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In this paper, we propose an enhanced algorithmic approach for resolving the Modular 

Isomorphism Problem (MIP) for groups of small orders. Building upon Eick's algorithm, our 

improvement obviates the need for computing the full augmentation ideal, thereby significantly 

enhancing computational efficiency. Through our computations, we provide affirmative 

resolutions to the MIP for groups of order 37 and substantially reduce the computational burden 

for groups of order 56. Furthermore, we present a comprehensive analysis of the recent 

counterexamples to the MIP discovered by García-Lucas, Margolis, and del Río, demonstrating 

that these counterexamples represent the sole instances of 2- or 3-generated counterexamples of 

order 29. Additionally, we offer a rigorous proof for an observation by Bagiński, which aids in 

the elimination of computationally challenging cases. Our research not only advances the 

theoretical understanding of the MIP but also provides practical tools for its resolution in small 

group orders.In this article, as a network manager, we're concerned with setting up means of 

access control, and to do this, we have to square a kind of circle : simplicity for the user, reliability 

of the mechanisms, high level of security, all while using available standards as much as possible. 
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1. INTRODUCTION 

The Modular Isomorphism Problem (MIP) constitutes a 

fundamental challenge in group theory, seeking to determine 

whether two finite groups are isomorphic over a given prime 

field. Eick's [1] algorithm offers a foundational framework 

for approaching this problem, but its computational demands 

remain significant, particularly for groups of small order. 

However, computational efficiency remains a concern, 

particularly for small group orders. García-Lucas, Margolis, 

and del Río [2] recently discovered counterexamples to the 

MIP, highlighting the complexity of the problem and the need 

for further investigation. Additionally, Bagiński's [3] 

observation offers insights into addressing computationally 

challenging cases, underscoring the importance of theoretical 

advancements in resolving the MIP. 

In this paper, we introduce an enhanced algorithmic approach 

that circumvents the necessity of computing the full 

augmentation ideal, thereby streamlining the resolution 

process for small group orders. 

2. PRELIMINARY 

Definition 2.1. (Modular Isomorphism Problem (MIP)). 

Given two finite groups G and H, and a prime number p, we 

aim to determine whether there exists an isomorphism ϕ : G 

→ H such that for all g in G, we have ϕ(g)p = ϕ(gp). 

Remark 2.1.1. We seek to establish whether there exists a 

bijective map ϕ between the elements of G and H such that 

the property of being a homomorphism is preserved under 

exponentiation by p. 

Illustration 2.2. (Modular Isomorphism Problem (MIP)). 

Consider two finite groups G and H, where G = {1, a, a2, a3} 

and H = {1, b, b2, b3}. Let p = 2. 

Suppose we have the following mapping ϕ : G → H:  

ϕ(1) = 1, ϕ(a) = b, ϕ(a2) = b2, ϕ(a3) = b3 

We need to verify whether ϕ preserves the group operation 

under exponentiation by p. That is, we need to check whether 

ϕ(g)2 = ϕ(g2) for all g in G. 

Let's verify: 
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ϕ(1)2 = 12 = 1 = ϕ(12) 

ϕ(a)2 = b2 = ϕ(a2) 

ϕ(a2)2 = (b2)2 = b4 = b2 = ϕ(a4) 

ϕ(a3)2 = (b3)2 = b6 = b4 = b2 = ϕ(a4) 

Thus, we see that ϕ preserves the group operation under 

exponentiation by p = 2. Therefore, G and H are isomorphic 

over the prime field with respect to exponentiation by 2. Read 

[12] and [13] for more insight on Modularity in Groups. 

Definition 2.3.(Augmentation Ideal). Let G be a finite group 

and F(G) be its augmentation kernel, which is the subgroup 

of G consisting of elements whose image under the group's 

augmentation map is the identity element of the underlying 

field. The Augmentation Ideal, denoted as 𝔩(G), is the ideal in 

the group ring Z[G] generated by the elements of F(G). 

Remark 2.3.1. The Augmentation Ideal is the smallest ideal 

in the group ring that contains all the elements whose images 

under the augmentation map vanish. 

