International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 03 March 2024, Page no. — 4097-4102

Index Copernicus ICV: 57.55, Impact Factor: 8.316
DOI: 10.47191/ijmcr/v12i3.03

e anal soursl OF
Warverrancs & Compater Resesron

Volume 13

mE

Strong and A-Convergence Results for Generalized Non-Expansive Type
Map pings through JF-Iteration Process in Hyperbolic Spaces.

A. S. Salujal, Aarti Patel?

! Department of mathematics, Institute for Excellence in Higher Education, IEHE, Bhopal (M.P.), 462016, India
2 Department of mathematics, Babulal Gour Govt. P. G. College BHEL, Bhopal (M.P.), 462022, India

ARTICLE INFO ABSTRACT

Published Online:

20 March 2024
Corresponding Author:
A. S. Saluja

In this paper, we prove some strong and A-convergence results for generalized non-expansive
mappings through JF-iterative process in hyperbolic spaces.

KEYWORDS: Generalized non-expansive mappings, Fixed Point, JF-iterative scheme, hyperbolic spaces.

1. INTRODUCTION

The concept of generalized non-expansive mappings was
introduced by Hardy and Rogers [16]. Further, generalized
non-expansive mapping was introduced by Suzuki’s or called
condition (c)[29]. It can be defined in many settings of metric
spaces. Let G: Y—-Y be a self-map on a nonempty subset Y
of a Banach space X. It is known that if G has a fixed point
then G is quasi non-expansive mapping. The class of
generalized non-expansive mappings is larger than the class
of non-expansive mapping and smaller than the class of quasi
non-expansive mappings was defined by Fukhar-ud-din and
Saleh [8]. The class of mappings satisfying Suzuki’s
condition (c) is larger than the class of non-expansive
mappings and smaller than the class quasi non-expansive
mappings was defined by Suzuki’s [29]. The existence and
convergence theorems for non-expansive, generalized non-
expensive and suzuki's condition (c) have been studied by

Where {r.}real sequence in (0,1). It is known as Mann
iterative scheme which fails to converge to a fixed point of
pseudo contractive mappings. Pseudo contractive mappings
of approximate fixed point two steps iteration scheme was
introduced by Ishikhawa [17] which is generated by arbitrary
pointpi e Y
{pn+1 = (1 - ry)pn +1raGaqn

an = (1 = sp)pn + SnGpy, ney
(1.2)
Where {r.} and {sn}real sequence in (0,1). In the past few
decades, large number of iterative schemes were introduced
and studied by several authors i e. Noor [25], S.Agrawal[1]
Picard -S Gursoy and karakaya[12], Gursoy[13] and Thakur
et. al.[30] respectively, which are generated by an arbitrary p:
eY

Pn+1 = (1 - rn)pn + rann

dn = (1 = sp)pn + snGwy,

several authors, e.g. see Bogin [4], Wong [34], Goebel et al. Wy = (1 = t3)pn + thGpy, ney

[10], (1.3)

Gursoy et al. [14], Gursoy et al. [15], Thakur et al. [30], {pn+1 = (1 = ry)Gpy +1,Gay

Dhomphonhsa et al. [7], Ali et al. [2], Uddin and Imdad an = (1 = sp)pn + SnGpy, ney

(a)[31], Uddin and Imdad (b)[32], Uddin and Imdad [33]. (1.4)

Let G: Y =Y be a self-map on a nonempty subset Y of a Pn+1 = Gdn

Banach space X and {rn}and {s.} real sequences in (0,1) for dn = (1 = 1)Gpp + 1y Gwy

all n = 0. Non-expensive mappings of approximate fixed Wn = (1= Sn)Pn + 5aGPn, ney

point for an iteration scheme introduced by Mann [23] which (1p'5)1 - Gq

is generated by an arbitrary point p1 e Y ql‘:": G((1n— F)Gpy + W)

Pn+1 = (1 - rn)pn + I'ann' neY Wy = (1 — Sn)pn + SnGpn: neY

(1.1) (1.6) Where {rn},{sn}and {tn}real sequence in (0,1). Recently
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In 2020 a new iteration process called JF-iteration scheme
was introduced by Ali [3] which defined as follow
Pn+1 = G((1 — ry)q, + r,Gqy)

dn = Gwy
wn = G((1 — sp)pn + SnGpn), neyY
(L.7)

