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The reverse elliptic Sombor index is a recently introduced topological index. In this paper, we 

put forward the elliptic Revan index and its corresponding exponential of a graph and compute 

exact formulas for some families of networks such as silicate networks, rhombus silicate 

networks, oxide networks, rhombus oxide networks, hexagonal networks and honeycomb 

networks. Also we establish some properties of elliptic Revan index. 
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I. INTRODUCTION 

Let G = (V(G), E(G)) be a finite, simple connected 

graph. The degree du is the number of vertices adjacent to u. 

Let (G) (δ(G)) denote the maximum (minimum) degree 

among the vertices of G. The Revan vertex degree of a 

vertex u in G is defined as ru = (G) +δ(G)– du. The Revan 

edge connecting the Revan vertices u and v will be denoted 

by uv. We refer [1] for undefined term and notation. 

A molecular graph is a graph whose vertices correspond to 

the atoms and the edges to the bonds. Chemical graph theory 

has an important effect on the development of the Chemical 

Sciences. A single number that can be used to characterize 

some property of the graph of molecular is called a 

topological index. Numerous topological indices have been 

considered in Theoretical Chemistry see [2, 3].  

 

The reverse elliptic Sombor index [4] of a graph G is 

defined as 

   
 

                 

   
 

2 2 .u v u v

uv E G

ESO G d d d d


         

Recently, some Sombor indices were studied in [5-21]. 

 

The elliptic Revan index of a graph G is defined as  

                 

   
 

2 2 .u v u v

uv E G

ER G r r r r


  
                                      

                       

Recently, some elliptic indices were studied in [22-25]. 

 

We define the elliptic Revan exponential of a graph G as              
 

                       

 

2 2

, .u v u vr r r r

uv E G

ER G x x
 



   

We mention below some topological indices which are 

needed in this paper. 

 

The second Revan Zagreb index [26] is defined as 

       
 

2 .u v

uv E G

RM G r r


   

The first and second Revan hyper Zagreb indices [27] are 

defined as 

        
 

2

1 ,u v

uv E G

HRM G r r


   

        
 

2

2 .u v

uv E G

HRM G r r


   

The F-Revan index [28] is defined as 

         
 

2 2 .u v

uv E G

FR G r r


   

We put forward the alpha Revan Gourava index of a graph 

G and it is defined as 

                
 

2 2( ) .u v u v

uv E G

RGO G r r r r


   

In this paper, we determine the elliptic Revan index and its 

corresponding exponential of some important networks. 

Also we establish some mathematical properties of elliptic 

Revan index. 

 

II. MATHEMATICAL PROPERTIES 

Proposion1. Let P be a path with n≥3 vertices. Then   

                  2 2 6 5. 6 2.ER P n    

Proof: Let P be a path with n  vertices. We obtain two 

partitions of the edge set of P as follows: 
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       E1 = {uv  E(P) | du=1, dv=2}, | E1| = 2. 

       E2 = {uv  E(P) | du = dv=2}, | E2| = n – 3. 

 

 

We have  (P P) = 3, ru = 3 – du. 

 

     RE1= {uvE(P) | ru =2, rv = 1}, |RE1| = 2. 

     RE2 = {uvE(P)| ru = rv = 1}, |RE2| = n – 3. 

 

         
 

2 2

u v u v

uv E P

ER P r r r r


    

          

 

           

    2 2 2 22 2 1 2 1 3 1 1 1 1n      

 

           

2 2 6 5. 6 2.n  

  

Proposion2. Let G be an r-regular graph with n vertices, m 

edges and r2. Then  

              32 .ER G nr  

 

Proof: Let G be an r-regular graph with n vertices, r

m=
 2

nr
 edges. Every edge of G is incident with r edges. 

Also ∆=δ= du=r for each vertex u in G. Thus ru= r  r + r=r. 

