International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 02 February 2024, Page no. – 4055-4061

Index Copernicus ICV: 57.55, Impact Factor: 8.316

[DOI: 10.47191/ijmcr/v12i2.08](https://doi.org/10.47191/ijmcr/v12i2.08)

Elliptic Revan Index and its Exponential of Certain Networks

V. R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

I. INTRODUCTION

Let $G = (V(G), E(G))$ be a finite, simple connected graph. The degree d_u is the number of vertices adjacent to u . Let $\Delta(G)$ ($\delta(G)$) denote the maximum (minimum) degree among the vertices of *G.* The Revan vertex degree of a vertex *u* in *G* is defined as $r_u = \Delta(G) + \delta(G) - d_u$. The Revan edge connecting the Revan vertices *u* and *v* will be denoted by *uv*. We refer [1] for undefined term and notation.

A molecular graph is a graph whose vertices correspond to the atoms and the edges to the bonds. Chemical graph theory has an important effect on the development of the Chemical Sciences. A single number that can be used to characterize some property of the graph of molecular is called a topological index. Numerous topological indices have been considered in Theoretical Chemistry see [2, 3].

The reverse elliptic Sombor index [4] of a graph *G* is defined as

$$
ESO(G) = \sum_{uv \in E(G)} \left(d_u + d_v\right) \sqrt{d_u^2 + d_v^2}.
$$

Recently, some Sombor indices were studied in [5-21].

The elliptic Revan index of a graph *G* is defined as

$$
ER(G) = \sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}.
$$

Recently, some elliptic indices were studied in [22-25].

We define the elliptic Revan exponential of a graph *G* as

$$
ER(G,x)=\sum_{uv\in E(G)}x^{(r_u+r_v)\sqrt{r_u^2+r_v^2}}.
$$

We mention below some topological indices which are needed in this paper.

The second Revan Zagreb index [26] is defined as

$$
RM_{2}(G)=\sum_{uv\in E(G)}r_{u}r_{v}.
$$

The first and second Revan hyper Zagreb indices [27] are defined as

$$
HRM_{1}(G) = \sum_{uv \in E(G)} (r_{u} + r_{v})^{2},
$$

$$
HRM_{2}(G) = \sum_{uv \in E(G)} (r_{u}r_{v})^{2}.
$$

The F-Revan index [28] is defined as

$$
FR(G) = \sum_{uv \in E(G)} \left(r_u^2 + r_v^2 \right).
$$

We put forward the alpha Revan Gourava index of a graph *G* and it is defined as

$$
\alpha RGO(G) = \sum_{uv \in E(G)} \left(r_u^2 + r_v^2 \right) r_u r_v.
$$

In this paper, we determine the elliptic Revan index and its corresponding exponential of some important networks. Also we establish some mathematical properties of elliptic Revan index.

II. MATHEMATICAL PROPERTIES

Proposion1. Let *P* be a path with *n≥*3 vertices. Then

$$
ER(P) = 2\sqrt{2}n + 6\sqrt{5} - 6\sqrt{2}.
$$

Proof: Let *P* be a path with $n \square 3$ vertices. We obtain two partitions of the edge set of *P* as follows:

 $E_1 = \{uv \in E(P) \mid d_u = 1, d_v = 2\}, \, |E_1| = 2.$ $E_2 = \{uv \in E(P) \mid d_u = d_v = 2\}, \, |E_2| = n - 3.$

We have $\in (P) + \Box (P) = 3$, $r_u = 3 - d_u$.

*RE*₁ = {*uvE*(*P*) | r_u = 2, r_v = 1}, |*RE*₁| = 2. $RE_2 = \{uv \in E(P) | r_u = r_v = 1 \}, |RE_2| = n - 3.$

$$
ER(P) = \sum_{uv \in E(P)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

= 2(2 + 1) \sqrt{2^2 + 1^2} + (n - 3)(1 + 1) \sqrt{1^2 + 1^2}
= 2\sqrt{2}n + 6\sqrt{5} - 6\sqrt{2}.

Proposion2. Let *G* be an *r*-regular graph with *n* vertices, *m* edges and $r \geq 2$. Then

 $ER(G) = \sqrt{2nr^3}$.

Proof: Let *G* be an *r*-regular graph with *n* vertices, $r\Box 2$ and $m=\frac{m}{2}$ $\frac{nr}{2}$ edges. Every edge of *G* is incident with *r* edges. Also $\Delta = \delta = d_u$ = f for each vertex *u* in *G*. Thus $r_u = r - r + r = r$. Thus

$$
ER(G) = \sum_{uv \in E(G)} (r+r)\sqrt{r^2 + r^2}
$$

$$
= 2\sqrt{2}mr^2 = \sqrt{2}nr^3.
$$

Corollary 2.1. Let C_n be a cycle with $n \square 3$ vertices. Then $ER(C_n) = 8\sqrt{2n}$.

