International Journal of Mathematics and Computer Research

ISSN: 2320-7167

l

Volume 12 Issue 03 March 2024, Page no. – 4097-4102 Index Copernicus ICV: 57.55, Impact Factor: 8.316 [DOI: 10.47191/ijmcr/v12i3.03](https://doi.org/10.47191/ijmcr/v12i3.03)

Strong and ∆**-Convergence Results for Generalized Non-Expansive Type Map pings through JF-Iteration Process in Hyperbolic Spaces.**

A. S. Saluja¹ , Aarti Patel²

¹ Department of mathematics, Institute for Excellence in Higher Education, IEHE, Bhopal (M.P.), 462016, India ² Department of mathematics, Babulal Gour Govt. P. G. College BHEL, Bhopal (M.P.), 462022, India

1. INTRODUCTION

The concept of generalized non-expansive mappings was introduced by Hardy and Rogers [16]. Further, generalized non-expansive mapping was introduced by Suzuki's or called condition (c)[29]. It can be defined in many settings of metric spaces. Let G: Y→Y be a self-map on a nonempty subset Y of a Banach space X. It is known that if G has a fixed point then G is quasi non-expansive mapping. The class of generalized non-expansive mappings is larger than the class of non-expansive mapping and smaller than the class of quasi non-expansive mappings was defined by Fukhar-ud-din and Saleh [8]. The class of mappings satisfying Suzuki's condition (c) is larger than the class of non-expansive mappings and smaller than the class quasi non-expansive mappings was defined by Suzuki's [29]. The existence and convergence theorems for non-expansive, generalized nonexpensive and suzuki's condition (c) have been studied by several authors, e.g. see Bogin [4], Wong [34], Goebel et al. [10],

Gursoy et al. [14], Gursoy et al. [15], Thakur et al. [30], Dhomphonhsa et al. [7], Ali et al. [2], Uddin and Imdad (a)[31], Uddin and Imdad (b)[32], Uddin and Imdad [33].

Let G: $Y \rightarrow Y$ be a self-map on a nonempty subset Y of a Banach space X and $\{r_n\}$ and $\{s_n\}$ real sequences in (0,1) for all $n \geq 0$. Non-expensive mappings of approximate fixed point for an iteration scheme introduced by Mann [23] which is generated by an arbitrary point $p_1 \in Y$

 $p_{n+1} = (1 - r_n)p_n + r_nGq_n$, n ∈ Y (1.1)

Where $\{r_n\}$ real sequence in (0,1). It is known as Mann iterative scheme which fails to converge to a fixed point of pseudo contractive mappings. Pseudo contractive mappings of approximate fixed point two steps iteration scheme was introduced by Ishikhawa [17] which is generated by arbitrary point $p_1 \in Y$

$$
\begin{cases}\n p_{n+1} = (1 - r_n)p_n + r_n Gq_n \\
 q_n = (1 - s_n)p_n + s_n Gp_n, \\
 1.2)\n\end{cases} \quad n \in Y
$$

Where $\{r_n\}$ and $\{s_n\}$ real sequence in (0,1). In the past few decades, large number of iterative schemes were introduced and studied by several authors i e. Noor [25], S.Agrawal[1] Picard -S Gursoy and karakaya[12], Gursoy[13] and Thakur et. al. [30] respectively, which are generated by an arbitrary p_1 ϵ Y