Thus  

            
 

2 2

uv E G

ER G r r r r


    

                       
2 32 2 2 .mr nr   

Corollary 2.1. Let Cn be a cycle with n  3 vertices. Then  

         ER(Cn) = 8√2n. 

 

Corollary 2.2. Let Kn be a complete graph with n 3 

vertices. Then  

          
   

3
2 1 .nER K n n 

 
 

Theorem 1. Let G be a simple connected graph. Then  

           
1

1

2
ER G HRM G                                                          

with equality if G is regular. 

Proof: By the Jensen inequality, for a concave function f(x),  

                
1 1

( )i if x f x
n n

æ ö÷ç ³÷ç ÷÷çè ø
å å                                                          

with equality for a strict concave function if  x1  = x2  = …= 

xn.    Choosing   f(x) = √x , we obtain 

                     
 2 2

2 2

u vu v
r rr r 

                                                               

thus       

                  
22 2 1

.
2

u v u v u vr r r r r r                                                

Hence       

       
  

22 2 1

2
u v u v u v

uv E G uv E G

r r r r r r
 

                         

Thus   

                  
1

1

2
ER G HRM G                                        

with equality if G is regular. 

 

Corollary 1.1. Let G be a simple connected graph. Then  

            2

1
( ) 2 ( )

2
ER G FR G RM G                                            

with equality if G is regular. 

 

 Proof: We have 

      
  

22 2 1

2
u v u v u v

uv E G uv E G

r r r r r r
 

      

                                 
 

2 21
2

2
u v u v

uv E G

r r r r


       

                                  2

1
( ) 2 ( ) .

2
FR G RM G                                              

 

Theorem 2. Let G be a simple connected graph. Then  

      ER G     

          1 22 ( ) 2 ( ) .HRM G RGO G HRM G    

Proof: It is known that for 1≤x ≤ y, 

           ( ) ( )
2 2

,
2

x y
f x y x y xy

+
= + - -  

          ( ) ( )
2 2

,
2

x y
f x y x y xy

+
= + - -                              

is decreasing for each y. Thus ( ) ( ), , 0.f x y f y y³ =  

Hence 

              

2 2

2

x y
x y xy

+
+ - ³  

                                               

or            

2 2

.
2

x y
x y xy

+
£ + -                                   

Put x= ur  and y=
vr , we get 

              
2 2

2

u v

u v u v

r r
r r r r


    

        
22 21

2
u v u v u v u v u vr r r r r r r r r r                                                                             

which implies  

     
 

2 21

2
u v u v

uv E G

r r r r


                



“Elliptic Revan Index and its Exponential of Certain Networks” 

4057 V. R. Kulli, IJMCR Volume 12 Issue 02 February 2024 
 

               
 

 
 

2 2

u v u v u v

uv E G uv E G

r r r r r r
 

                                            

                                                

 
 

  
 

2 2 2 22u v u v u v u v

uv E G uv E G

r r r r r r r r
 

        

Thus      

       
1

2
ER G              

            
1 2( ) 2 ( ).HRM G RGO G HRM G     

 

Theorem 3. Let G be a simple connected graph. Then  

                        
1 .ER G HRM G  

Proof: It is known that for 1≤x ≤ y, 

                         
2 2x y x y+ < +     

                       
22 2x y x y x y                                             

Setting x=
ur  and y=

vr , we get 

                    
22 2 .u v u v u vr r r r r r     

Thus      

           
 

 
 

22 2 .u v u v u v

uv E G uv E G

r r r r r r
 

                        

 Hence                                

                        
1 .ER G HRM G  

 

Theorem 4. Let G be a simple connected graph with n 

vertices. Then  

             
1( ) ( ).ER G HRM G FR G       

                                          

Proof: By the Cauchy-Schwarz inequality,   

            ( ) ( )( )
2

2 2

i i i ia b a b£å å å                                           

with equality holds if and only if 
i ia bg= , i= 1, 2,…,n, for 

some real number g . 