Corollary 2.2. Let K_n be a complete graph with $n \square 3$ vertices. Then

$$
ER(K_n) = \sqrt{2n(n-1)}^3.
$$

Theorem 1. Let *G* be a simple connected graph. Then

$$
ER(G) \ge \frac{1}{\sqrt{2}} HRM_1(G)
$$

with equality if *G* is regular.

Proof: By the Jensen inequality, for a concave function $f(x)$,

$$
f\frac{\partial \mathbf{q}}{\partial \mathbf{q}}\hat{\mathbf{a}} \mathbf{x}_{i\frac{\mathbf{q}}{\mathbf{p}}}\hat{\mathbf{a}} \mathbf{f}(x_{i})
$$

with equality for a strict concave function if $x_1 = x_2 = ... =$ *x_n*. Choosing $f(x) = \sqrt{x}$, we obtain

$$
\sqrt{\frac{r_u^2 + r_v^2}{2}} \ge \frac{(r_u + r_v)}{2}
$$

thus

$$
(r_{u}+r_{v})\sqrt{r_{u}^{2}+r_{v}^{2}}\geq \frac{1}{\sqrt{2}}(r_{u}+r_{v})^{2}.
$$

$$
\sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2} \ge \frac{1}{\sqrt{2}} \sum_{uv \in E(G)} (r_u + r_v)^2
$$

Thus

$$
ER(G) \ge \frac{1}{\sqrt{2}} HRM_1(G)
$$

with equality if *G* is regular.

Corollary 1.1. Let *G* be a simple connected graph. Then

$$
ER(G) \ge \frac{1}{\sqrt{2}}\big(FR(G) + 2RM_2(G)\big)
$$

with equality if *G* is regular.

Proof: We have

$$
\sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2} \ge \frac{1}{\sqrt{2}} \sum_{uv \in E(G)} (r_u + r_v)^2
$$

$$
\ge \frac{1}{\sqrt{2}} \sum_{uv \in E(G)} (r_u^2 + r_v^2 + 2r_u r_v)
$$

$$
= \frac{1}{\sqrt{2}} (FR(G) + 2RM_2(G)).
$$

Theorem 2. Let *G* be a simple connected graph. Then $ER(G)$

$$
\leq \sqrt{2}\Big(HRM_1(G) - \sqrt{\alpha RGO(G) + 2HRM_2(G)}\Big).
$$

Proof: It is known that for $1 \le x \le y$,

$$
f(x, y) = (x + y - \sqrt{xy}) - \sqrt{\frac{x^2 + y^2}{2}}
$$

$$
f(x, y) = (x + y - \sqrt{xy}) - \sqrt{\frac{x^2 + y^2}{2}}
$$

is decreasing for each *y*. Thus $f(x, y)^3$ $f(y, y) = 0$. Hence

$$
x + y - \sqrt{xy^3} \sqrt{\frac{x^2 + y^2}{2}}
$$

or
$$
\sqrt{\frac{x^2 + y^2}{2}} \mathbf{f} x + y - \sqrt{xy}.
$$

Put $x = r_u$ and $y = r_v$, we get

$$
\sqrt{\frac{r_u^2 + r_v^2}{2}} \le (r_u + r_v) - \sqrt{r_u r_v}
$$
\n
$$
\frac{1}{\sqrt{2}} (r_u + r_v) \sqrt{r_u^2 + r_v^2} \le (r_u + r_v)^2 - (r_u + r_v) \sqrt{r_u r_v}
$$
\nwhich implies

which implies

$$
\frac{1}{\sqrt{2}}\sum_{uv\in E(G)}\left(r_u+r_v\right)\sqrt{r_u^2+r_v^2}
$$

4056 **V. R. Kulli, IJMCR Volume 12 Issue 02 February 2024**

Hence

"Elliptic Revan Index and its Exponential of Certain Networks"

$$
\leq \sum_{uv \in E(G)} \left(r_u + r_v \right)^2 - \sqrt{\sum_{uv \in E(G)} \left(r_u + r_v \right)^2 r_u r_v}
$$

$$
\leq \sum_{uv \in E(G)} (r_u + r_v)^2 - \sqrt{\sum_{uv \in E(G)} ((r_u + r_v)^2 r_u r_v + 2r_u^2 r_v^2)}
$$

Thus

$$
\frac{1}{\sqrt{2}} ER(G)
$$

\n
$$
\leq HRM_1(G) - \sqrt{\alpha RGO(G) + 2HRM_2(G)}.
$$

Theorem 3. Let *G* be a simple connected graph. Then $ER(G)$ < $HRM_1(G)$.