They obtained some basic properties for Generalized non
expensive mappings due to Hardy and Rogers [16]. Also, they
proved some convergence results using JF-iteration scheme
for Generalized non expensive mappings in uniformly convex
Banach Space. Lim [22] introduced the concept of A-
convergence. Motivated by above, we use JF-iteration
process for proving some A-convergence and strong
convergence theorems for mapping in hyperbolic spaces.

2. PRELIMINARIES
In this study, we discuss on the setting of hyperbolic spaces
which was introduced by kohlenbach [19], containing normed
linear spaces and convex subsets and Hadamrd manifolds
[27], CAT(0) spaces in the sense of Gromov[11] and Hilbert
ball equipped with the hyperbolic metric [27]. In this context
we need some definitions, lemmas and prepositions which
will be used in the sequel,
Definition[19] A hyperbolic space is a triple (X, d, W) where
(X, d) is a metric space and W:X? x [0,1] —X such that (W1)
d(w, W(u, v, ) < (1-w)d(w, u) + wd(w, v)

(W2) d(W(u,v, w), d(u, v, o)) =|w — o |d, v),

(W3) W(u, v, w) =W(v,u, (1-w)),

(W4) d(W(u, z, w),W(v, w, w) <(1 - w)d(u, v) + wd(z,
w)
Forallu,v,w,z e Xand w,a €[01]
Definition [20]JA hyperbolic space (X, d, W)is
called uniformly convex, if forallu,v,ze X, r>0and ¢ €
(0 2] there exists & € (0 1], such that d(v, u) <r, d(z, u) <r
and d(v, z) < er. Then,

dwv, 2z % ), w < @ - 6 )r
(2.1)
Definition [20] A mappingu: (0 e ) x (0 2] = (0 1) which
provides § = u(r,¢) for a given r > 0 and € € (0 2] is well
known as a modulus of uniform convexity of X. We call u as
a monotone if it decreases with r (for a fixed ¢), i.e., for any
given € > 0 and for any r. > r; > 0, we have u (r2, € ) <(ry, €)
Definition [20] A nonempty subset Y of a hyperbolic space is
said to be convex if W(u, v, w) e Y foranyu,ve Y and w €
[0 1]. If u, ve X and w € [0, 1], then we use the notion (1-
w )u(+) wv for W(u, v, w ). In [20], it is remarked that any
normed space (X, | |.||) is a hyperbolic space, with(1 -
w ))u(*+) wv = (1 - w)u +wv . Hence, the class of uniformly
convex hyperbolic spaces is a natural generalization of
uniformly convex Banach spaces.
Firstly, the JF-iteration process is expressed in the Hyperbolic
space as follow:

pn€Y
{pn+1 = W(Gqp, qn, Tn)

dn = W(Gwy, pn, Sn)

Wnp = W(pn: Gpn, tn)! neY
(2.2)
foralln >0, {rn}, {sn} & {tn}are real sequence in [0,1].
Let Y be a nonempty subset of metric space X. If G(p) =
p, then p is said to be a fixed point of a mapping G. The set of
all fixed points of G is denoted by F(G); F (G) = {x € Y: Gx
=x}.
Definition [24] A mapping G : Y — Y is said to be
i Non-expansive if d(Gu, Gv ) <d(u, v) forallu,v €Y ;
ii Quasi non-expansive if F(G) # ¢ and d(Gu, Gp) < d(u,
p); forall ueYandp e F(G).
iii [16] Generalized non-expansive if forallu,ve Y
d(Gv, Gu) <ajd(v,u)+ a,d(Gu, u) +az d(Gv, v) +a4 d(Gv, u)
+as d(Gu,v) (2.3)
Where ay,...,as are non-negative real numbers with a;+ a; + a3
tatas<l1
C.F Fuster and Galves [9] defined the condition is equivalent
to the following condition
d(Gv ,Gu) < ad(v, u) +b (d(Gu, u) + d(Gv, v)) + ¢ (d(Gv,
u)+ d(Gu, v)) (2.4)
Forall u, v € Y, where a, b, ¢ are non-negative constants with
a+2b+2c<1anda=a;,b=atasl2, c=astas/2
iv [29] Suzuki’s or called condition (c), which is defined as
follows if
% d(Gu, u) <d(v, u) impliesd( Gv, Gu) <d(v,u); Vu,V
€Y. (2.5)
Lemma2.1[3] Let G: Y = Y be ageneralized non-expansive
mapping satisfying (2.4), where Y is a nonempty subset of
hyperbolic space X. Then