$$
\begin{cases}\n p_{n+1} = (1 - r_n)p_n + r_nGq_n \\
 q_n = (1 - s_n)p_n + s_nGw_n \\
 w_n = (1 - t_n)p_n + t_nGp_n, \n\end{cases}
$$
\n
$$
\begin{cases}\n p_{n+1} = (1 - r_n)Gp_n + r_nGq_n \\
 q_n = (1 - s_n)p_n + s_nGp_n, \n\end{cases}
$$
\n
$$
\begin{cases}\n p_{n+1} = Gq_n \\
 q_n = (1 - r_n)Gp_n + r_nGw_n \\
 w_n = (1 - s_n)p_n + s_nGp_n, \n\end{cases}
$$
\n
$$
\begin{cases}\n p_{n+1} = Gq_n \\
 q_n = G((1 - r_n)Gp_n + r_nw_n) \\
 w_n = (1 - s_n)p_n + s_nGp_n, \n\end{cases}
$$
\n
$$
\begin{cases}\n p_{n+1} = Gq_n \\
 q_n = G((1 - r_n)Gp_n + r_nw_n) \\
 w_n = (1 - s_n)p_n + s_nGp_n, \n\end{cases}
$$
\n
$$
n \in Y
$$
\n
$$
(1.6) \text{ Where } \{r_n\}, \{s_n\} \text{ and } \{t_n\} \text{real sequence in } (0,1). Recently}
$$

In 2020 a new iteration process called JF-iteration scheme was introduced by Ali [3] which defined as follow

$$
\begin{cases}\n p_{n+1} = G((1 - r_n)q_n + r_n G q_n) \\
 q_n = Gw_n \\
 w_n = G((1 - s_n)p_n + s_n G p_n), \\
 1.7)\n\end{cases} \quad n \in Y
$$

They obtained some basic properties for Generalized non expensive mappings due to Hardy and Rogers [16]. Also, they proved some convergence results using JF-iteration scheme for Generalized non expensive mappings in uniformly convex Banach Space. Lim [22] introduced the concept of ∆ convergence. Motivated by above, we use JF-iteration process for proving some ∆-convergence and strong convergence theorems for mapping in hyperbolic spaces.

2. PRELIMINARIES

In this study, we discuss on the setting of hyperbolic spaces which was introduced by kohlenbach [19], containing normed linear spaces and convex subsets and Hadamrd manifolds [27], CAT(0) spaces in the sense of Gromov[11] and Hilbert ball equipped with the hyperbolic metric [27]. In this context we need some definitions, lemmas and prepositions which will be used in the sequel,

Definition[19] A hyperbolic space is a triple (X, d, W) where (X, d) is a metric space and $W: X^2 \times [0,1] \rightarrow X$ such that $(W1)$ $d(w, W(u, v, \omega) \leq (1-\omega)d(w, u) + \omega d(w, v)$

$$
(W2) d(W(u, v, \omega), d(u, v, \sigma)) = |\omega - \sigma| d(u, v),
$$

(W3) W(u, v, ω) = W(v, u, $(1 - \omega)$),

(W4) $d(W(u, z, \omega), W(v, w, \omega) \le (1 - \omega) d(u, v) + \omega d(z, \omega)$

For all u, v, w, $z \in X$ and $\omega, \sigma \in [01]$

w)

Definition [20]A hyperbolic space (X, d, W) is called uniformly convex, if for all u, v, $z \in X$, $r > 0$ and $\varepsilon \in$ (0 2] there exists $\delta \in (0, 1]$, such that $d(v, u) \le r$, $d(z, u) \le r$ and $d(v, z) \leq \varepsilon r$. Then,

 $d(W(v, z, \frac{1}{2}), u) \leq (1 - \delta) r.$ (2.1)

Definition [20] A mapping μ : (0 ∞) × (0 2] → (0 1) which provides $\delta = \mu(r, \varepsilon)$ for a given $r > 0$ and $\varepsilon \in (0, 2]$ is well known as a modulus of uniform convexity of X. We call μ as a monotone if it decreases with r (for a fixed ε), i.e., for any given $\epsilon > 0$ and for any $r_2 > r_1 > 0$, we have μ $(r_2, \varepsilon) \le (r_1, \varepsilon)$ **Definition [20]** A nonempty subset Y of a hyperbolic space is said to be convex if $W(u, v, \omega) \in Y$ for any $u, v \in Y$ and $\omega \in Y$ [0 1]. If u, $v \in X$ and $\omega \in [0, 1]$, then we use the notion (1- ω)u(+) ω v for W(u, v, ω). In [20], it is remarked that any normed space $(X, \|\cdot\|)$ is a hyperbolic space, with $(1 \omega$)u(+) ω v = (1 - ω)u + ω v. Hence, the class of uniformly convex hyperbolic spaces is a natural generalization of uniformly convex Banach spaces.