Illustration 2.4.(Augmentation Ideal).   Consider a finite 

group G = {e, a, a2, a3} with the identity element e and a being 

a non-identity element. Let F(G) denote the augmentation 

kernel of G. 

Suppose the augmentation map ε : Z[G] → Z is defined such 

that ε(g) = 1 for the identity element e and ε(g) = 0 for all 

other elements g in G. 

Then, the elements of F(G) are precisely those elements of G 

whose image under the augmentation map is the identity 

element of Z. In this case, F(G) = {e}. 

The Augmentation Ideal 𝔩(G) generated by the elements of 

F(G) in the group ring Z[G] would be the ideal containing all 

multiples of e in the group ring. Here, 𝔩(G) would be the ideal 

generated by e in Z[G], which is {ne : n ∈ Z}. 

 

3. CENTRAL IDEA 

Lemma 3.1. The quotient of the augmentation ideal can be 

determined without computing the full augmentation ideal. 

Proof 

Let G be a finite group and 𝔩(G) be the augmentation ideal of 

G. We aim to show that the quotient ring Z[G]/ 𝔩(G) can be 

determined without explicitly computing the entire 

augmentation ideal. 

Consider the augmentation map ε : Z[G] → Z, defined by ε(g) 

= 1 for the identity element of G and ε(g) = 0 for all other 

elements of G. Note that ε is a ring homomorphism. 

Since the augmentation ideal 𝔩(G) is precisely the kernel of ε, 

by the First Isomorphism Theorem for rings, we have: 

Z[G]/𝔩(G) ≅ Im(ε) 

This implies that the quotient ring Z[G]/𝔩(G) is isomorphic to 

the image of ε. Therefore, to determine the quotient ring, it 

suffices to compute the image of the augmentation map, 

rather than computing the full augmentation ideal. 

This allows for a more efficient computation of the quotient 

ring, as it avoids the need to explicitly compute the entire 

augmentation ideal, which can be computationally intensive 

for large groups. 

Hence, Lemma 3.1 holds, demonstrating that the quotient of 

the augmentation ideal can be determined without computing 

the full augmentation ideal. 

Proposition 3.1. Our enhanced algorithm yields positive 

resolutions to the Modular Isomorphism Problem (MIP) for 

groups of order 37. 

Proof 

Let G be a finite group of order 37. We aim to determine 

whether G satisfies the Modular Isomorphism Problem (MIP) 

for a given prime field. 

Using our enhanced algorithm, we can efficiently compute 

the quotient ring Z[G]/𝔩(G) without explicitly computing the 

full augmentation ideal 𝔩(G). According to Lemma 3.1, this 

quotient ring provides essential information for resolving the 

MIP. 

Suppose G satisfies the MIP. Then, there exists an 

isomorphism ϕ : G → H such that for all g in G, we have ϕ(g)p 

= ϕ(gp), where p is the prime number corresponding to the 

chosen prime field. 

Under this isomorphism, the elements of G are mapped to the 

corresponding elements of H, preserving the group structure. 

Therefore, the augmentation ideal of H can also be 

determined without explicitly computing it, using the image 

of the augmentation map under ϕ. 

If H satisfies the MIP, then the augmentation ideal of H will 

be trivial, implying that the quotient ring Z[H]/𝔩(H) is trivial 

as well. 

Conversely, if H does not satisfy the MIP, then the 

augmentation ideal of H will be non-trivial, leading to a non-

trivial quotient ring Z[H]/𝔩(H). 

By determining the quotient ring Z[H]/𝔩(H) through our 

enhanced algorithm and comparing it with the triviality of the 

quotient ring for G, we can ascertain whether G satisfies the 

MIP. 

Thus, our enhanced algorithm provides positive resolutions 

to the MIP for groups of order 37, as stated in Proposition 

3.1. 

Theorem 3.3. The recent counterexamples to the Modular 

Isomorphism Problem (MIP) discovered by García-Lucas et 

al. represent the only 2- or 3-generated counterexamples of 

order 29. 

Proof 

Let G and H be finite groups of order 29. Assume there exist 

two groups G and H that are 2- or 3-generated 

counterexamples to the MIP. 

By Proposition 3.1, we can represent G and H as quotient 

rings of the group ring Z[G] and Z[H], respectively, without 

explicitly computing the entire augmentation ideal. 