Using this to RES, we obtain  

    ( ) ( )
( )

2
2 2 2( ) u v u v

uv E G

ER G r r r r
Î

æ ö= + + ÷ç ÷ç ÷çè ø
å    

                  ( )
( )

( )
( )

( )
2 2 2

u v u v

uv E G uv E G

r r r r
Î Î

æ ö£ + +÷ç ÷ç ÷è ø
å å  

                  1 ( ) ( )HRM G FR G                                                                         

gives the desired result. 

 

III. RESULTS FOR SILICATE NETWORKS 

Silicates are obtained by fusing metal oxides or 

metal carbonates with sand. A silicate network in 

symbolized by SLn where n is the number of hexagons 

between the center and boundary of SLn. A 2-dimensional 

siliciate network is shown in Figure-1. 

 

 
Figure 1. A 2-dimensional silicate network 

 

Let G be the graph of silicate network SLn with 15n2+3n 

vertices and 36n2 edges. From Figure 1, it is easy to see that 

the vertices of SLn are either of degree 3 or 6. In SLn, by 

algebraic method, there are three types of edges based on the 

degree of the vertices of each edge as follows: 

 

    E1= {uvE(G) | du = dv = 3}, |E1| = 6n. 

    E2= {uvE(G)| du= 3, dv = 6}, |E2| = 18n2+6n. 

    E3 = {uvE(G)| du = dv  = 6}, |E3| = 18n2  – 12n. 

 

Thus there are three types of Revan edges as 

follows: 

 

We have  (G) +  (G) = 9, ru = 9 – du. 

 

     RE1= {uvE(G) | ru = rv = 6}, |RE1| = 6n. 

     RE2 = {uvE(G)| ru = 6, rv = 3}, |RE2| = 18n2+6n. 

     RE3 = {uvE(G)| ru = rv = 3}, |RE3| = 18n2 – 12n. 

 

Theorem 5. The elliptic Revan index of a silicate network 

SLn is given by 

     ( )ER G  

           ( ) ( )2324 2 486 5 216 2 162 5 .n n= + + +  

Proof: We have 

  

   

        
 

2 2

u v u v

uv E G

ER G r r r r


    

                 2 26 6 6 6 6n          

                  2 2 218 6 6 3 6 3n n        

                  2 2 218 12 3 3 3 3n n                  

                  2324 2 486 5 216 2 162 5 .n n     
 

Theorem 6. The elliptic Revan exponential of a silicate 

network SLn is given by 

     ( ) ( )72 2 2 27 5, 6 18 +6  ER G x nx n n x= +

 
         ( )2 18 218 12 .n n x+ -  

Proof: We have 
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      ( ) ( )

( )

2 2

, u v u vr r r r

uv E G

ER G x x
+ +

Î

= å   

                   
     2 2 2 26 6 6 6 2 6 3 6 36 18 6nx n n x          

                       2 22 3 3 3 318 12n n x          

                    72 2 2 27 56 18 +6  nx n n x                                     

                    2 18 218 12 .n n x   

 

IV. RESULTS FOR RHOMBUS SILICATE 

NETWORKS 

           We consider a family of rhombus silicate networks. 

A rhombus silicate network is symbolized by RHSLn. A 3- 

dimensional rhombus silicate network is depicted in Figure 

2. 

 
Figure 2. 3-dimensional rhombus silicate network 

 

Let G be the graph of rhombus silicate network RHSLn with 

5n2+2n vertices and 12n2 edges. From Figure 2, it is easy to 

see that the vertices of RHSLn are either of degree 3 or 6. In 

RHSLn, there are three types of edges as follows: 

 

    E1= {uvE(G) | du = dv = 3}, |E1| = 4n+2. 

    E2= {uvE(G)| du = 3, dv = 6 }, |E2| = 6n2+4n–4. 

    E3 = {uvE(G)| du = dv  = 6}, |E3| = 6n2  – 8n+2. 