Firstly, the JF-iteration process is expressed in the Hyperbolic space as follow:

$$
\begin{cases}\np_n \in Y \\
p_{n+1} = W(Gq_n, q_n, r_n) \\
q_n = W(Gw_n, p_n, s_n) \\
w_n = W(p_n, Gp_n, t_n), \qquad n \in Y \\
(2.2)\n\end{cases}
$$

for all $n \ge 0$, $\{r_n\}$, $\{s_n\}$ & $\{t_n\}$ are real sequence in [0,1]. Let Y be a nonempty subset of metric space X. If $G(p)$ = p, then p is said to be a fixed point of a mapping G. The set of all fixed points of G is denoted by $F(G)$; $F(G) = \{x \in Y: Gx$ $= x$.

Definition [24] A mapping G : $Y \rightarrow Y$ is said to be

i Non-expansive if $d(Gu, Gv) \leq d(u, v)$ for all $u, v \in Y$;

ii Quasi non-expansive if $F(G) \neq \varphi$ and $d(Gu, Gp) \leq d(u,$ p); for all $u \in Y$ and $p \in F(G)$.

iii [16] Generalized non-expansive if for all $u, v \in Y$ $d(Gv, Gu) \le a_1 d(v, u) + a_2 d(Gu, u) + a_3 d(Gv, v) + a_4 d(Gv, u)$ $+a_5 d(Gu,v)$ (2.3)

Where a_1, \ldots, a_5 are non-negative real numbers with $a_1 + a_2 + a_3$ $+$ a₄ + a₅ < 1

C.F Fuster and Galves [9] defined the condition is equivalent to the following condition

 $d(Gv, Gu) \leq a d(v, u) + b (d(Gu, u) + d(Gv, v)) + c (d(Gv,$ $u) + d(Gu, v)$ (2.4)

For all $u, v \in Y$, where a, b, c are non-negative constants with $a + 2b + 2c \le 1$ and $a = a_1$, $b = a_2 + a_3/2$, $c = a_4 + a_5/2$

iv [29] Suzuki's or called condition (c), which is defined as follows if

 $\frac{1}{2} d(Gu, u) \leq d(v, u)$ implies $d(Gv, Gu) \leq d(v, u);$ ∀ u, v ϵ Y. (2.5)

Lemma 2.1 [3] Let G: $Y \rightarrow Y$ be a generalized non-expansive mapping satisfying (2.4), where Y is a nonempty subset of hyperbolic space X. Then

$$
d(Gv, u) \le d(v, u) + \frac{1+b+c}{1-b-c} d(Gu, u);
$$
 holds for all u, v $\in Y$.
(2.6)

by[7],We require the following definition of convergence in hyperbolic space which called ∆- convergence. The principle results are obtained by it.

Let Y be nonempty, closed and convex subset of a Hyperbolic space X, $\{p_n\}$ a bounded sequence in X and $\mu \in Y$, we define a function r(., $\{p_n\}$) : $X \rightarrow [0,\infty]$ by

 $r(u, {p_n})$ = limsup $n \rightarrow \infty$ d(u, p_n)

An asymptotic radius of $\{p_n\}$ relative to Y is defined by $r(Y, {p_n}) = inf{r{u, {p_n}}): u \in Y}.$

An asymptotic centre of $\{p_n\}$ relative to Y is defined by

 $AC(Y, \{p_n\}) = \{u \in Y : r(u, \{p_n\}) = r(Y, \{p_n\})\}.$

The sequence ${p_n}$ in X is said to Δ -convergence to u ϵ Y if u is unique asymptotic centre of $\{w_n\}$ for every subsequence{w_n} of{p_n}. In this case, we write Δ -lim sup n \rightarrow ∞ p_n = p and call p the Δ -lim of {p_n}.

