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1. INTRODUCTION 

The concept of generalized non-expansive mappings was 

introduced by Hardy and Rogers [16]. Further, generalized 

non-expansive mapping was introduced by Suzuki’s or called 

condition (c)[29]. It can be defined in many settings of metric 

spaces. Let G: Y→Y be a self-map on a nonempty subset Y 

of a Banach space X. It is known that if G has a fixed point 

then G is quasi non-expansive mapping. The class of 

generalized non-expansive mappings is larger than the class 

of non-expansive mapping and smaller than the class of quasi 

non-expansive mappings was defined by Fukhar-ud-din and 

Saleh [8]. The class of mappings satisfying Suzuki’s 

condition (c) is larger than the class of non-expansive 

mappings and smaller than the class quasi non-expansive 

mappings was defined by Suzuki’s [29]. The existence and 

convergence theorems for non-expansive, generalized non-

expensive and suzuki's condition (c) have been studied by 

several authors, e.g. see Bogin [4], Wong [34], Goebel et al. 

[10],  

Gursoy et al. [14], Gursoy et al. [15], Thakur et al. [30], 

Dhomphonhsa et al. [7], Ali et al. [2], Uddin and Imdad 

(a)[31], Uddin and Imdad (b)[32], Uddin and Imdad [33]. 

Let G: Y →Y be a self-map on a nonempty subset Y of a 

Banach space X and {rn}and {sn} real sequences in (0,1) for 

all n  ≥  0. Non-expensive mappings of approximate fixed 

point for an iteration scheme introduced by Mann [23] which 

is generated by an arbitrary point p1 𝜖 Y 

pn+1 = (1 − rn)pn + rnGqn,                           n ϵ Y                                                                                                     

(1.1) 

Where {rn}real sequence in (0,1).  It is known as Mann 

iterative scheme which fails to converge to a fixed point of 

pseudo contractive mappings. Pseudo contractive mappings 

of approximate fixed point two steps iteration scheme was 

introduced by Ishikhawa [17] which is generated by arbitrary 

point p1 𝜖 Y 

{
pn+1 = (1 − rn)pn + rnGqn                                  
  qn = (1 − sn)pn + snGpn,                           n ϵ Y 

                                                                                                   

(1.2) 

Where {rn} and {sn}real sequence in (0,1). In the past few 

decades, large number of iterative schemes were introduced 

and studied by several authors i e. Noor [25], S.Agrawal[1] 

Picard -S Gursoy and karakaya[12], Gursoy[13] and Thakur 

et. al.[30] respectively, which are generated by an arbitrary p1 

ϵ  Y 

{

pn+1 = (1 − rn)pn + rnGqn                                       
qn = (1 − sn)pn + snGwn                                          

wn = (1 − tn)pn + tnGpn,                                n ϵ Y 
                                                                                         

(1.3) 

{
pn+1 = (1 − rn)Gpn + rnGqn                                   
  qn = (1 − sn)pn + snGpn,                               n ϵ Y 

                                                                                         

(1.4) 

{

pn+1 = Gqn                                                                       
qn = (1 − rn)Gpn + rnGwn                                         
wn = (1 −  sn)pn + snGpn,                               n ϵ Y 

                                                                                         

(1.5) 

{

pn+1 = Gqn                                                                       
qn = G((1 − rn)Gpn + rnwn)                                     
wn = (1 − sn)pn + snGpn,                                 n ϵ Y 

                                                                                      

(1.6) Where {rn},{sn}and {tn}real sequence in (0,1). Recently 
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In 2020 a new iteration process called JF-iteration scheme 

was introduced by Ali [3] which defined as follow 

{

pn+1 = G((1 − rn)qn + rnGqn)                                    
qn     = Gwn                                                                          
wn   = G((1 − sn)pn + snGpn),                         n ϵ Y 

                                                                                     

(1.7) 

They obtained some basic properties for Generalized non 

expensive mappings due to Hardy and Rogers [16]. Also, they 

proved some convergence results using JF-iteration scheme 

for Generalized non expensive mappings in uniformly convex 

Banach Space. Lim [22] introduced the concept of ∆-

convergence. Motivated by above, we use JF-iteration 

process for proving some ∆-convergence and strong 

convergence theorems for mapping in hyperbolic spaces. 