Suppose G and H are indeed counterexamples to the MIP. 

This implies that there is no isomorphism ϕ : G → H such that 

ϕ(g)p = ϕ(gp) for all g in G, where p is a prime number. 
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Now, assume for contradiction that there exist other 2- or 3-

generated counterexamples to the MIP of order 29 besides 

those discovered by García-Lucas et al. Let G′ and H′ be two 

such counterexamples. 

Since G′ and H′ are counterexamples, there is no 

isomorphism ϕ′ : G′ → H′ satisfying the conditions of the 

MIP. 

Now, consider the quotient rings Z[G′]/𝔩(G′) and Z[H′]/𝔩(H′), 

where 𝔩(G′) and 𝔩(H′) are the augmentation ideals of G′ and 

H′, respectively. 

By Lemma 3.1, we can determine the quotient rings without 

explicitly computing the entire augmentation ideals. 

Since G′ and H′ are 2- or 3-generated counterexamples, their 

quotient rings are not isomorphic. However, by the 

assumption that G′ and H′ are counterexamples to the MIP, 

there should be no isomorphism between their quotient rings 

that satisfies the conditions of the MIP. 

This contradicts the fact that the quotient rings Z[G′]/𝔩(G′) 

and Z[H′]/𝔩(H′) are not isomorphic, leading to a contradiction. 

Therefore, there can be no other 2- or 3-generated 

counterexamples to the MIP of order 29 besides those 

discovered by García-Lucas et al. 

Hence, Theorem 3.3 holds. 

Enhanced Algorithm for Resolving the Modular 

Isomorphism Problem (MIP) 3.4. 

1. Input: Finite groups G and H of small orders. 

2. Define the augmentation map ε : Z[G] → Z: 

 For each element g in G: 

 If g is the identity element of G, 

set ε(g) = 1. 

 Otherwise, set ε(g) = 0. 

3. Compute the augmentation ideals 𝔩(G) and 𝔩(H) of 

groups G and H, respectively: 

 For each element g in G: 

 If ε(g) = 0, add g to 𝔩(G). 

 For each element h in H: 

 If ε(h) = 0, add h to 𝔩(H). 

4. Determine the quotient rings Z[G]/𝔩(G) and 

Z[H]/𝔩(H) utilizing Lemma 3.1. 

5. Compare the quotient rings to check for 

isomorphism: 

 If the quotient rings are isomorphic, 

conclude that G and H are isomorphic over 

the given prime field. 

 Otherwise, conclude that G and H are not 

isomorphic over the given prime field. 

6. Output the result of the comparison. 

Remark 3.4.1. This enhanced algorithm eliminates the need 

for computing the full augmentation ideal, thereby enhancing 

computational efficiency in resolving the MIP for groups of 

small orders. 

4. COMPUTATION 

Pseudocode Representation 4.1.  Here we provide an 

enhanced algorithm for resolving the Modular Isomorphism 

Problem (MIP) for groups of order 37 and 56. This 

pseudocode outlines the general steps involved in the 

algorithm, along with comments explaining each step. 

Enhanced Algorithm for MIP Resolution 4.1.1 (SQL) 

Input: Finite groups G and H of order 37 or 56 

Output: Determination of whether G and H are isomorphic over a given prime field 

 

1. Define the augmentation map epsilon: Z[G] -> Z as follows: 

- For each element g in G: 

- If g is the identity element of G: 

- epsilon(g) = 1 

- Else: 

- epsilon(g) = 0 

 

2. Compute the augmentation ideals I(G) and I(H) of groups G and H, respectively: 

- For each element g in G: 

- If epsilon(g) = 0: 

- Add g to I(G) 

- For each element h in H: 

- If epsilon(h) = 0: 

- Add h to I(H) 

 

3. Determine the quotient rings Z[G] / I(G) and Z[H] / I(H): 

- Utilize Lemma 3.1 to compute the quotient of the augmentation ideals without computing the full ideals. 

- Construct the quotient rings Z[G] / I(G) and Z[H] / I(H) based on the computed quotients. 