Lemma 2.2 [21] Let X be a complete uniformly convex Hyperbolic space with a monotone modulus of uniform convexity μ . Then every bounded sequence $\{p_n\}$ in X has a

unique asymptotic centre with respect to any nonempty closed convex subset Y of X.

Lemma 2.3 [18] Let X be a complete uniformly convex Hyperbolic space with a monotone modulus of uniform convexity μ . Let $u \in Y$ and $\{\alpha_n\}$ be a sequence in [a, b] for some a, b ϵ (0, 1). If {p_n} and {q_n} are sequences in X such that limsup $n \rightarrow \infty$ d(p_n, p) $\leq \vartheta$, limsup $n \rightarrow \infty$ d(q_n, p) $\leq \vartheta$ and $\lim_{n \to \infty} d(W(p_n, q_n, \alpha_n), p) = \vartheta$ for some $\vartheta \ge 0$. Then, $\lim_{n \to \infty} d(p_n, q_n) = 0.$

3. MAIN RESULTS

First, we obtain the following useful lemmas which help us to prove main results

Lemma 1 A Let G: $Y \rightarrow Y$ be a generalized non-expansive mapping satisfying (2.4) , where Y is a nonempty closed & convex subset of a uniformly convex hyperbolic space X. Let ${p_n}$ be a sequence generated by (2.2); Then $\lim_{n \to \infty} d(p,$ p_n) exists for all $p \in F(G)$.

Proof:- let $p \in F(G)$ & $p_n \in Y$; since G is generalized nonexpansive mapping, we can easily obtain that $d(Gp, Gp_n) = d(p, p_n) \leq d(p, p_n);$ for all $p_n \in Y \& p \in F(G)$

Thus using (2.2), we obtain that $d(w_n,p) = d(W(p_n, Gp_n, t_n), p)$ $\leq (1 - t_n)d(p_n, p) + t_n d(Gp_n, p)$ $= (1 - t_n)d(p_n, p) + t_n d(Gp_n, G p)$ $\leq (1 - t_n)d(p_n, p) + t_n d(p_n, p)$ $d(w_n, \t p) \leq d(p_n, \t p)$ (3.1) using (2.2) & (3.1) $d(q_n,p) = d(W(Gw_n, w_n, s_n), p)$ $\leq (1 - s_n)d(Gw_n, p) + s_n d(w_n, p)$ $= (1 - s_n)d(Gw_n, Gp) + s_n d(w_n, p)$ $\leq (1 - s_n)d(w_n, p) + s_n d(w_n, p)$ $d(w_n, p) \leq d(q_n, p)$ $d(w_n, \qquad p) \leq d(p_n, \qquad p)$ (3.2) using (2.2) & (3.2) $d(p_{n+1}, p) = d(W(Gq_n, q_n, r_n), p)$ $≤ (1 - r_n)d(Gq_n, p) + r_n d(q_n, p)$ $= (1 - r_n)d(Gq_n, Gp) + r_n d(q_n, p)$ $\leq (1 - r_n)d(q_n, p) + r_n d(p_n, p)$ $d(p_{n+1}, p) \leq d(q_n, p)$ $d(p_{n+1}, \quad p) \leq d(q_n, \quad p)$ (3.3)

Thus the sequence $\{d(p_n, p)\}\$ is bounded below & decreasing . Hence $\lim_{n \to \Box} d(P_n, p)$ exists for all $p \in F(G)$.

Lemma 2 A Let G: $Y \rightarrow Y$ be a generalized non-expansive mapping satisfying (2.4) , where Y is a nonempty closed & convex subset of a uniformly convex hyperbolic space X. Let ${p_n}$ be a sequence generated by (2.2). Then $F(G) \neq \varphi$, if and only if $\{p_n\}$ is bounded & lim n $\rightarrow \Box$ d(Gp_n, P_n) = 0.

Proof:- Assume that $F(G) \neq \varphi$, & $p \in F(G)$, by lemma $1\{p_n\}$ is bounded.