 

2. PRELIMINARIES 

In this study, we discuss on the setting of hyperbolic spaces 

which was introduced by kohlenbach [19], containing normed 

linear spaces and convex subsets and Hadamrd manifolds 

[27], CAT(0) spaces in the sense of Gromov[11] and Hilbert 

ball equipped with the hyperbolic metric [27]. In this context 

we need some definitions, lemmas and prepositions which 

will be used in the sequel, 

Definition[19] A hyperbolic space is a triple (X, d, W) where 

(X, d) is a metric space and W:X2 × [0,1] →X such that (W1)   

d(w, W(u, v, 𝜔) ≤ (1-𝜔)d(w, u) + 𝜔d(w, v) 

       (W2)   d(W(u, v, 𝜔), d(u, v, 𝜎)) =│𝜔 − 𝜎│d(u, v), 

       (W3)   W(u, v, 𝜔) = W(v, u, (1 – 𝜔)), 

       (W4)   d(W(u, z, 𝜔),W(v, w, 𝜔) ≤ (1 – 𝜔)d(u, v) + 𝜔d(z, 

w) 

For all u, v, w, z 𝜖 X and 𝜔, 𝜎 ∈ [01] 

Definition [20]A hyperbolic space (X, d, W) is 

called uniformly convex, if for all u, v, z ∈ X, r > 0 and 𝜀 ∈

 (0 2] there exists 𝛿 𝜖 (0 1], such that d(v, u) ≤ r, d(z, u) ≤ r 

and d(v, z)  ≤  𝜀r. Then, 

        d(W(v, z, ½ ), u) ≤ (1 – 𝛿 )r.                                                                                                                             

(2.1) 

Definition [20] A mapping𝜇: (0 ∞ ) × (0 2] → (0 1) which 

provides 𝛿 =  𝜇(𝑟, 𝜀) for a given r > 0 and 𝜀 𝜖 (0 2] is well 

known as a modulus of uniform convexity of X. We call 𝜇  as 

a monotone if it decreases with r (for a fixed 𝜀), i.e., for any 

given 𝜖 > 0 and for any r2 > r1 > 0, we have 𝜇 (r2, 𝜀 ) ≤ (r1, 𝜀)     

Definition [20] A nonempty subset Y of a hyperbolic space is 

said to be convex if W(u, v, 𝜔) 𝜖 Y for any u, v 𝜖 Y  and 𝜔 𝜖 

[0 1]. If u, v 𝜖 X and 𝜔 𝜖 [0, 1], then we use the notion (1- 

𝜔 )u(+) 𝜔v for W(u, v, 𝜔 ). In [20], it is remarked that any 

normed space (X, ││.││)  is a hyperbolic space, with(1 - 

𝜔 )u(+) 𝜔v = (1 -  𝜔 )u +𝜔v . Hence, the class of uniformly 

convex hyperbolic spaces is a natural generalization of 

uniformly convex Banach spaces.  

Firstly, the JF-iteration process is expressed in the Hyperbolic 

space as follow: 

{
 

 
pn ϵ  Y                                                                                
pn+1 = W(Gqn, qn, rn)                                                  

qn     = W(Gwn, pn, sn)                                                   

wn   = W(pn, Gpn, tn),                                     n ϵ Y    

                                                                                                    

(2.2) 

for all n ≥ 0, {rn}, {sn} & {tn}are real sequence in [0,1].                                                                                  

Let Y be a nonempty subset of metric space X. If G(p) = 

p, then p is said to be a fixed point of a mapping G. The set of 

all fixed points of G is denoted by F(G); F (G) = {x 𝜖 Y: Gx 

= x}. 

Definition [24] A mapping G : Y → Y is said to be 

i Non-expansive if d(Gu, Gv ) ≤ d(u, v) for all u, v  𝜖 Y ; 

ii Quasi non-expansive if F(G)  ≠ 𝜑 and d(Gu, Gp) ≤ d(u, 

p);  for all  u 𝜖 Y and p  𝜖 F(G). 

iii [16] Generalized non-expansive if for all u, v 𝜖 Y  

d(Gv , Gu) ≤ a1 d(v,u)+ a2 d(Gu, u) +a3 d(Gv, v) +a4 d(Gv, u) 

+a5  d(Gu,v)                                                           (2.3) 

Where a1,…,a5 are non-negative real numbers with a1+ a2 + a3 

+ a4 + a5 ≤ 1 

C.F Fuster and Galves [9] defined the condition is equivalent 

to the following condition 

d(Gv ,Gu) ≤  a d(v, u) + b (d(Gu, u) + d(Gv, v)) + c (d(Gv, 

u)+ d(Gu, v))                                                         (2.4) 