Proof: It is known that for $1 \le x \le y$,

$$
\sqrt{x^2 + y^2} < x + y
$$
\n
$$
(x + y)\sqrt{x^2 + y^2} < (x + y)^2
$$

Setting $x = r_u$ and $y = r_v$, we get

 $(r_u + r_v) \sqrt{r_u^2 + r_v^2} < (r_u + r_v)^2$.

Thus

$$
\sum_{uv\in E(G)} \left(r_u+r_v\right) \sqrt{r_u^2+r_v^2} < \sum_{uv\in E(G)} \left(r_u+r_v\right)^2.
$$

Hence

$$
ER(G) < HRM_1(G).
$$

Theorem 4. Let *G* be a simple connected graph with *n* vertices. Then

$$
ER(G) \le \sqrt{HRM_1(G)FR(G)}.
$$

Proof: By the Cauchy-Schwarz inequality,

$$
\left(\begin{matrix} \mathbf{\hat{a}} & a_i b_i \end{matrix}\right)^2 \mathbf{f} \left(\begin{matrix} \mathbf{\hat{a}} & a_i^2 \end{matrix}\right) \left(\begin{matrix} \mathbf{\hat{a}} & b_i^2 \end{matrix}\right)
$$

with equality holds if and only if $a_i = gb_i$, $i = 1, 2, \ldots, n$, for some real number *g* .

Using this to *RES,* we obtain

$$
(ER(G))^{2} = \mathop{\mathbb{E}}_{\mathop{\mathbb{E}}_{uv1}}^{3} \mathop{\mathbb{E}}_{EG} (r_{u} + r_{v}) \sqrt{r_{u}^{2} + r_{v}^{2}} \mathop{\mathbb{E}}_{\mathop{\mathbb{E}}_{uv1}}^{2}
$$

$$
\mathop{\mathbb{E}}_{\mathop{\mathbb{E}}_{uv1}}^{3} \mathop{\mathbb{E}}_{EG}^{3} (r_{u} + r_{v})^{2} \mathop{\mathbb{E}}_{\mathop{\mathbb{E}}_{uv1}}^{3} \mathop{\mathbb{E}}_{EG} (r_{u}^{2} + r_{v}^{2})
$$

$$
= HRM_{1}(G)FR(G)
$$

gives the desired result.

III. RESULTS FOR SILICATE NETWORKS

Silicates are obtained by fusing metal oxides or metal carbonates with sand. A silicate network in symbolized by SL_n where n is the number of hexagons between the center and boundary of *SLn*. A 2-dimensional siliciate network is shown in Figure-1.

Figure 1. A 2-dimensional silicate network

Let *G* be the graph of silicate network SL_n with $15n^2+3n$ vertices and $36n^2$ edges. From Figure 1, it is easy to see that the vertices of SL_n are either of degree 3 or 6. In SL_n , by algebraic method, there are three types of edges based on the degree of the vertices of each edge as follows:

$$
E_1 = \{uv \in E(G) \mid d_u = d_v = 3\}, |E_1| = 6n.
$$

\n
$$
E_2 = \{uv \in E(G) \mid d_u = 3, d_v = 6\}, |E_2| = 18n^2 + 6n.
$$

\n
$$
E_3 = \{uv \in E(G) \mid d_u = d_v = 6\}, |E_3| = 18n^2 - 12n.
$$

Thus there are three types of Revan edges as follows:

We have $\Delta(G) + \delta(G) = 9$, $r_u = 9 - d_u$.

$$
RE_1 = \{uv \in E(G) \mid r_u = r_v = 6\}, |RE_1| = 6n.
$$

\n
$$
RE_2 = \{uv \in E(G) \mid r_u = 6, r_v = 3\}, |RE_2| = 18n^2 + 6n.
$$

\n
$$
RE_3 = \{uv \in E(G) \mid r_u = r_v = 3\}, |RE_3| = 18n^2 - 12n.
$$

Theorem 5. The elliptic Revan index of a silicate network *SLⁿ* is given by

 $ER(G)$

$$
= (324\sqrt{2} + 486\sqrt{5})n^2 + (216\sqrt{2} + 162\sqrt{5})n.
$$

Proof: We have

$$
ER(G) = \sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

= $6n[(6+6)\sqrt{6^2 + 6^2}]$
+ $(18n^2 + 6n)[(6+3)\sqrt{6^2 + 3^2}]$
+ $(18n^2 - 12n)[(3+3)\sqrt{3^2 + 3^2}]$
= $(324\sqrt{2} + 486\sqrt{5})n^2 + (216\sqrt{2} + 162\sqrt{5})n$.