Next we will indicate that $\lim_{n \to \infty} d(Gp_n, p_n) = 0$ Since G is generalized non-expansive mapping, we have $d(p, \text{ G}p_n)$ = $d(Gp, \text{ G}p_n)$ \leq $d(p, p_n)$ (3.4) from lemma1 we achieve lim n $\rightarrow \infty$ d(p_n, p) exists for all p \in $F(G)$ Assume that $\lim_{n \to \infty} d(p_n, p) = \alpha, \alpha > 0$. then $d(w_n, p) = d(W(p_n, Gp_n, t_n), p)$ $\leq (1 - t_n)d(p_n, p) + t_n d(Gp_n, p)$ $= (1 - t_n)d(p_n, p) + t_n d(Gp_n, G p)$ $\leq (1 - t_n)d(p_n, p) + t_n d(p_n, p)$ $d(w_n, p) \leq d(p_n, p)$ Taking limsup as $n \to \infty$ limsup $n \to \infty$ d(w_n, p) \leq limsup $n \to \infty$ d(p_n, p) = α (3.5) From $(3.1) \& (3.3)$ $d(p_{n+1}, p) \leq d(q_n, p) \leq d(w_n, p)$ $d(p_{n+1}, p) \leq d(w_n, p)$ Taking liminf as $n \to \infty$ $\alpha \leq$ liminf $n \to \infty$ d(p_{n+1} , p) \leq liminf $n \to \infty$ d(w_n , p) (3.6) From (3.5) & (3.6) liminf $n \to \infty$ d(w_n, p) = α , we get that limsup $n \to \infty$ d(w_n, p) \leq limsup $n \to \infty$ d(p_n, p) = α (3.7) It follows from lemma 2.3, (3.6) & (3.7) $\lim_{n \to \infty} d(Gp_n, p_n) = 0$ Conversely, assume that $\{p_n\}$ is bounded and lim $n \to \infty$ $d(Gp_n, p_n) = 0$. Let $p \in AC(Y, \{p_n\})$; Using lemma 2.1, we have $r(Gp, {p_n}) = limsup n \rightarrow \infty d(Gp, p_n)$ \leq limsup $n \to \infty$ d(p, p_n) + $\frac{1+b+c}{1-b-c}$ d(Gp, p_n); holds for all $u, v \in Y$. $=$ limsup $n \to \infty$ d(p, p_n) $=$ r(p, {p_n}) = r(Y, {p_n}). That is $Gp \in AC(Y, \{p_n\})$. Since X is uniformly convex, $AC(Y, \{p_n\})$ is singleton, implying that $Gp = p$. Now we prove Δ-convergence theorem for generalized nonexpansive mappings in Hyperbolic space.

Theorem 3.1 Let Y be a nonempty closed, convex subset of x and G: $Y \rightarrow Y$ be a generalized non-expansive mapping which satisfying condition (2.4) with F(G) $\neq \varphi$, let{pn} Δ converges to a fixed points of G.

Proof:- It follows from lemma 2 that $\{p_n\}$ is a bonded sequence. Thus, $\{p_n\}$ has a Δ -convergent subsequence. Now, we are going to show that every ∆-convergent subsequence of{p_n} has a unique Δ -limit in F(G).

Let u and v be Δ -limits of the sequences {p_{ni}}and {p_{nk}} of ${p_n}$ respectively. From lemma 2.2, we have

 $AC(Y, \{p_{nj}\}) = \{u\} \& AC(Y, \{p_{nk}\}) = \{v\}$

By lemma 2, we obtain that $\lim_{n \to \infty} d(p_{nj}, Gp_n) = 0$ & $\lim_{n \to \infty} d(p_{nj}, Gp_n)$ $n \rightarrow \infty$ d(p_{nk} , Gp_n) = 0.