For all u, v 𝜖 Y, where a, b, c are non-negative constants with 

a + 2b + 2c ≤ 1 and a = a1, b = a2+a3/2, c = a4+a5/2 

 iv [29] Suzuki’s or called condition (c), which is defined as 

follows if  

½ d(Gu, u) ≤ d(v, u)  implies d( Gv, Gu) ≤ d(v, u);       ∀ u, v 

𝜖 Y.                                                                           (2.5) 

Lemma 2.1 [3] Let G: Y → Y be a generalized non-expansive 

mapping satisfying (2.4), where Y is a nonempty subset of 

hyperbolic space X. Then 

d(Gv, u) ≤ d(v, u) + 
1+𝑏+𝑐

1−𝑏−𝑐
  d(Gu, u); holds for all u, v 𝜖 Y.                                                                                

(2.6) 

by[7],We require the following definition of convergence in 

hyperbolic space which called ∆- convergence. The principle 

results are obtained by it. 

Let Y be nonempty, closed and convex subset of a Hyperbolic 

space X, {pn} a bounded sequence in X and u 𝜖 Y, we define 

a function r(., {pn}) : X→ [0,∞] by 

r(u, {pn}) = limsup n→  ∞ d(u, pn) 

An asymptotic radius of {pn} relative to Y is defined by 

r(Y, {pn}) = inf{r{u,{pn}) : u 𝜖 Y}. 

An asymptotic centre of {pn} relative to Y is defined by 

AC(Y, {pn}) = {u 𝜖 Y : r(u,{pn}) = r(Y, {pn}) }. 

The sequence{pn}in X is said to ∆-convergence to u 𝜖 Y if u 

is unique asymptotic centre of{wn}for every 

subsequence{wn} of{pn}. In this case, we write ∆-lim sup n →

∞ pn = p and call p the ∆-lim of {pn}. 

Lemma 2.2 [21] Let X be a complete uniformly convex 

Hyperbolic space with a monotone modulus of uniform 

convexity 𝜇.Then every bounded sequence {pn} in X has a 
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unique asymptotic centre with respect to any nonempty 

closed convex subset Y of X. 

Lemma 2.3 [18] Let X be a complete uniformly convex 

Hyperbolic space with a monotone modulus of uniform 

convexity 𝜇. Let u 𝜖 Y and{αn} be a sequence in [a, b] for 

some a, b 𝜖 (0, 1). If {pn} and {qn} are sequences in X such 

that limsup n→  ∞  d(pn, p) ≤ 𝜗, limsup n→  ∞ d(qn, p) ≤ 𝜗 

and lim n→ ∞ d(W(pn, qn, αn), p) = 𝜗 for some 𝜗 ≥ 0. Then, 

lim n→  ∞  d(pn, qn) = 0. 

 

3. MAIN RESULTS  

First, we obtain the following useful lemmas which help us to 

prove main results 

Lemma 1 A Let G: Y → Y be a generalized non-expansive 

mapping satisfying (2.4), where Y is a nonempty closed & 

convex subset of a uniformly convex hyperbolic space X. Let 

{pn} be a sequence generated by (2.2); Then lim n→ꚙ d(p, 

pn) exists for all p ϵ F(G). 

Proof:-  let p ϵ F(G) & pn ϵ Y; since G is generalized non-

expansive mapping, we can easily obtain that 

d(Gp, Gpn) = d(p, pn) ≤ d(p, pn);  for all pn ϵ Y & p ϵ F(G) 

Thus using (2.2), we obtain that  

d(wn,p) = d(W(pn, Gpn, tn), p) 

              ≤ (1 – tn)d(pn, p) + tn d(Gpn, p) 

              = (1 – tn)d(pn, p) + tn d(Gpn,G p) 

              ≤ (1 – tn)d(pn, p) + tn d(pn, p) 

 d(wn, p) ≤ d(pn, p)                                                                                                                                              

(3.1) 

using (2.2) & (3.1)  

d(qn,p) = d(W(Gwn, wn, sn), p) 

              ≤ (1 – sn)d(Gwn, p) + sn d(wn, p) 

              = (1 – sn)d(Gwn, Gp) + sn d(wn,p) 

              ≤ (1 – sn)d(wn, p) + sn d(wn, p) 

 d(wn, p) ≤ d(qn, p) 

d(wn, p) ≤ d(pn, p)                                                                                                                                              

(3.2) 

using (2.2) & (3.2) 

d(pn+1,p) = d(W(Gqn, qn, rn), p) 

               ≤ (1 – rn)d(Gqn, p) + rn d(qn, p) 

               = (1 – rn)d(Gqn, Gp) + rn d(qn, p) 

               ≤ (1 –rn)d(qn, p) + rn d(pn, p) 

d(pn+1, p) ≤ d(qn, p) 

d(pn+1, p) ≤ d(qn, p)                                                                                                                                             

(3.3) 

Thus the sequence {d(pn, p)}is bounded below & decreasing 

. Hence lim n →ꚙ d(Pn, p) exists for all p ϵ F(G). 

