
EpaD W,                                                                              (11) 

              .
2

22 W
d

qEaD 
















                                                                             (12) 



“Magneto Rotatory Double –Diffusive Kuvshiniski Viscoelastic Fluid through a Porous Medium” 

4041 Mahinder Singh, IJMCR Volume 12 Issue 02 February 2024 

 

 

Operating equation (10) by    qEaDEpaD  22

1

22
 and using (11) and (12), thus eliminating  and , we obtain 
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where 


 4dg
R   is the Rayleigh number and 










4dg
S is the analogous solute Rayleigh number. 

The boundary condition (8) transform to 

  

     02  WDW at .10 andz                                                                   (14) 

Using the above boundary conditions, it can be shown that all the even order derivatives of W must vanish for z = 0 and 1 and 

hence the proper solution of equation (13) characterizing the lowest mode is  

 

                  ,sin0 zWW                                                                                                   (15) 

 

where 0W  is constant. 

Substituting (15) in equation (13) and letting ,/,/,/ 2

1

4

1

4

1   iSSRR  

lpPandax 222 /   , we obtain the dispersion relation 
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For the stationary convection 0 and equation (16) reduces to  
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Thus for stationary convection, the stress relaxation time parameter F vanish with  and the Kuvshiniski fluid behaves like an 

ordinary Newtonian fluid. Equation (17) gives 

 

         
 

,
1

2

2

1

xP

x

dP

dR 
                                                                                               (18) 

and 

 

             ,1
1

1 
dS

dR
                                                                                                       (19) 

 

meaning thereby that medium permeability and stable solute gradient have destabilizing and stabilizing effects, respectively, on 

the thermosolutal convection for the stationary case.  



“Magneto Rotatory Double –Diffusive Kuvshiniski Viscoelastic Fluid through a Porous Medium” 

4042 Mahinder Singh, IJMCR Volume 12 Issue 02 February 2024 

 

1.0 1.5 2.0 2.5 3.0

15

20

25

30

35

40

45

50

55

R
1

X 

Fig. 1: Variation of the Rayleigh number R
1
 with the wave number ( x= 1,2,3),

when  = 0.5, S
1
= 10 and P = 5, 10, 15
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Fig.2: Variation of the Rayleigh number R
1
, with the Wave Number (x = 1, 2, 3), 

e = 0.5, P = 5 and S
1
 = 10, 20, 30
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1
=30

 
In the figure 1: It is clear that as the value of medium permeability parameter P increased value of the variation of Rayleigh 

number 1R  decrease, shows that medium permeability have destabilizing effect on the system.   

In the figure 2: It is clear that as the value of Stable Solute Gradient parameter 1S  increased value of the variation of Rayleigh 

number 1R  increase, shows that Stable Solute Gradient have stabilizing  effect on the system.   

 

EFFECT OF ROTATION 

Here the problem is considered to be the same as described in section 2 except that the fluid is in a state of uniform rotation 

),0,0( 


 . The linearized perturbed equation of motion becomes 
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Equations (2)-(4) remain unaltered. Let 
y
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 stand for the z-component of vorticity and express 
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Equations (2)-(4) and (20), using expression (9) and (21) yield the dimensionless equations 
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together with (11) and (12). The boundary conditions in addition to (14) are  

  

              .100 andzatDZ                                                                                                 (24) 

 

Eliminating Zand, between equations (11), (12), (22) and (23) and using the proper solution (15), we obtain 
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1
AA TT   . 

 

THE STATIONARY CONVECTION 

For the stationary convection, 0 and equation (25) reduces to  
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Equation (26) yields 
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which imply that the uniform rotation has stabilizing effect on the system. 
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which imply that stable solute gradient have stabilizing effect on the system. 
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It is clear from equation (29), that the medium permeability has a destabilizing effect in the absence of rotation. It still has a 

destabilizing effect if  
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In the figure 3: It is clear that as the value of Stable Solute Gradient parameter 
1S  increased value of the variation of Rayleigh 

number 
1R  increase , shows that the stable solute gradient  have stabilizing  effect on the system in presence of rotation.   