Next we prove that u $&$ v are fixed points of G $&$ u, v should be are unique, since G satisfies the condition (2.6)

$$
d(Gu, \{p_{nj}\}) \leq d(p_{nj}, u) + \frac{1+b+c}{1-b-c} \qquad d(Gu, u)
$$
\n(3.8)

Letting limsup $n \to \infty$ on both side of the above inequality, we get

 $r(Gu, {p_{ni}}) = limsup n \rightarrow \infty d(p_{ni}, Gu)$

$$
\leq \text{limsup} \ n \to \infty \ d(p_{nj},\, u) + \tfrac{1+b+c}{1-b-c} \ d(Gu,\, p_{nj})
$$

 \leq limsup $n \to \infty$ d(p_{nj}, u) = r(u,{p_{nj}})

The uniqueness of the asymptotic centre implies $Gu = u$. Thus, u is a fixed point of G.

Similarly, we also have v as a fixed point of G

Finaly, we show that $u =v$. Suppose u v, and so by the uniqueness of an asymptotic centre, we have

limsup $n \to \infty$ d(p_n, u) = limsup $n \to \infty$ d(p_{nj,} u)

$$
\langle \text{limsup } n \to \infty \text{ d}(p_{nj}, v) \rangle
$$

= limsup $n \to \infty \text{ d}(p_n, u)$
= limsup $n \to \infty \text{ d}(p_{nk}, v)$
< limsup $n \to \infty \text{ d}(p_{nk}, u)$
= limsup $n \to \infty \text{ d}(p_n, u)$

This is a contradiction. Thus u = v. Then $\{p_n\}$ Δ -converges ta a fixed point of G.

Next, we prove some strong convergence theorems-

Theorem 3.2 Let Y is a nonempty closed & convex subset of a uniformly convex hyperbolic space $X \&$ G : $Y \rightarrow Y$ be a self-mapping satisfying (2.4) with $F(G) \neq \varphi$. Then the sequence $\{p_n\}$ generated by iterative scheme (2.2) converge to the a point of F(G) if and only if liminf $n \rightarrow$ $\infty d(p_n, F(G)) = 0$ where $d(p_n,$

 $F(G)$) = inf {d(p_n, p); p \in F(G)}.

Proof:- Assume that $\{p_n\}$ converges to $p \in F(G)$ so, $\lim_{n \to \infty} n \to \infty$ ∞ d (p_n, p) = 0, becaues

 $0 \leq d(p_n, F(G) \leq d(p_n, p)$ for all $p \in F(G)$

Therefore liminf $n \to \infty$ d(p_n, F(G)) = 0

Conversely, assume that liminf $n \to \infty$ d(p_n, F(G)) = 0 & p ϵ F(G), from lemmal lim $n \to \infty$ d(p_n, p) exists for all p ϵ F(G), therefore lim $n \to \infty$ d(p_n, F(G)) = 0 by the assumption.

Now it is enough to show that $\{p_n\}$ is Cauchy sequence in Y Therefore $\lim_{n \to \infty} d(p_n, F(G)) = 0$, for a given $\varepsilon > 0$ there exists $m_0 \in N$ such that for all $n \ge m_0$

 $d(p_n, F(G)) < \varepsilon/2$

$$
\inf\,\{d(p_n,\,p;\,p\in F(G)\}<\epsilon/2
$$

In particular, inf $\{d(p_{m0}, p; p \in F(G)\} < \varepsilon/2$, therefore there exists $p \in F(G)$ such that $d(p_{m0}, p) < \varepsilon/2$

Now for m, $n \ge m_0$

 $d(p_{m+n}, p) \leq d(p_{m+n}, p) + d(p_n, p)$ $\leq d(p_{m0}, p) + d(p_{m0}, p)$ $= 2 d(p_{m0}, p)$ $d(p_{m+n}, p) < \varepsilon$

Thus $\{p_n\}$ is a Cauchy sequence in Y, since Y is closed there is a point $q \in Y$ such that $\lim_{n \to \infty} n \to \infty$ $p_n = q$. Now $\lim_{n \to \infty} n \to \infty$ $d(p_n, F(G)) = 0$. gives that $d(q, F(G))$, that is $q \in F(G)$.

Theorem 3.3 Let Y is a nonempty closed & convex subset of a uniformly convex hyperbolic space $X & G: Y \rightarrow Y$ be a selfmapping satisfying (2.4) with $F(G) \neq \varphi$. Then the sequence ${p_n}$ generated by iterative scheme (2.2) converges strongly to a fixed point of G.