Lemma 2 A Let G: Y → Y be a generalized non-expansive 

mapping satisfying (2.4), where Y is a nonempty closed & 

convex subset of a uniformly convex hyperbolic space X. Let 

{pn} be a sequence generated by (2.2). Then F(G)≠ 𝜑, if and 

only if {pn} is bounded & lim n→ꚙ d(Gpn, Pn) = 0. 

Proof:- Assume that F(G)≠ 𝜑, & p ϵ F(G), by lemma 1{pn}is 

bounded. 

Next we will indicate that lim n→ ∞ d(Gpn, pn) = 0 

Since G is generalized non-expansive mapping, we have  

d(p, Gpn) = d(Gp, Gpn) ≤ d(p,pn)                                                                                                                         

(3.4) 

from lemma1 we achieve lim n→ ∞ d(pn, p) exists for all p ϵ 

F(G) 

Assume that lim n → ∞ d(pn, p) = 𝛼, 𝛼 > 0. then 

d(wn,p) = d(W(pn, Gpn, tn), p) 

              ≤ (1 – tn)d(pn, p) + tn d(Gpn, p) 

              = (1 – tn)d(pn, p) + tn d(Gpn,G p) 

              ≤ (1 – tn)d(pn, p) + tn d(pn, p) 

 d(wn, p) ≤ d(pn, p) 

Taking limsup as n → ∞   

limsup n → ∞  d(wn, p) ≤ limsup n → ∞  d(pn, p) = 𝛼                                                                                          

(3.5) 

From (3.1) & (3.3) 

d(pn +1, p) ≤  d(qn, p) ≤ d(wn, p) 

d(pn+1, p) ≤ d(wn, p) 

Taking liminf as n → ∞   

𝛼 ≤ liminf n  → ∞  d(pn+1, p) ≤ liminf n  → ∞  d(wn, p)                                                                                        

(3.6) 

From (3.5) & (3.6) 

liminf n → ∞ d(wn, p) = 𝛼, we get that 

limsup n → ∞  d(wn, p) ≤ limsup n → ∞  d(pn, p) = 𝛼                                                                                          

(3.7) 

It follows from lemma 2.3, (3.6) & (3.7) 

lim n→ ∞ d(Gpn, pn) = 0 

Conversely, assume that {pn} is bounded and lim n→ ∞ 

d(Gpn, pn) = 0. Let p 𝜖 AC(Y, {pn}); 

Using lemma 2.1, we have  

r(Gp, {pn}) = limsup 𝑛 → ∞ d(Gp, pn) 

                  ≤ limsup 𝑛 → ∞ d(p, pn) + 
1+𝑏+𝑐

1−𝑏−𝑐
  d(Gp, pn); holds 

for all u, v 𝜖 Y.     

                  = limsup 𝑛 → ∞ d(p, pn) 

                  = r(p,{pn}) = r(Y, {pn}). 

That is Gp 𝜖 AC(Y,{pn}). Since X is uniformly convex, 

AC(Y,{pn}) is singleton, implying that Gp = p. 

Now we prove ∆-convergence theorem for generalized non-

expansive mappings in Hyperbolic space.     

Theorem 3.1 Let Y be a nonempty closed, convex subset of 

x and G: Y→Y be a generalized non-expansive mapping 

which satisfying condition (2.4) with F(G) ≠  𝜑,let{pn} ∆-

converges to a fixed points of G. 

Proof:- It follows from lemma 2 that {pn} is a bonded 

sequence. Thus,{pn}has a ∆-convergent subsequence. Now, 

we are going to show that every ∆-convergent subsequence 

of{pn} has a unique ∆-limit in F(G). 