Theorem 6. The elliptic Revan exponential of a silicate network *SLⁿ* is given by

$$
ER(G, x) = 6nx^{72\sqrt{2}} + (18n^2 + 6n)x^{27\sqrt{5}} + (18n^2 - 12n)x^{18\sqrt{2}}.
$$

Proof: We have

"Elliptic Revan Index and its Exponential of Certain Networks"

$$
ER(G, x) = \underset{uv1}{\mathbf{\mathbf{\hat{a}}}} x^{(r_u + r_v)\sqrt{r_u^2 + r_v^2}} \n= 6nx^{(6+6)\sqrt{6^2 + 6^2}} + (18n^2 + 6n) x^{(6+3)\sqrt{6^2 + 3^2}} \n+ (18n^2 - 12n) x^{(3+3)\sqrt{3^2 + 3^2}} \n= 6nx^{72\sqrt{2}} + (18n^2 + 6n) x^{27\sqrt{5}} \n+ (18n^2 - 12n) x^{18\sqrt{2}}.
$$

IV. RESULTS FOR RHOMBUS SILICATE NETWORKS

 We consider a family of rhombus silicate networks. A rhombus silicate network is symbolized by *RHSLn*. A 3 dimensional rhombus silicate network is depicted in Figure 2.

Figure 2. 3-dimensional rhombus silicate network

Let *G* be the graph of rhombus silicate network *RHSLⁿ* with $5n^2+2n$ vertices and $12n^2$ edges. From Figure 2, it is easy to see that the vertices of *RHSLⁿ* are either of degree 3 or 6. In *RHSL_n*, there are three types of edges as follows:

 $E_1 = \{uv \in E(G) \mid d_u = d_v = 3\}, |E_1| = 4n+2.$ *E*₂ = {*uv* \in *E*(*G*)| *d_u* = 3, *d_v* = 6 }, $|E_2|$ = 6*n*²+4*n*–4. $E_3 = \{uv \in E(G) | d_u = d_v = 6\}, |E_3| = 6n^2 - 8n + 2.$

We have $\Delta(G) + \delta(G) = 9$, $r_u = 9 - d_u$.

Thus there are three types of Revan edges based on the degree of end Revan vertices of each Revan edge as follows:

$$
RE_1 = \{uv \in E(G) \mid r_u = r_v = 6\}, |RE_1| = 4n+2.
$$

\n
$$
RE_2 = \{uv \in E(G) \mid r_u = 6, r_v = 3\}, |RE_2| = 6n^2 + 4n - 4.
$$

\n
$$
RE_3 = \{uv \in E(G) \mid r_u = r_v = 3\}, |RE_3| = 6n^2 - 8n + 2.
$$

Theorem 7. The elliptic Revan index of a rhombus silicate network *RHSLⁿ* is given by

$$
ER(G) = (108\sqrt{2} + 162\sqrt{5})n^2 + (144\sqrt{2} + 108\sqrt{5})n
$$

+180\sqrt{2} - 108\sqrt{5}.

$$
ER(G) = \sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

= $(4n+2) [(6+6) \sqrt{6^2 + 6^2}]$
+ $(6n^2 + 4n - 4) [(6+3) \sqrt{6^2 + 3^2}]$
+ $(6n^2 8n + 2) [(3+3) \sqrt{3^2 + 3^2}]$
= $(108\sqrt{2} + 162\sqrt{5}) n^2 + (144\sqrt{2} + 108\sqrt{5}) n$
+ $180\sqrt{2} - 108\sqrt{5}.$

Theorem 8. The elliptic Revan exponential of a rhombus silicate network *RHSLⁿ* is given by

$$
ER(G, x) = (4n + 2)x^{72\sqrt{2}} + (6n^2 + 4n - 4)x^{27\sqrt{5}} + (6n^2 - 8n + 2)x^{18\sqrt{2}}.
$$

Proof: We have

$$
ER(G, x) = \mathbf{a} x^{(r_u + r_v)\sqrt{r_u^2 + r_v^2}}
$$

= $(4n+2) x^{(6+6)\sqrt{6^2+6^2}} + (6n^2 + 4n - 4) x^{(6+3)\sqrt{6^2+3^2}}$
+ $(6n^2 - 8n + 2) x^{(3+3)\sqrt{3^2+3^2}}$
= $(4n+2) x^{72\sqrt{2}} + (6n^2 + 4n - 4) x^{27\sqrt{5}}$
+ $(6n^2 - 8n + 2) x^{18\sqrt{2}}$.