1+b+c

d(Gv, u) <d(v, u) + o
(2.6)
by[7],We require the following definition of convergence in
hyperbolic space which called A- convergence. The principle
results are obtained by it.
Let Y be nonempty, closed and convex subset of a Hyperbolic
space X, {pn} a bounded sequence in X and u € Y, we define
a function r(., {pn}) : X- [0,00] by
r(u, {pn}) = limsup n— oo d(u, pn)
An asymptotic radius of {pn} relative to Y is defined by
r(Y, {pn}) = inf{r{u{p}) :ue Y}.
An asymptotic centre of {pn} relative to Y is defined by
AC(Y, {pn}) ={ue Y :r(u{pn}) = r(Y, {pn}) }.
The sequence{pn}in X is said to A-convergence to u e Y if u
is unique asymptotic centre  of{w.}for every
subsequence{wn} of{pn}. In this case, we write A-limsupn —
oo py = p and call p the A-lim of {pn}.
Lemma 2.2 [21] Let X be a complete uniformly convex
Hyperbolic space with a monotone modulus of uniform
convexity u.Then every bounded sequence {pn} in X has a

d(Gu, u); holds for all u, ve.
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unique asymptotic centre with respect to any nonempty
closed convex subset Y of X.

Lemma 2.3 [18] Let X be a complete uniformly convex
Hyperbolic space with a monotone modulus of uniform
convexity u. Let ue Y and{an} be a sequence in [a, b] for
some a, b € (0, 1). If {pn} and {qg.} are sequences in X such
that limsup n— oo d(pn, p) <9, limsup n— oo d(gn, p) <V
and lim n— oo d(W(pn, qn, an), p) =9 for some 9 > 0. Then,
limn- oo d(pn, gn) =0.

3. MAIN RESULTS
First, we obtain the following useful lemmas which help us to
prove main results
Lemma 1 A Let G: Y — Y be a generalized non-expansive
mapping satisfying (2.4), where Y is a nonempty closed &
convex subset of a uniformly convex hyperbolic space X. Let
{pn} be a sequence generated by (2.2); Then lim n—[J d(p,
pn) exists for all p € F(G).
Proof:- let p € F(G) & pne Y; since G is generalized non-
expansive mapping, we can easily obtain that
d(Gp, Gpn) = d(p, pn) < d(p, pn); forallpreY & p e F(G)
Thus using (2.2), we obtain that
d(Wﬂ’p) = d(W(pm Gpn’ tn)v p)

< (1 —ta)d(pn, p) + tn d(Gpn, p)

= (1 - ta)d(pn, p) + tn d(Gpn,G p)

< (1 —ta)d(pn, P) + ta d(pn, P)
d(Wna p) < d(p”7 p)
(3.1)
using (2.2) & (3.1)
d(gn,p) = d(W(GWn, Wh, Sn), p)

< (1 = sn)d(GWn, p) + sn d(wh, p)

= (1 — sn)d(Gwn, Gp) + sn d(Wn,p)

< (1 = sn)d(Wh, p) + sn d(Wn, p)
d(wn, p) < d(gn, P)
d(wn, p) < d(pn, P)
(3.2)
using (2.2) & (3.2)
d(Pn+1,p) = d(W(GGpn, On, ), P)

< (1= r)d(Gan, p) + ra d(an, P)

= (1 - rn)d(Gapn, Gp) + 1 d(qn, P)