Let u and v be ∆-limits of the sequences {pnj}and {pnk} of 

{pn}respectively. From lemma 2.2, we have  

AC(Y,{pnj}) = {u} & AC(Y,{pnk}) = {v} 

By lemma 2, we obtain that lim n→ ∞ d(pnj, Gpn) = 0 & lim 

n→ ∞ d(pnk, Gpn) = 0. 
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Next we prove that u & v are fixed points of G & u, v should 

be are unique, since G satisfies the condition (2.6) 

d(Gu,{pnj}) ≤ d(pnj, u) + 
1+𝑏+𝑐

1−𝑏−𝑐
  d(Gu, u)                                                                                                           

(3.8) 

Letting limsup 𝑛 → ∞ on both side of the above inequality, 

we get 

 r(Gu,{pnj}) = limsup 𝑛 → ∞ d(pnj, Gu)   

                    ≤ limsup 𝑛 → ∞ d(pnj, u) + 
1+𝑏+𝑐

1−𝑏−𝑐
  d(Gu, pnj) 

`                   ≤ limsup 𝑛 → ∞ d(pnj, u) = r(u,{pnj}) 

The uniqueness of the asymptotic centre implies Gu = u. 

Thus, u is a fixed point of G. 

Similarly, we also have v as a fixed point of G 

Finaly, we show that u =v. Suppose u v, and so by the 

uniqueness of an asymptotic centre, we have  

limsup 𝑛 → ∞ d(pn, u) = limsup 𝑛 → ∞ d(pnj, u)  

                                           <limsup 𝑛 → ∞ d(pnj, v) 

                                      = limsup 𝑛 → ∞ d(pn, u) 

                                      = limsup 𝑛 → ∞ d(pnk,v) 

                                     < limsup 𝑛 → ∞ d(pnk,u) 

                                      = limsup 𝑛 → ∞ d(pn, u) 

This is a contradiction. Thus u = v. Then {pn} ∆-converges ta 

a fixed point of G. 

Next, we prove some strong convergence theorems- 

Theorem 3.2 Let Y is a nonempty closed & convex subset of 

a uniformly convex hyperbolic space X &                             G 

: Y → Y be a self-mapping satisfying (2.4) with  F(G) ≠ 𝜑. 

Then the sequence {pn} generated by iterative scheme (2.2) 

converge to the a point of F(G) if and only if liminf n→

∞d(pn,F(G))=0 where                                                  d(pn, 

F(G)) = inf {d(pn, p); p ∈ F(G)}. 

Proof:-  Assume that {pn} converges to p ∈ F(G) so, lim n →

∞ d (pn, p) = 0, becaues 

0 ≤ d(pn, F(G) ≤ d(pn, p)  for all p 𝜖 F(G) 

Therefore liminf 𝑛 → ∞ d(pn, F(G)) = 0 

Conversely, assume that liminf 𝑛 → ∞ d(pn, F(G)) = 0 & p 

𝜖 F(G), from lemma1 lim  𝑛 → ∞  d(pn, p) exists for all p 

𝜖 F(G), therefore lim  𝑛 → ∞  d(pn, F(G)) = 0 by the 

assumption. 

Now it is enough to show that {pn} is Cauchy sequence in Y 

Therefore lim𝑛 → ∞ d(pn, F(G)) = 0, for a given 𝜀 > 0 there 

exists m0 𝜖 N such that for all n ≥ m0 

d(pn, F(G)) < 𝜀/2 

inf {d(pn, p; p 𝜖 F(G)} < 𝜀/2 

In particular, inf {d(pm0, p; p 𝜖 F(G)} < 𝜀/2, therefore there 

exists p 𝜖 F(G) such that  

 d(pm0, p) < 𝜀/2 

Now for m, n ≥ m0 

d(pm+n, p) ≤ d(pm+n, p) + d(pn, p)  

                   ≤ d(pm0, p) + d(pm0, p) 

                 = 2 d(pm0, p) 

 d(pm+n, p) < 𝜀 

Thus{pn}is a Cauchy sequence in Y, since Y is closed there 

is a point q 𝜖 Y such that lim 𝑛 → ∞ pn = q. Now lim 𝑛 → ∞ 

d(pn, F(G)) = 0. gives that d(q, F(G)), that is q 𝜖 F(G). 

Theorem 3.3 Let Y is a nonempty closed & convex subset of 

a uniformly convex hyperbolic space X & G:Y →Y be a self-

mapping satisfying (2.4) with F(G) ≠  𝜑 .Then the 

sequence{pn} generated by iterative scheme (2.2) converges 

strongly to a fixed point of G. 