V. RESULTS FOR OXIDE NETWORKS

An oxide network of *n* is symbolized by *OXn*. These networks are of vital importance in the study of silicate networks. An oxide network of dimension five is shown in Figure 3.

Figure 3. 5-dimensional oxide network

Let *G* be the graph of oxide network OX_n with $9n^2 + 3n$ vertices and $18n^2$ edges. From Figure 3, it is easy to see that the vertices of OX_n are either of degree 2 or 4. Thus $\Delta(G)$ = $4, \delta(G) = 2$. In *G*, there are two types of edges as follows:

$$
E_1 = \{uv \in E(G) | d_u = 2, d_v = 4\}, |E_1| = 12n.
$$

$$
E_2 = \{uv \in E(G) | d_u = d_v = 4\}, |E_2| = 18n^2 - 12n.
$$

We have $r_u = \Delta(G) + \delta(G) - d_u = 6 - d_u$.

4058 **V. R. Kulli, IJMCR Volume 12 Issue 02 February 2024** $RE_1 = \{uv \in E(G) \mid r_u = 4, r_v = 2\}, |RE_1| = 12n.$

*RE*₂ = {*uv* $\in E(G)$ | $r_u = r_v = 2$ }, |*RE*₂| = 18*n*² – 12*n*.

Theorem 9. The elliptic Revan index of an oxide network OX_n is given by

$$
ER(G) = 144\sqrt{2}n^2 + (144\sqrt{5} - 96\sqrt{2})n.
$$

Proof: We have

$$
ER(G) = \sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

= $12n \left[(4+2) \sqrt{4^2 + 2^2} \right]$
+ $(18n^2 - 12n) \left[(2+2) \sqrt{2^2 + 2^2} \right]$
= $144\sqrt{2}n^2 + (144\sqrt{5} - 96\sqrt{2})n$.

Theorem 10. The elliptic Revan exponential of an oxide network *OXⁿ* is given by

$$
ER(G, x) = 12nx^{12\sqrt{5}} + (18n^2 - 12n)x^{8\sqrt{2}}.
$$

Proof: We have

$$
ER(G, x) = \underset{uv1}{\overset{\circ}{\mathbf{a}}} x^{(r_u + r_v)\sqrt{r_u^2 + r_v^2}}
$$

= $12nx^{(4+2)\sqrt{4^2 + 2^2}} + (18n^2 - 12n)x^{(2+2)\sqrt{2^2 + 2^2}}$
= $12nx^{12\sqrt{5}} + (18n^2 - 12n)x^{8\sqrt{2}}$.

VI. RESULTS FOR RHOMBUS OXIDE NETWORKS

We consider a family of rhombus oxide networks. A rhombus oxide network of dimension *n* is symbolized by *RHOXn*. A 3- dimensional rhombus oxide network is depicted in Figure 4.

Figure 4. 3-dimensional rhombus oxide network

Let *G* be the graph of rhombus oxide network *RHOXⁿ* with $3n^2 + 2n$ vertices and $6n^2$ edges. From Figure 4, it is easy to see that the vertices of *RHOXⁿ* are either of degree 2 or 4. Thus $\Delta(G) = 4$, $\delta(G) = 2$. In *G*, there are three types of edges as follows:

$$
E_1 = \{uv \in E(G) | d_u = d_v = 2\}, |E_1| = 2.
$$

\n
$$
E_2 = \{uv \in E(G) | d_u = 2, d_v = 4\}, |E_2| = 8n - 4.
$$

\n
$$
E_3 = \{uv \in E(G) | d_u = d_v = 4\}, |E_2| = 6n^2 - 8n + 2.
$$

We have $r_u = \Delta(G) + \delta(G) - d_u = 6 - d_u$.