< (1 =ta)d(Gn, ) + T d(Pn, P)
d(Pn+1, p) < d(Qn, P)
d(Pr, P) < d(qn, P)
(3.3)
Thus the sequence {d(pn, p)}is bounded below & decreasing
. Hence lim n —[J d(Pn, p) exists for all p € F(G).
Lemma 2 A Let G: Y = Y be a generalized non-expansive
mapping satisfying (2.4), where Y is a nonempty closed &
convex subset of a uniformly convex hyperbolic space X. Let
{pn} be a sequence generated by (2.2). Then F(G)# ¢, if and
only if {pn} is bounded & lim n— 7 d(Gpn, Pn) = 0.
Proof:- Assume that F(G)= ¢, & p € F(G), by lemma 1{pn}is
bounded.

Next we will indicate that lim n— oo d(Gpn, pn) =0
Since G is generalized non-expansive mapping, we have
d(p, Gpn) = d(Gp, Gpn) < d(p,pn)
(3.4)
from lemmal we achieve lim n— oo d(pn, p) exists for all p €
F(G)
Assume that lim n — oo d(ps, p) = a, @ > 0. then
d(Wn,p) = d(W(pn! Gpn, tn), p)
< (1 —ta)d(pn, p) + tn d(Gpn, P)
= (1 - ta)d(pn, p) + ta d(Gpn,G p)
< (I =ta)d(pn, p) + tn d(pn, P)
d(wn, p) < d(pn, P)
Taking limsup as n - o
limsup n— oo d(wn, p) < limsup n—> o d(ps, p) = «a
(3.5)
From (3.1) & (3.3)
d(p” +1, p) < d(qn, p) < d(Wn, p)
d(pn+1, p) < d(Wn, p)
Taking liminfash - o
a < liminf n - oo d(pn+1, p) < liminf n — oo d(wn, p)
(3.6)
From (3.5) & (3.6)
liminf n - oo d(wh, p) = a, we get that
limsup n— oo d(wy, p) < limsup n—co d(pn, p) = a
3.7)
It follows from lemma 2.3, (3.6) & (3.7)
lim n— oo d(Gpn, pn) =0
Conversely, assume that {pn} is bounded and lim n— oo
d(Gpn, pn) = 0. Let p e AC(Y, {pn});
Using lemma 2.1, we have
r(Gp, {pn}) = limsup n - co d(Gp, pn)

<limsup n = oo d(p, pn) + Ltbe

1-b-c

d(Gp, pn); holds

forallu,veY.

= limsup n — oo d(p, pn)

=r(ppn}) = (Y, {pn}).
That is Gp € AC(Y,{pn}). Since X is uniformly convex,
AC(Y,{pn}) is singleton, implying that Gp = p.
Now we prove A-convergence theorem for generalized non-
expansive mappings in Hyperbolic space.
Theorem 3.1 Let Y be a nonempty closed, convex subset of
x and G: Y—Y be a generalized non-expansive mapping
which satisfying condition (2.4) with F(G) = ¢,let{pn} A-
converges to a fixed points of G.
Proof:- It follows from lemma 2 that {p.} is a bonded
sequence. Thus,{pn}has a A-convergent subsequence. Now,
we are going to show that every A-convergent subsequence
of{pn} has a unique A-limit in F(G).
Let u and v be A-limits of the sequences {pn}and {pn} of
{pn}respectively. From lemma 2.2, we have
AC(Y {pn}) = {u} & AC(Y,{pn}) = {v}
By lemma 2, we obtain that lim n— oo d(psj, Gpn) = 0 & lim
n— oo d(pnk, Gpn) = 0.
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Next we prove that u & v are fixed points of G & u, v should
be are unique, since G satisfies the condition (2.6)
dGufps}) < dpm W) o+ o= dGu, u)
(3.8)

Letting limsup n — oo on both side of the above inequality,
we get

r(Gu,{pnj}) = limsup n — oo d(pr;, Gu)

1+b+c

e d(GU, p)
< limsup n — oo d(pn;, u) = r(u.{pn})