In the figure 4: It is clear that as the value of Uniform rotation parameter 
1AT  increased value of the variation of Rayleigh 

number 
1R  increase , shows that the uniform rotation have stabilizing  effect on the system.   

In the figure 5: It is clear that as the value of medium permeability parameter P increased value of the variation of Rayleigh 

number 
1R  increasing as well as decreasing , shows that the medium permeability   have stabilizing as well as destabilizing   

effect on the system in presence of rotation.   

 

The Oscillatory Modes 

Here we discuss the possibility of oscillatory modes, if any, coming into play due to the presence of rotation. Multiplying  

Equation (22) by W*, the complex conjugate of W, integrating over the range of z and making use of (11), (12) and (23) together 

with the boundary conditions ( 14) and (24), we obtain 
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Which all are positive definite. Putting ir i   in equation (30) and then equating real and imaginary parts, we obtain  
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And  
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It is clear from equation ( 32) that 
r may be positive or negative implying thereby that there may be stability or instability in the 

presence of rotation, stable solute gradient, viscoelasticity and porosity on thermosolutal convection in Kuviniski viscoelastic fluid 

in porous medium which is also true in their absence. 

Equation ( 33) implies that 00  ii or   which means that the modes may be non – oscillatory or oscillatory . In the 

absence of stable solute gradient and rotation, equation (33) reduces to  
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which yields 0i  implying thereby that the oscillatory modes are not allowed and the principal of exchange of stabilities is 

satisfied for the porous medium in the absence of rotation and stable solute gradient. 

The rotation and the stable solute gradient thus, introduce oscillatory modes in the system which were non – existent in their 

absence.  

 

EFFECT OF MAGNETIC FIELD 

Here the problem is considered to be the same as described in section 2 except that the fluid is finitely (electrically) conducting 

and is acted on by a uniform magnetic field H(0, 0, H). The linearized perturbed equations are  
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Together with equations (2)-(4), ),,(, zyxe hhhhand denote respectively, the magnetic permeability, the resistivity and 

the perturbation in magnetic field H. Substituting 



2p and  

                     ),exp()( ntyikxikzKh yxz                                                           (37) 

Equations (2)-(4) and (34)-(36), using expression (9) and (37), yield the dimensionless equations 
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together with (11) and (12), the boundary condition to (14) for free, electrically non-conducting boundaries are  

                                              DK = 0 at z = 0 and 1.                                                     (40) 
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Eliminating  and,  from equations (12), (13), (38) and (39) and using the proper solution (15), we obtain 
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                                where     
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THE STATIONARY CONVECTION 

For stationary convection, put 01   in equation (41), we obtain 
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The Kuvniski viscoelastic fluid, thus behaves like a Newtonian viscous fluid for the stationary convection. Equation (42) yields 
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The magnetic field and stable solute gradient have stabilizing effects whereas the medium permeability has a destabilizing effect 

on the system.  
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Fig. 6: Variation of Rayleigh number R
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In the figure 6: It is clear that as the value of medium permeability parameter P increased value of the variation of Rayleigh 

number 
1R  decrease , shows that the medium permeability  have destabilizing  effect on the system in presence of magnetic field.  

In the figure 7: It is clear that as the value of magnetic field parameter 
1Q  increased value of the variation of Rayleigh number 

1R  increase , shows that the magnetic field  have stabilizing  effect on the system .   

In the figure 8: It is clear that as the value of Stable Solute Gradient parameter 
1S  increased value of the variation of Rayleigh 

number 1R  increase , shows that the stable solute gradient  have stabilizing  effect on the system in presence of magnetic field as 

well as rotation.   