 

We have (G) + (G) = 9, ru = 9 – du. 

 

Thus there are three types of Revan edges based on 

the degree of end Revan vertices of each Revan edge as 

follows: 

 

    RE1= {uvE(G) | ru = rv = 6}, |RE1| = 4n+2. 

    RE2={uvE(G)| ru =6,  rv = 3}, |RE2| = 6n2+4n–4. 

     RE3 = {uvE(G)| ru = rv = 3 }, |RE3| = 6n2  – 8n+2. 

 

Theorem 7. The elliptic Revan index of a rhombus silicate 

network RHSLn is given by 

  ( ) ( ) ( )2108 2 162 5 144 2 108 5ER G n n= + + +   

            180 2 108 5.   

 

 

Proof: We have 

  

   

     
 

2 2

u v u v

uv E G

ER G r r r r


    

                   2 24 2 6 6 6 6n           

                  2 2 26 4 4 6 3 6 3n n         

                  2 2 26 8 2 3 3 3 3n n                  

                  2108 2 162 5 144 2 108 5n n     

               180 2 108 5.   

 

Theorem 8. The elliptic Revan exponential of a rhombus 

silicate network RHSLn is given by 

   ( ) ( ) ( )72 2 2 27 5, 4 2 6 4 4ER G x n x n n x= + + + -

 
         ( )2 18 26 8 2 .n n x+ - +  

Proof: We have 

    ( ) ( )

( )

2 2

, u v u vr r r r

uv E G

ER G x x
+ +

Î

= å   

                       2 2 2 26 6 6 6 2 6 3 6 34 2 6 4 4n x n n x            

                    2 22 3 3 3 36 8 2n n x           

                   72 2 2 27 54 2 6 4 4n x n n x                                        

                 2 18 26 8 2 .n n x    

 

V. RESULTS FOR OXIDE NETWORKS 

An oxide network of n is symbolized by OXn. 

These networks are of vital importance in the study of 

silicate networks. An oxide network of dimension five is 

shown in Figure 3. 

 
Figure 3. 5-dimensional oxide network 

 

Let G be the graph of oxide network OXn with 9n2 + 3n 

vertices and 18n2 edges. From Figure 3, it is easy to see that 

the vertices of OXn are either of degree 2 or 4. Thus (G) = 

4, (G) = 2. In G, there are two types of edges as follows: 

    E1 = {uvE(G)| du =2,  dv = 4}, |E1| = 12n. 

    E2 = {uvE(G)| du = dv = 4}, |E2| =18n2 – 12n.   

We have ru = (G) + (G) – du = 6 – du. 

 

   RE1 = {uvE(G) | ru =4,  rv = 2}, |RE1| = 12n. 
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   RE2 = {uvE(G) | ru = rv = 2}, |RE2| = 18n2 – 12n.   

  

Theorem 9. The elliptic Revan index of an oxide network 

OXn is given by 

     ( ) ( )2144 2 144 5 96 2 .ER G n n= + -   

Proof: We have 

  

   

        
 

2 2

u v u v

uv E G

ER G r r r r


    

                 2 212 4 2 4 2n          

                  2 2 218 12 2 2 2 2n n                                   

               2144 2 144 5 96 2 .n n    

 

Theorem 10. The elliptic Revan exponential of an oxide 

network OXn is given by 

     ( ) ( )12 5 2 8 2, 12 18 12 .ER G x nx n n x= + -   

Proof: We have 

      ( ) ( )

( )

2 2

, u v u vr r r r

uv E G

ER G x x
+ +

Î

= å   

                  
     2 2 2 24 2 4 2 2 2 2 2 212 18 12nx n n x        

                   12 5 2 8 212 18 12 .nx n n x      

 

VI. RESULTS FOR RHOMBUS OXIDE NETWORKS 

We consider a family of rhombus oxide networks. 