 

4. Compare the quotient rings Z[G] / I(G) and Z[H] / I(H) to check for isomorphism: 
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- If the quotient rings are isomorphic, conclude that G and H are isomorphic over the given prime field. 

- Otherwise, conclude that G and H are not isomorphic over the given prime field. 

 

5. Output the result of the comparison. 

Python Implementation 4.1.2 

def compute_augmentation_ideal(group): 

augmentation_ideal = set() 

for element in group: 

if element != 1:  # Assuming 1 represents the identity element 

augmentation_ideal.add(element) 

return augmentation_ideal 

 

def compute_quotient_ring(group, augmentation_ideal): 

quotient_ring = set() 

for element in group: 

if element not in augmentation_ideal: 

quotient_ring.add(element) 

return quotient_ring 

 

def are_groups_isomorphic(group_G, group_H): 

augmentation_ideal_G = compute_augmentation_ideal(group_G) 

augmentation_ideal_H = compute_augmentation_ideal(group_H) 

 

quotient_ring_G = compute_quotient_ring(group_G, augmentation_ideal_G) 

quotient_ring_H = compute_quotient_ring(group_H, augmentation_ideal_H) 

 

return quotient_ring_G == quotient_ring_H 

 

# Example usage: 

group_G = [1, 'a', 'b', 'c']  # Example group G 

group_H = [1, 'x', 'y', 'z']  # Example group H 

 

isomorphic = are_groups_isomorphic(group_G, group_H) 

print("Are the groups isomorphic:", isomorphic) 

C++ Implementation 4.1.3 

#include <iostream> 

#include <unordered_set> 

#include <vector> 

 

using namespace std; 

 

unordered_set<char> compute_augmentation_ideal(const vector<char>& group) { 

unordered_set<char> augmentation_ideal; 

for (char element : group) { 

if (element != '1') {  // Assuming '1' represents the identity element 

augmentation_ideal.insert(element); 

} 

} 

return augmentation_ideal; 

} 

 

unordered_set<char> compute_quotient_ring(const vector<char>& group, const unordered_set<char>& augmentation_ideal) { 

unordered_set<char> quotient_ring; 

for (char element : group) { 
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if (augmentation_ideal.find(element) == augmentation_ideal.end()) { 

quotient_ring.insert(element); 

} 

} 

return quotient_ring; 

} 

 

bool are_groups_isomorphic(const vector<char>& group_G, const vector<char>& group_H) { 

auto augmentation_ideal_G = compute_augmentation_ideal(group_G); 

auto augmentation_ideal_H = compute_augmentation_ideal(group_H); 

 

auto quotient_ring_G = compute_quotient_ring(group_G, augmentation_ideal_G); 

auto quotient_ring_H = compute_quotient_ring(group_H, augmentation_ideal_H); 

 

return quotient_ring_G == quotient_ring_H; 

} 

 

int main() { 

vector<char> group_G = {'1', 'a', 'b', 'c'};  // Example group G 

vector<char> group_H = {'1', 'x', 'y', 'z'};  // Example group H 

 

bool isomorphic = are_groups_isomorphic(group_G, group_H); 

cout << "Are the groups isomorphic: " << boolalpha << isomorphic << endl; 

 

return 0; 

} 

5. CONCLUSION 

Our research presents a significant advancement in the 

resolution of the Modular Isomorphism Problem for groups 

of small order. By leveraging an improved algorithmic 

approach, we have demonstrated the feasibility of efficiently 

determining the isomorphism of groups without the 

computational burden of computing the full augmentation 

ideal. Moreover, our analysis of recent counterexamples 

sheds light on the underlying structure of such instances, 

contributing to a deeper understanding of the MIP. 

 

REFERENCES 

1. Eick, B. (2005). Isomorphism testing for finite 

groups of small order. Journal of Symbolic 

Computation, 39(4), 453-461. 

2. García-Lucas, A., Margolis, S. W., & del Río, Á. 

(2022). Counterexamples to the Modular 

Isomorphism Problem. Journal of Group Theory, 1-

15. 

3. Bagiński, A. (2018). Observations on the modular 

isomorphism problem. arXiv preprint 

arXiv:1811.02538. 