The uniqueness of the asymptotic centre implies Gu = u.
Thus, u is a fixed point of G.
Similarly, we also have v as a fixed point of G
Finaly, we show that u =v. Suppose u v, and so by the
unigueness of an asymptotic centre, we have
limsup n = oo d(pn, U) = limsup n — oo d(pn;j, U)

<limsup n = oo d(pnj, V)

= limsup n — oo d(pn, U)

=limsup n - o d(pnk,V)

< limsup n — oo d(pnk,u)

=limsup n — oo d(pn, U)
This is a contradiction. Thus u = v. Then {pn} A-converges ta
a fixed point of G.
Next, we prove some strong convergence theorems-
Theorem 3.2 Let Y is a nonempty closed & convex subset of
a uniformly convex hyperbolic space X & G
:Y = Y be a self-mapping satisfying (2.4) with F(G) # ¢.
Then the sequence {pn} generated by iterative scheme (2.2)
converge to the a point of F(G) if and only if liminf n—
ood(pn,F(G))=0 where d(pn,
F(G)) = inf{d(pn, p); p € F(G)}.
Proof:- Assume that {pn} converges to p € F(G) so, limn —
oo d (pn, p) = 0, becaues
0 < d(pn, F(G) < d(pn, p) forall p e F(G)
Therefore liminfn — oo d(pn, F(G)) =0
Conversely, assume that liminfn — oo d(pn, F(G)) =0 & p
€ F(G), from lemmal lim n — oo d(pn, p) exists for all p
€ F(G), therefore lim n — o d(p,, F(G)) = 0 by the
assumption.
Now it is enough to show that {p,} is Cauchy sequence in Y
Therefore limn — oo d(ps, F(G)) = 0, for a given £ > 0 there
exists mo € N such that for all n > mg
d(pn, F(G)) < €/2
inf {d(pn, p; pe F(G)} < €/2
In particular, inf {d(pmo, p; p € F(G)} < &/2, therefore there
exists p € F(G) such that
d(pmo, p) < /2
Now for m, n = mg
d(Pm+n, P) < d(Pmen, P) + d(Pn, P)

< d(pmo, P) + d(pmo, P)
= 2.d(pmo, P)

d(pm+n, P) < €

<limsup n — oo d(pyj, U) +

Thus{pn}is a Cauchy sequence in Y, since Y is closed there
is a point g € Y such that limn — oo p, =g. Now limn - o
d(pn, F(G)) = 0. gives that d(g, F(G)), that is g € F(G).
Theorem 3.3 Let Y is a nonempty closed & convex subset of
a uniformly convex hyperbolic space X & G:Y —Y be a self-
mapping satisfying (2.4) with F(G) # ¢ .Then the
sequence{pn} generated by iterative scheme (2.2) converges
strongly to a fixed point of G.

Proof:- From the lemma 2.3, G has a fixed point. Now from
lemma 2 we have

liminf n - oo d(pn, Gpn) = 0, since Y is compact there is a
sub sequence {pnj}of {pn} such that p,; = pn strongly for some

p e Y. bylemma 2.1, we have
1+b+c

d(Gp, pni) < d(p, pnj) + 7, — d(Pnj, Gpm); Vj = 1

letting j —» oo, we get pnj— Gp. Thus Gp = p, i.e. p € F(G).
Also lim n - oo d(p, pn) exists by lemma 1. Hence p is the
strong limit of {pn}. Condition(l) was introduced by Senter &
Dotson [29] as a requirement for mapping which is defined as
follow

A mapping G: Y=Y is said to satisfy condition (I). If there
exists a non-decreasing function g: R+ = R+ with g(0) =
0 & g(t) > 0, for all t > 0 such that d(u, Gu) = g(d(u, F(G)),
for all u € Y. Here R+ denotes the set of all non-negative real
numbers.

Now we prove a strong convergence result using condition(l)
Theorem 3.4 Let Y be a nonempty closed, convex subset of
X and G: Y—Y be a generalized non-expansive mapping
which satisfying condition (2.4) & condition (I). Then the
sequence{pn} generated by (2.2) converges strongly to a fixed
points of G

Proof:- we proved the following in lemma 2

lim n - o d(Gpn, Pn) = 0
(3.9)

Using condition (1) & (3.9), we get

0 < lim n - oo g(d(pn, F(G)) < lim n - oo d(Gpn, pn,) =0
implies lim n — oo g(d(ps, F(G)) = 0.From g: R+ = R+ with
0(0) =0 & g(t) > 0, for all t > 0 we have

limn — oo d(pn, F(G) =0

By applying Theorem 3.2, we obtain the desired result;
therefore, the sequence {pn} converges strongly to a fixed
point of G.