A rhombus oxide network of dimension n is symbolized by 

RHOXn. A 3- dimensional rhombus oxide network is 

depicted in Figure 4. 

 

Figure 4. 3-dimensional rhombus oxide network 

 

Let G be the graph of rhombus oxide network RHOXn with 

3n2 + 2n vertices and 6n2 edges. From Figure 4, it is easy to 

see that the vertices of RHOXn are either of degree 2 or 4. 

Thus (G) = 4, (G) = 2. In G, there are three types of edges 

as follows: 

  E1 = {uvE(G)| du = dv = 2}, |E1| = 2. 

  E2 = {uvE(G)| du =2,  dv = 4}, |E2| =8n – 4.   

  E3 = {uvE(G)| du = dv = 4}, |E2| =6n2 – 8n+2.  

  

We have ru = (G) + (G) – du = 6 – du. 

 

  RE1 = {uvE(G) | ru = rv = 4}, |RE1| = 2. 

  RE2 = {uvE(G) | ru = 4, rv = 2}, |RE2| =8n – 4.  

  RE2 = {uvE(G) | ru = rv = 2}, |RE2| =6n2 – 8n+2.  

 

Theorem 11. The elliptic Revan index of a rhombus oxide 

network RHOXn is given by 

       248 2 96 5 64 2ER G n n    

       80 2 48 5.   

Proof: We have 

  

   

       
 

2 2

u v u v

uv E G

ER G r r r r


    

                 2 22 4 4 4 4      

                   2 28 4 4 2 4 2n           

                  2 2 26 8 2 2 2 2 2n n                                    

               248 2 96 5 64 2 80 2 48 5.n n      

 

Theorem 12. The elliptic Revan exponential of a rhombus 

oxide network RHOXn is given by 

     ( ) ( )32 2 12 5, 2 8 4ER G x x n x= + -     

                    ( )2 8 26 8 2 .n n x+ - +  

Proof: We have 

      ( ) ( )

( )

2 2

, u v u vr r r r

uv E G

ER G x x
+ +

Î

= å   

                  
     2 2 2 24 4 4 4 4 2 4 22 8 4x n x         

                      2 22 2 2 2 26 8 2n n x      

                     32 2 12 5 2 8 22 8 4 6 8 2 .x n x n n x         

 

VII. RESULTS FOR HEXAGONAL NETWORKS 

        Hexagonal network is symbolized by HXn where n 

is the number of vertices in each side of hexagon. A 

hexagonal network of dimension six is shown in Figure 5. 

 
Figure 5. 6-dimensional hexagonal network 

 

 Let H be te graph of hexagonal network HXn with 3n2 – 3n 

+ 1 vertices and 9n2 – 15n + 6 edges. From Figure 5, it is 

easy to see that the vertices of HXn are either of degree 3, 4 

or 6. Thus  (H) = 6, (H) = 3. In H, by algebraic method, 

there are five types of edges as follows: 

    E1 = {uvE(H)| du =3, dv = 4}, |E1| = 12. 
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    E2 = {uvE(H)| du =3,  dv = 6}, |E2| = 6. 

    E3 = {uvE(H)| du = dv = 4}, |E3| = 6n – 18. 

    E4= {uvE(H)| du =4,  dv = 6}, |E4| = 12n – 24. 

    E5= {uvE(H)| du = dv = 6}, |E5| = 9n2 – 33n + 30 

 

We have ru =  H) + (H) – du = 9 – du. 

 

   RE1 = {uvE(H) | ru = 6, rv = 5}, |RE65| = 12. 

   RE2 = {uvE(H) | ru = 6, rv = 3}, |RE63| = 6. 

   RE3 = {uvE(H) | ru = rv = 5}, |RE55| = 6n – 18. 

   RE4 = {uvE(H) | ru = 5, rv = 3 }, |RE53| = 12n – 24. 