Proof:- From the lemma 2.3, G has a fixed point. Now from 

lemma 2 we have  

liminf n →  ∞ d(pn, Gpn) = 0, since Y is compact there is a 

sub sequence {pnj}of {pn} such that pnj → pn strongly for some 

p 𝜖 Y. by lemma 2.1, we have  

d(Gp, pnj) ≤ d(p, pnj) + 
1+𝑏+𝑐

1−𝑏−𝑐
  d(pnj, Gpnj); ∀ j ≥ 1  

letting j → ∞, we get pnj → Gp. Thus Gp = p, i.e. p ∈ F(G). 

Also lim n → ∞ d(p, pn) exists by lemma 1. Hence p is the 

strong limit of {pn}. Condition(I) was introduced by Senter & 

Dotson [29] as a requirement for mapping which is defined as 

follow  

A mapping G: Y→Y is said to satisfy condition (I). If there 

exists a non-decreasing function g: R+ → R+ with          g(0) = 

0 & g(t) > 0, for all t > 0 such that d(u, Gu) ≥ g(d(u, F(G)), 

for all u 𝜖 Y. Here R+ denotes the set of all non-negative real 

numbers. 

Now we prove a strong convergence result using condition(I) 

Theorem 3.4 Let Y be a nonempty closed, convex subset of 

X and G: Y→Y be a generalized non-expansive mapping 

which satisfying condition (2.4) & condition (I). Then the 

sequence{pn} generated by (2.2) converges strongly to a fixed 

points of G 

Proof:- we proved the following in lemma 2 

lim n → ∞ d(Gpn, pn) = 0                                                                                                                              

(3.9) 

Using condition (I) & (3.9), we get   

0 ≤ lim n → ∞ g(d(pn, F(G)) ≤ lim n → ∞ d(Gpn, pn,) = 0 

implies lim n → ∞ g(d(pn, F(G)) = 0.From g: R+ → R+ with 

g(0) = 0 & g(t) > 0, for all t > 0 we have  

lim n → ∞ d(pn, F(G) = 0 

By applying Theorem 3.2, we obtain the desired result; 

therefore, the sequence {pn} converges strongly to a fixed 

point of G. 

 

4. NUMERICAL EXAMPLE 

Example 4.1 Let X = R with metric d(u, v) = |u-v| and 

Y=[0,1] be a non-empty compact convex subset of X. Define 

uniformly hyperbolic space with monotone modulus of 

uniform convexity. Let a mapping G: [0,1] → [0,1] defined 

by G(u) = 
u+7

8
 for all u  ϵ  [0,1]. Need to establish that G 

generalized non- expansive mapping due to hardy and rogers. 

Verification: if u = 
7

23
 ,v = 

1

8
  and a= 

1

2
 , b = 

2

5
 and c = 0, we 

see that 
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||Gu – Gv|| ≤  a ||u-v|| + b(||u-Gu|| + ||v-Gv||) +c(||u-Gv|| + ||v-

Gu||) 

|| 
178

2oo
 - 
57

64
 || ≤ 

1

2
 || 

7

23
 - 
1

8
 || + 

2

5
 [ || 

7

23
 - 
178

200
 || + || 

1

8
 - 
57

64
 ||] 

  0.022418 ≤ 0.4769014 

Hence, for a = 
1

2
 , b = 

2

5
 and c = 0 (a +2b+ 2c = 

9

10
 < 1) G is a 

generalized non-expansive mapping. With the help of manual 

computation, we compute that the sequence {pn} generated 

by JF iteration scheme converges to a fixed point 0.99999 of 

G, where an initial point 𝑝0 = 𝑢0 = 0.9 and for all n ≥ 0, we 

choose real sequence in [0,1] as                      𝑡𝑛 =  
1

10𝑛+2
 ,𝑟𝑛 =1 

and 𝑠𝑛 = 1 which is shown by the Table 1 and G has a unique 

fixed point 0.999999.Which is shown by the Table 1. 

 

Table 1: Sequence generated by generalized JF- iteration 

scheme 

Iterate Generalized JF- iteration scheme 

𝑝0 0.9 

𝑝1 0.999121 

𝑝2 0.999997 

𝑝3 0.999999 

𝑝4 0.999999 

𝑝5 0.999999 

𝑝6 0.999999 

 

5. CONCLUSION  

Our results extend the corresponding results of Ali [3] & P. 

Chuadchawna[5] in two ways; first, from M-iterative process 

to JF-iterative process, Second, from Banach spaces to the 

general setting of hyperbolic spaces. 
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