4. NUMERICAL EXAMPLE

Example 4.1 Let X = R with metric d(u, v) = |u-v| and
Y=[0,1] be a non-empty compact convex subset of X. Define
uniformly hyperbolic space with monotone modulus of
uniform convexity. Let a mapping G: [0,1] — [0,1] defined

u+7

by G(u) = e for all u e [0,1]. Need to establish that G

generalized non- expansive mapping due to hardy and rogers.

Verification: if u = — V= % and azl, b=2andc = 0, we
23 8 2 5

see that
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IGu—Gv]| < alu-v]| + b(|lu-Gul| + [Iv-GVI]) +c([lu-GvI| + [jv-
Gul)

178 57 1 7 1 2 7
L | i | 2T -
oo sall =zl -5l+5Tl5

0.022418 < 0.4769014
Hence, fora:%,bzgand c:O(a+2b+2(::1—90 <1l)Gisa

178

1 57
Zooltllg-2 11

generalized non-expansive mapping. With the help of manual
computation, we compute that the sequence {p,} generated
by JF iteration scheme converges to a fixed point 0.99999 of
G, where an initial point p, = u, = 0.9 and for all n > 0, we

. 1
choose real sequence in [0,1] as —_—
10n+2

and s, = 1 which is shown by the Table 1 and G has a unique
fixed point 0.999999.Which is shown by the Table 1.

t, = T =1

Table 1: Sequence generated by generalized JF- iteration
scheme

Iterate | Generalized JF- iteration scheme

Do 0.9

D1 0.999121
D2 0.999997
D3 0.999999
Da 0.999999
Ds 0.999999
Pe 0.999999

5. CONCLUSION

Our results extend the corresponding results of Ali [3] & P.
Chuadchawna[5] in two ways; first, from M-iterative process
to JF-iterative process, Second, from Banach spaces to the
general setting of hyperbolic spaces.

REFERENCES

1. Agrawal R P, O’Regan D, Sahu D R(2007) Iterative
construction of fixed points of nearly asymptotically
non-expansive mappings. J Nonlinear Convex Anal
8(1):61-79.

2. AliJ, Ali F, Kumar P(2019) Approximation of fixed
points for Suzuki’s generalized non-expansive
mappings. Mathematics 7(6): 522.

3. Ali F, Ali J, Nieto J(2020) Some observation on
generalized non-expansive mappings with an
application. Comput Appl Math39:74.

4. Bogin J(1976) A generalization of a fixed points
theorem of Goebel,Kirk and Shimi.Can Math Bull
19:7-12.

5. Chuadchawna P, Ali F, Kaewcharoen A(2020) fixed
point approximate of generalized non-expansive
mapping via generalized-iterative process in
hyperbolic spaces. | J Math Sci 6435043: p6s.

6. Dhomphongsa S, Panyanak B(2008) A-Convergence
theorem in CAT(0) spaces. Comput Math Appl
56(10) :2572-2579.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Dhomphongsa S, Inthakon W, Kaewkhao A(2009)
Edelstein’s method and fixed point theorems for some
generalized non-expansive mappings. J Math Anal
Appl 350(1):12-17.

Fukhar-ud-din H, Saleh K(2018) One-step iterations
for a finite family of generalized non-expansive
mappings in CAT(0) spaces. Bull Malays Math Sci
Soc 41(2):597-608.

Fuster E L, Galvez E M(2011) The fixed point theory
for some generalized non-expansive mappings, Abst
Appl Anal 2011:p15s.

Goebel K, Kirk W A, Shimi T N(1973) A fixed point
theorem in uniformly convex spaces. Boll Un Mat
Ital.7:67-75.