   RE5 = {uvE(H) | ru = rv = 3},|RE33| = 9n2 – 33n + 30 

 

Theorem 13. The elliptic Revan index of a hexagonal 

network HXn is given by 

  ( ) ( )2162 2 96 34 294 2 120 61ER H n n= + - +

  162 5 360 2 192 34.    

Proof: We have 

  

   

     
 

2 2

u v u v

uv E H

ER H r r r r


    

                 2 212 6 5 6 5         

                 2 26 6 3 6 3      

                   2 26 18 5 5 5 5n        

                   2 212 24 5 3 5 3n        

                  2 2 29 33 30 3 3 3 3n n         

              2162 2 96 34 294 2 120 61n n      

             162 5 360 2 192 34.    

 

Theorem 14. The elliptic Revan exponential of a hexagonal 

network HXn is given by 

  ( ) ( )10 61 27 5 50 2, 12 6 6 18ER H x x x n x= + + -

 
        8 34 2 18 3212 24 9 33 30 .n x n n x      

Proof: We have 

  ( ) ( )

( )

2 2

, u v u vr r r r

uv E H

ER H x x
+ +

Î

= å   

              
   2 2 2 26 5 6 5 6 3 6 312 6x x         

                    2 2 2 25 5 5 5 5 3 5 36 18 12 24n x n x        

                 2 22 3 3 3 39 33 30n n x            

              10 61 27 5 50 212 6 6 18x x n x   

 
               8 34 2 18 3212 24 9 33 30 .n x n n x      

 

VIII. RESULTS FOR HONEYCOMB NETWORK 

Honeycomb networks are very useful in Chemistry 

and Computer Graphics. A honeycomb network of 

dimension n is symbolized by HCn. A honeycomb network 

of dimension four is shown in Figure 6. 

 
Figure 6. 4-dimensional honeycomb network 

 

Let H be the graph of honeycomb network HCn with 6n2 

vertices and 9n2 – 3n edges. From Figure 6, it is easy to see 

that the vertices of HXn are either of degree 2 or 3. Thus 

(H) = 3,  (H) = 2. In H,  there are three types of edges as 

follows: 

     E1 = {uvE(H)| du = dv = 2}, |E1| = 6. 

     E2 = {uvE(H)| du = 2, dv = 3}, |E2| = 12n – 12. 

     E3 = {uvE(H)| du = dv = 3}, |E3| =9n2 – 15n+  6. 

We have ru = (H) + (H) – du = 5 – du. 

   RE1 = {uvE(H) | ru = rv = 3}, |RE1| = 6. 

    RE2 = {uvE(H) | ru = 3, rv = 2}, |RE2| = 12n – 12. 

    RE3 = {uvE(H) | ru = rv = 2}, |RE3| = 9n2 – 15n + 6. 

 

Theorem 15. The elliptic Revan index of a honeycomb 

network HCn is given by 

   ( )ER H              

 272 2 60 13 120 2 156 2 60 13.n n      

Proof: We have 

  

   

      
 

2 2

u v u v

uv E H

ER H r r r r


    

               2 26 3 3 3 3         

                 2 212 12 3 2 3 2n        

                2 2 29 15 6 2 2 2 2n n                     

             272 2 60 13 120 2 156 2 60 13.n n      

 

Theorem 16. The elliptic Revan exponential of a 

honeycomb network HCn is given by 

   ( ) ( )18 2 5 13, 6 12 12ER H x x n x= + -   

                  2 8 29 15 6 .n n x    

Proof: We have 

   ( ) ( )

( )

2 2

, u v u vr r r r

uv E H

ER H x x
+ +

Î

= å   

                
     2 2 2 23 3 3 3 3 2 3 26 12 12x n x       

                     2 22 2 2 2 29 15 6n n x      
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                 18 2 5 136 12 12x n x       

                 2 8 29 15 6 .n n x    

                                            

VI. CONCLUSION 

In this study, we have determined the elliptic 

Revan index and its corresponding exponential of some 

networks which are appeared in chemical science. 
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