 $RE_1 = \{uv \in E(G) \mid r_u = r_v = 4\}, |RE_1| = 2.$ $RE_2 = \{uv \in E(G) \mid r_u = 4, r_v = 2\}, |RE_2| = 8n - 4.$ $RE_2 = \{uv \in E(G) \mid r_u = r_v = 2\}, |RE_2| = 6n^2 - 8n + 2.$

Theorem 11. The elliptic Revan index of a rhombus oxide network *RHOXⁿ* is given by

$$
ER(G) = 48\sqrt{2}n^2 + (96\sqrt{5} - 64\sqrt{2})n
$$

$$
+80\sqrt{2} - 48\sqrt{5}.
$$

Proof: We have

$$
ER(G) = \sum_{uv \in E(G)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

= 2[(4+4)\sqrt{4^2 + 4^2}]
+ (8n-4)[(4+2)\sqrt{4^2 + 2^2}]
+ (6n^2 - 8n + 2)[(2+2)\sqrt{2^2 + 2^2}]
= 48\sqrt{2}n^2 + (96\sqrt{5} - 64\sqrt{2})n + 80\sqrt{2} - 48\sqrt{5}.

Theorem 12. The elliptic Revan exponential of a rhombus oxide network *RHOXⁿ* is given by

$$
ER(G, x) = 2x^{32\sqrt{2}} + (8n - 4)x^{12\sqrt{5}}
$$

$$
+ (6n^2 - 8n + 2)x^{8\sqrt{2}}.
$$

Proof: We have

$$
ER(G, x) = \underset{uv_1}{\overset{\delta}{\mathcal{A}}} x^{(r_u + r_v)\sqrt{r_u^2 + r_v^2}}
$$

= $2x^{(4+4)\sqrt{4^2 + 4^2}} + (8n - 4) x^{(4+2)\sqrt{4^2 + 2^2}}$
+ $(6n^2 - 8n + 2) x^{(2+2)\sqrt{2^2 + 2^2}}$
= $2x^{32\sqrt{2}} + (8n - 4) x^{12\sqrt{5}} + (6n^2 - 8n + 2) x^{8\sqrt{2}}.$

VII. RESULTS FOR HEXAGONAL NETWORKS

 Hexagonal network is symbolized by *HXⁿ* where n is the number of vertices in each side of hexagon. A hexagonal network of dimension six is shown in Figure 5.

Figure 5. 6-dimensional hexagonal network

Let *H* be te graph of hexagonal network HX_n with $3n^2 - 3n$ $+ 1$ vertices and $9n^2 - 15n + 6$ edges. From Figure 5, it is easy to see that the vertices of *HXⁿ* are either of degree 3, 4 or 6. Thus $\Delta(H) = 6$, $\delta(H) = 3$. In *H*, by algebraic method, there are five types of edges as follows:

 $E_1 = \{uv \in E(H) | d_u = 3, d_v = 4\}, |E_1| = 12.$

 $E_2 = \{uv \in E(H) | d_u = 3, d_v = 6\}, |E_2| = 6.$ $E_3 = \{uv \in E(H) | d_u = d_v = 4\}, |E_3| = 6n - 18.$ $E_4 = \{uv \in E(H) | d_u = 4, d_v = 6\}, |E_4| = 12n - 24.$ *E*₅ = {*uv* \in *E*(*H*)| $d_u = d_v = 6$ }, $|E_5| = 9n^2 - 33n + 30$

We have $r_u = \Delta H + \delta(H) - d_u = 9 - d_u$.

 $RE_1 = \{uv \in E(H) \mid r_u = 6, r_v = 5\}, |RE_{65}| = 12.$ $RE_2 = \{uv \in E(H) \mid r_u = 6, r_v = 3\}, |RE_{63}| = 6.$ $RE_3 = \{uv \in E(H) \mid r_u = r_v = 5\}, \, |RE_{55}| = 6n - 18.$ $RE_4 = \{uv \in E(H) \mid r_u = 5, r_v = 3 \}, \, |RE_{53}| = 12n - 24.$ $RE_5 = \{uv \in E(H) \mid r_u = r_v = 3\}, |RE_{33}| = 9n^2 - 33n + 30$

Theorem 13. The elliptic Revan index of a hexagonal network *HXⁿ* is given by

$$
ER(H) = 162\sqrt{2}n^2 + (96\sqrt{34} - 294\sqrt{2})n + 120\sqrt{61}
$$

+162\sqrt{5} - 360\sqrt{2} - 192\sqrt{34}.