   

THE OSCILLATORY MODES 

Here we examine the possibility of oscillatory modes if any, coming into play due to the presence of magnetic filed. Multiplying 

equation (38) by W*, the complex conjugate of W, integrating over the range of z and making use of (12), (13) and (39) together 

with the boundary conditions ( 14) and (40), we obtain 
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where 851 IandII   are given by equation (31) and  



“Magneto Rotatory Double –Diffusive Kuvshiniski Viscoelastic Fluid through a Porous Medium” 

4049 Mahinder Singh, IJMCR Volume 12 Issue 02 February 2024 

 

 









   

1

0

1

0

222

10

2422
2

2

9 ,2 dzKaDKIdzKaDKaKDI               (47) 

which are all positive definite. Putting ir i  , in equation (46) and then equating real and imaginary parts, we obtain 
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and 

      0
4

31

2

102

0

5

2

1 















 IEp

ag
IpqIE

ag
I e

i











 .                                       (49) 

In the absence of stable solute gradient and magnetic field, equation ( 49) reduces to  
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which gives 0i  and hence the oscillatory modes are not allowed and the principle of exchange of stabilities is satisfied for 

the porous medium in the absence of stable solute gradient and magnetic field. 

 The stable solute gradient and magnetic field, thus introduce oscillatory modes in the system which were non – existent 

in their absence.  

 

CONCLUSIONS 

With the growing importance of non – Newtonian fluids, 

rotation and magnetic field in chemical technology and 

industries, investigation on (Kuvshiniski– Type) viscoelastic 

fluid are desirable. In the present paper, I have investigated 

the effect of uniform magnetic field on a ( Kuvshiniski – 

Type) viscoelastic rotating fluid heated and soluted from 

below in presence of porous medium. Dispersion relation 

governing the effects of rotation, magnetic field and medium 

permeability is derived. The main results from the analysis 

of the paper are as follow: 

(1): In case of stationary convection, a Kuvshiniski 

viscoelastic fluid behaves like an ordinary  Newtonian fluid.  

(2): Medium permeability and stable solute gradient have 

destabilizing and stabilizing effect as  are evident from the 

equations (18), (19) and figure’s (1) and (2) for the 

permissible range of  values of various parameters.  

(3): From equation (27) and figure (4), it shows that uniform 

rotation have stabilizing effect on the system.  

(4): Medium permeability has a destabilizing effect in the 

absence of rotation and stabilizing as  well as destabilizing 

effect in presence of rotation by equation (29) and figure (5).  

(5): The rotation and stable solute gradient introduce 

oscillatory modes in the system which were non – existent 

in their absence by equation (33).  

(6): The magnetic field and stable solute gradient have 

stabilizing effect whereas the medium  permeability has a 

destabilizing effect on the system by equation’s (43), (44) & 

(45) and figure’s (6), (7) & (8).  

(7): The stable solute gradient and magnetic field introduce 

oscillatory modes in the system in their absence principle of 

exchange of stabilities is satisfied in the system.  

Nomenclature 

g


  - acceleration due to gravity, [m
2s ]           

K  - Stokes’ drag coefficient, [kg
1s  ] 

k  - wave number of the distance, [
1m ]         

yx kk , - horizontal wave numbers, [
1m ] 

 1k   - medium permeability, [
2m ]                      

  P  - fluid pressure, [Pa] 

p   - perturbation in the pressure p, [-]             

    - perturbation in density  , [-] 

 vC   - fluid at constant volume, [-]                     

  R  - is the Rayleigh number, [-]                               

  S  - is the analogous Rayleigh number, [-]       

 -  coefficient of viscoelasticity, [-] 

   - rotation vector having components  ,0,0 , [-]   

d  -  depth of the fluid layer, [m] 

H  - magnetic field intensity vector having components 

(0, 0, H), [G] 

 

Greek Letters 

   - density, [kg
3m ]                                

    - kinematic viscosity, [ ]12 sm  
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   - medium porosity, [
000 ksm ]          

   - perturbation in temperature, [K]   

   - perturbation in concentration C, [-] 











dz

dT
  - uniform temperature gradient, [k

1m ]  











dz

dC
   -  uniform solute concentration gradient, [-]   

   - analogous coefficient 

e -  magnetic permeability, [H
1m ]               

  -   electrically resistivity, [-] 
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