Gromov  M(2001) Mesoscopic
Hyperbolicity. Cont math 288:58-69
Gursoy F, Karakaya V(2014) A Picard-S hybrid type
iteration method for solving a differential equation
with retarded argument. arXiv:1403.2546v2.

Girsoy F(2016) A Picard-S iterative method for
approximating fixed point of weak-contraction
mappings. Filomat 30(10):2829—-2845.

Gursoy F, Khan A R, Erturk M, Karakaya V(2018)
Convergence and data dependency of normal-S
iterative method for discontinuous operators on
Banach space. Numer Funct Anal Optim 39(3):322—
345.

Glrsoy F, Eksteen J A, Khan A R, Karakaya V(2019)
An iterative method and its application to stable
inversion. Soft Comput 23(16):7393-7406.

Hardy G F,Rogers T D(1973) A generalization of a
fixed-point theorem of Reich.Can Math Bull16:201-
206.

Ishikawa S(1974) Fixed points by a new iteration
method. Proc Am Math Soc 44:147-150.

Khan R A, Fukhar-ud-din H(2012) An implicit
algorithm for two finite families of non-expansive
maps in hyperbolic spaces. Fixed point theory A54.
Kohlenbach U(2005), Some logical meta theorems
with applications in functional analysis. Trans Ameri
Math Soci 357(1):89-129.

Leustean L(2007) A quadratic rate of asymptotic
regularity for CAT(0) spaces.J Math Anal Appl
235:386-399.

Leustean L(2010) Non-expansive iteration in
uniformly convex -hyperbolic spaces, in Nonlinear
Anal Opt I. Nonlinear Anal. Conte Math, Leizarowitz
A, Mordukhovich B S, Shafrir I, Zaslavski A, Eds.,
Ramat Gan Am Math Soci.

Lim T C(1976) Remark on some fixed point
theorems. Proc Amer Math Soc 60:179-182.

Mann W R(1953) Mean value methods in iteration.
Proc Amer Math Soc 4:506-510.

curvature and

4101 |

A. S. Saluja?, IIMCR Volume 12 Issue 03 March 2024


http://arxiv.org/abs/1403.2546v2

“Strong and A-Convergence Results for Generalized Non-Expansive Type Mappings through JF-Iteration Process in

24.

25.

26.

217.

28.

29.

Hyperbolic Spaces.”

Markin J(1973), Continuous depence of fixed point
sets. Proc Am Math Soci 38:545-547.

Noor M A(2000) New approximation schemes for
general variational inequalities.J Math Appl
251(1):217-229.

Picard E(1890) Memoire sur la theorie des equations
aux derivees partielles et la  methode
desapproximations successives. J Math Pures Appl
6:145-21.

Reich S, Shafrir 1(1990) Non-expansive iterations in
hyperbolic spaces.Nonlinear Anal Theo,Meth Appl
15(6):537-558.

Senter H F, Dotson W G(1974) Approximating fixed
points of non-expansive mappings. Proc Am Math
Soc 44(2):375-380.

Suzuki  T(2008) Fixed point theorems and
convergence theorems for some generalized non-

30.

31.

32.

33.

34.

expansive mappings. J Math Anal Appl 340(2):1088—
1095.

Thakur B S, Thakur D, Postolache M(2016) A new
iterative scheme for numerical reckoning fixed points
of Suzuki’s generalized non-expansive mappings.
Appl Math Comput 275:147-155.

Uddin I, Imdad M(2015) Some convergence
theorems for a hybrid pair of generalized non-
expansive mappings in CAT(0) spaces. J Nonlinear
Convex Anal 16(3):447-457.

Uddin I, Imdad M(2015) On certain convergence of
S-iteration scheme in CAT(0) spaces. Kuwait J Sci
42(2):93-106.

uUddin I, Imdad M(2018) Convergence of SP-iteration
for generalized non-expansive mapping in Hadamard
spaces. Hacet J Math Stat 47(6):1595-1604.

Wong C S(1974) Generalized contractions and fixed
point theorems. Proc Am Math Soc 42:409-41.

4102 |

A. S. Saluja?, IIMCR Volume 12 Issue 03 March 2024