Proof: We have

$$
ER(H) = \sum_{uv \in E(H)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

= $12[(6+5)\sqrt{6^2 + 5^2}]$
+ $6[(6+3)\sqrt{6^2 + 3^2}]$
+ $(6n-18)[(5+5)\sqrt{5^2 + 5^2}]$
+ $(12n-24)[(5+3)\sqrt{5^2 + 3^2}]$
+ $(9n^2 - 33n + 30)[(3+3)\sqrt{3^2 + 3^2}]$
= $162\sqrt{2}n^2 + (96\sqrt{34} - 294\sqrt{2})n + 120\sqrt{61}$
+ $162\sqrt{5} - 360\sqrt{2} - 192\sqrt{34}.$

Theorem 14. The elliptic Revan exponential of a hexagonal network *HXⁿ* is given by

$$
ER(H, x) = 12x^{10\sqrt{61}} + 6x^{27\sqrt{5}} + (6n - 18)x^{50\sqrt{2}} + (12n - 24)x^{8\sqrt{34}} + (9n^2 - 33n + 30)x^{18\sqrt{32}}.
$$

Proof: We have

$$
ER(H, x) = \underset{uv\hat{i}}{\mathbf{\hat{a}}} x^{(r_u + r_v)\sqrt{r_u^2 + r_v^2}}
$$

\n
$$
= 12x^{(6+5)\sqrt{6^2 + 5^2}} + 6x^{(6+3)\sqrt{6^2 + 3^2}}
$$

\n
$$
+ (6n - 18) x^{(5+5)\sqrt{5^2 + 5^2}} + (12n - 24) x^{(5+3)\sqrt{5^2 + 3^2}}
$$

\n
$$
+ (9n^2 - 33n + 30) x^{(3+3)\sqrt{3^2 + 3^2}}
$$

\n
$$
= 12x^{10\sqrt{61}} + 6x^{27\sqrt{5}} + (6n - 18) x^{50\sqrt{2}}
$$

\n
$$
+ (12n - 24) x^{8\sqrt{34}} + (9n^2 - 33n + 30) x^{18\sqrt{32}}.
$$

VIII. RESULTS FOR HONEYCOMB NETWORK

Honeycomb networks are very useful in Chemistry and Computer Graphics. A honeycomb network of dimension *n* is symbolized by HC_n . A honeycomb network of dimension four is shown in Figure 6.

Figure 6. 4-dimensional honeycomb network

Let *H* be the graph of honeycomb network HC_n with $6n^2$ vertices and $9n^2 - 3n$ edges. From Figure 6, it is easy to see that the vertices of HX_n are either of degree 2 or 3. Thus $\Delta(H) = 3$, $\delta(H) = 2$. In *H*, there are three types of edges as follows:

 $E_1 = \{uv \in E(H) | d_u = d_v = 2\}, |E_1| = 6.$ $E_2 = \{uv \in E(H) | d_u = 2, d_v = 3\}, |E_2| = 12n - 12.$ $E_3 = \{uv \in E(H) | d_u = d_v = 3\}, |E_3| = 9n^2 - 15n + 6.$ We have $r_u = \Delta(H) + \delta(H) - d_u = 5 - d_u$. $RE_1 = \{uv \in E(H) \mid r_u = r_v = 3\}, |RE_1| = 6.$ $RE_2 = \{uv \in E(H) \mid r_u = 3, r_v = 2\}, |RE_2| = 12n - 12.$ $RE_3 = \{uv \in E(H) \mid r_u = r_v = 2\}, |RE_3| = 9n^2 - 15n + 6.$

Theorem 15. The elliptic Revan index of a honeycomb network *HCⁿ* is given by

$$
ER(H)
$$

= $72\sqrt{2}n^2 + (60\sqrt{13} - 120\sqrt{2})n + 156\sqrt{2} - 60\sqrt{13}$.
Proof: We have

$$
ER(H) = \sum_{uv \in E(H)} (r_u + r_v) \sqrt{r_u^2 + r_v^2}
$$

$$
= 6[(3+3)\sqrt{3^2 + 3^2}]
$$

$$
+ (12n - 12)[(3+2)\sqrt{3^2 + 2^2}]
$$

$$
+ (9n^2 - 15n + 6)[(2+2)\sqrt{2^2 + 2^2}]
$$

$$
+(9n^2-15n+6)[(2+2)\sqrt{2^2+2^2}]
$$

= $72\sqrt{2}n^2+(60\sqrt{13}-120\sqrt{2})n+156\sqrt{2}-60\sqrt{13}$.

Theorem 16. The elliptic Revan exponential of a honeycomb network *HCⁿ* is given by

$$
ER(H, x) = 6x^{18\sqrt{2}} + (12n - 12)x^{5\sqrt{13}} + (9n^2 - 15n + 6)x^{8\sqrt{2}}.
$$

Proof: We have

$$
ER(H, x) = \underset{uv_1}{\overset{\circ}{a}} x^{(r_u + r_v)\sqrt{r_u^2 + r_v^2}}
$$

= $6x^{(3+3)\sqrt{3^2 + 3^2}} + (12n - 12) x^{(3+2)\sqrt{3^2 + 2^2}}$
+ $(9n^2 - 15n + 6) x^{(2+2)\sqrt{2^2 + 2^2}}$

4060 **V. R. Kulli, IJMCR Volume 12 Issue 02 February 2024**

$$
= 6x^{18\sqrt{2}} + (12n - 12) x^{5\sqrt{13}} + (9n^2 - 15n + 6) x^{8\sqrt{2}}.
$$

VI. CONCLUSION

In this study, we have determined the elliptic Revan index and its corresponding exponential of some networks which are appeared in chemical science.