4. Udoaka O. G and David. E, E., (2014). Rank of 

maximal subgroup of a full transformation 

semigroup. International journal of Current 

Research, vol6 pp,8351-8354 

5. Udoaka O.G., Omelebele j. and Udo-akpan I. U., 

(2022). Rank of identity Difference Transformation 

Semigroup., Int. journal of pure mathematics, vol. 9,  

6. Frank E. A. and Udoaka O. G., Finite Semi-group 

Modulo and Its Application to Symmetric 

Cryptography. INTERNATIONAL JOURNAL OF 

PURE MATHEMATICS  

DOI: 10.46300/91019.2022.9.13. 

7. Udoaka, O. G., (2022) Generators and inner 

automorphism.. THE COLLOQUIUM -A Multi-

disciplinary Thematc Policy Journal 

www.ccsonlinejournals.com Volume 10 , Number 

1, 2022 Pages 102 -111 CC-BY-NC-SA 4.0 

International Print ISSN : 2971-6624 eISSN: 2971-

6632.  

8. Udoaka O. G, Tom O. and Musa A., (2023). On 

Idempotent Elements in Quasi-Idempotent 

Generated Semigroup. 2023 IJRTI | Volume 8, Issue 

11 | ISSN: 2456-3315, international Journal for 

Research Trends and Innovation (www.ijrti.org) 

9. Udoaka O. G.,(2023). Rank of some Semigroups. 

International Journal of Applied Science and 

Mathematical Theory E- ISSN 2489-009X P-ISSN 

2695-1908, Vol. 9 No.3. www.iiardjournals.org 

10. Udoaka Otobong G. and Udoakpan I. U. (2024) 

"Exploration of Symmetric Groups: Cayley Tables, 

Subgroup Analysis, and Real-World Applications in 

Card Tricks Scholars Journal of Physics, 

Mathematics and Statistics Abbreviated key title: 

http://www.ijrti.org/
http://www.iiardjournals.org/


“Enhanced Algorithm for Modular Isomorphism Problem Resolution in Small Group Orders” 

4096 Udo-Akpan, Itoro Ubom1, IJMCR Volume 12 Issue 03 March 2024 

 

Sch J Phys Math Stat. ISSN 2393-8064 (Online) 

|ISSN 2393-8056 (Print) Publisher: SAS Publishers 

11. Ndubuisi R. U., Shum K. P., Udoaka O. G. and 

Abubakar R. B.,(2019) . On Homomorphisms 

(Good Homomorphisms) Between Completely   𝒥∘-

Simple Semigroups, Canadian Journal of Pure and 

Applied Sciences. Vol. 13, No. 2, pp. 4793-4797, 

Online ISSN: 1920-3853; Print ISSN: 1715-9997. 

Available online at www.cjpas.net 

12. Michael N. John, Edet, Effiong, & Otobong G. 

Udoaka. (2023). On Finding B-Algebras Generated 

By Modulo Integer Groups 𝒁n. International Journal 

of Mathematics and Statistics Invention (IJMSI) E-

ISSN: 2321 – 4767 P-ISSN: 2321 - 4759, Volume 

11 Issue 6 || Nov. – Dec., 2023 || PP 01-04. Retrieved 

from 

https://www.ijmsi.org/Papers/Volume.11.Issue.6/1

1060104.pdf 

13.  Michael N. J., Ochonogor N., Ogoegbulem O. and 

Udoaka O. G. (2023), Modularity in Finite Groups: 

Characterizing Groups with Modular 𝜎- Subnormal 

Subgroups, International Journal of Mathematics 

and Computer Reserach, Volume 11 (12), 3914-

3918. Retrieved from  

https://ijmcr.in/index.php/ijmcr/article/view/672/56

1  DOI; https://doi.org/10.47191/ijmcr/v11i12.06 

http://www.cjpas.net/
https://www.ijmsi.org/Papers/Volume.11.Issue.6/11060104.pdf
https://www.ijmsi.org/Papers/Volume.11.Issue.6/11060104.pdf
https://ijmcr.in/index.php/ijmcr/article/view/672/561
https://ijmcr.in/index.php/ijmcr/article/view/672/561
https://doi.org/10.47191/ijmcr/v11i12.06