REFERENCES

- 1. V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- 2. S.Wagner and H.Wang, Introduction Chemical Graph Theory, Boca Raton, CRC Press, (2018).
- 3. M.V.Diudea (ed.) QSPR/QSAR Studies by Molecular Descriptors, NOVA New York, (2001).
- 4. V.R.Kulli, Reverse elliptic Sombor and modified reverse elliptic Sombor indices, International Journal of Mathematical Archive, 15(1) (2024) 1-7.
- 5. S.Alikhani and N.Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021).
- 6. R.Cruz, I.Gutman and J.Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) 126018.
- 7. H.Deng, Z.Tang and R.Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem.DOI: 10.1002/qua.26622.
- 8. I.Gutman, Sombor indices-back to geometry, Open Journal of Discrete Applied Matematics,5(2) (2022) 1-5.
- 9. I.Gutman, V.R.Kulli and I.Redzepovic, Irregularity Sombor index, Bull. Acad. Serbe Sci. Math. Arts (Cl.Sci. Math. Natur.) 156 (2023) 31-37.
- 10. B.Horoldagva and C.Xu, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021).
- 11. V.R.Kulli, Multiplicative KG Sombor indices of some networks, International Journal of Mathematics Trends and Technology, 68(10) (2022) 1-7.
- 12. V.R.Kulli, HDR Sombor indices and their exponentials of a graph, International Journal of Mathematics and Computer Research, 10(7) (2022) 2817-2821.
- 13. V.R.Kulli, ve-Degree Sombor indices of certain networks, International Journal of Mathematics Trends and Technology, 68(9) (2022) 5-10.
- 14. V.R.Kulli, Temperature Sombor and temperature Nirmala indices, International Journal of Mathematics and Computer Research, 10(9) (2022) 2910-2915.
- 15. H.R.Manjunatha, V.R.Kulli and N.D.Soner, The HDR Sombor index, International Journal of

Mathematics Trends and Technology, 68(4) (2022) 1-6.

- 16. V.R.Kulli, Delta F, modified delta Sombor and delta sigma indices of certain nanotubes and networks, International Journal of Mathematics and Computer Research, 11(10) (2023) 3813-3820.
- 17. V.R.Kulli, F-Sombor and modified Sombor indices of certain nanotubes, Annals of Pure and Applied Mathematics, 27(1) (2023) 13-17.
- 18. V.R.Kulli, Delta Banhatti-Sombor indices of certain networks, International Journal of Mathematics and Computer Research, 11(11) (2023) 3875-3881.
- 19. V.R.Kulli, Modified domination Sombor index and its exponential of a graph, International Journal of Mathematics and Computer Research, 11(8) (2023) 3639-3644.
- 20. J.Rada, J.M.Rodriguez and J.M.Sigarreta, General properties on Sombor indices, Discrete Appl. Math. 299(2021) 87-97.
- 21. Z.Wang, Y.Mao, Y.Li and B.Furtula, On relations between Sombor and other degree based indices, J. Appl. Math. Comput. (2021).
- 22. V.R.Kulli, Reduced elliptic and modified reduced elliptic indices of some chemical structures, International Journal of Engineering Sciences & Research Technology, 13(2) (2024).
- 23. V.R.Kulli, Elliptic Banhatti index, submitted.
- 24. V.R.Kulli, Modified elliptic Sombor index and its exponential of a graph, International Journal of Mathematics and Computer Research, 12(1) (2024) 3949-3954.
- 25. V.R.Kulli, Multiplicative elliptic Sombor and multiplicative modified elliptic Sombor indices, Annals of Pure and Applied Mathematics, 29(1) (2024) 19-23.
- 26. V.R.Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, 5(4-E) (2017) 663-667.
- 27. V.R.Kulli, Hyper Revan indices and their polynomials of silicate networks, International Journal of Current Research in Science and Technology, 4(3) (2018) 17-21.
- 28. V.R.Kulli, Computing the F-Revan index and modified Revan indices of certain nanostructures,l Journal of Computer and Mathematical Sciences, 9(10) (2018) 1326-1333.