Proof:- From the lemma 2.3, G has a fixed point. Now from lemma 2 we have

liminf $n \to \infty$ d(p_n , Gp_n) = 0, since Y is compact there is a sub sequence $\{p_{ni}\}$ of $\{p_n\}$ such that $p_{ni} \rightarrow p_n$ strongly for some $p \in Y$. by lemma 2.1, we have

d(Gp, p_{nj}) ≤ d(p, p_{nj}) + $\frac{1+b+c}{1-b-c}$ d(p_{nj}, Gp_{nj}); ∀ j ≥ 1

letting $j \to \infty$, we get $p_{nj} \to Gp$. Thus $Gp = p$, i.e. $p \in F(G)$. Also lim $n \to \infty$ d(p, p_n) exists by lemma 1. Hence p is the strong limit of $\{p_n\}$. Condition(I) was introduced by Senter & Dotson [29] as a requirement for mapping which is defined as follow

A mapping G: $Y \rightarrow Y$ is said to satisfy condition (I). If there exists a non-decreasing function g: $R_+ \rightarrow R_+$ with $g(0) =$ $0 \& g(t) > 0$, for all $t > 0$ such that $d(u, Gu) \ge g(d(u, F(G)),$ for all $u \in Y$. Here R_{+} denotes the set of all non-negative real numbers.

Now we prove a strong convergence result using condition(I) **Theorem 3.4** Let Y be a nonempty closed, convex subset of X and G: $Y \rightarrow Y$ be a generalized non-expansive mapping which satisfying condition (2.4) & condition (I) . Then the sequence $\{p_n\}$ generated by (2.2) converges strongly to a fixed points of G

Proof:- we proved the following in lemma 2

 $\lim_{n \to \infty}$ $d(Gp_n, \quad p_n) = 0$ (3.9)

Using condition (I) $& (3.9)$, we get

 $0 \leq \lim_{n \to \infty}$ g(d(p_n, F(G)) $\leq \lim_{n \to \infty}$ d(Gp_n, p_n) = 0 implies lim n $\rightarrow \infty$ g(d(p_n, F(G)) = 0. From g: R₊ \rightarrow R₊ with $g(0) = 0$ & $g(t) > 0$, for all $t > 0$ we have $\lim n \to \infty$ d(p_n, $F(G) = 0$)

By applying Theorem 3.2, we obtain the desired result: therefore, the sequence $\{p_n\}$ converges strongly to a fixed point of G.

4. NUMERICAL EXAMPLE

Example 4.1 Let $X = R$ with metric $d(u, v) = |u-v|$ and $Y=[0,1]$ be a non-empty compact convex subset of X. Define uniformly hyperbolic space with monotone modulus of uniform convexity. Let a mapping G: $[0,1] \rightarrow [0,1]$ defined by $G(u) = \frac{u+7}{8}$ for all $u \in [0,1]$. Need to establish that G generalized non- expansive mapping due to hardy and rogers. **Verification:** if $u = \frac{7}{2}$ $\frac{7}{23}$, $v = \frac{1}{8}$ $\frac{1}{8}$ and $a=\frac{1}{2}$, $b=\frac{2}{5}$ and $c=0$, we see that

 $||Gu - Gv|| \le a ||u - v|| + b(||u - Gu|| + ||v - Gv||) + c(||u - Gv|| + ||v - v||)$ Gu||)

 $\|\frac{178}{200} - \frac{57}{64}\|$ $\frac{57}{64}$ $\|\leq \frac{1}{2}$ $\frac{1}{2}$ $\|\frac{7}{23} - \frac{1}{8}$ $\frac{1}{8}$ || + $\frac{2}{5}$ [|| $\frac{7}{23}$ - $\frac{178}{200}$ $\frac{178}{200}$ || + || $\frac{1}{8}$ - $\frac{57}{64}$ $\frac{37}{64}$ ||] $0.022418 \le 0.4769014$

Hence, for $a = \frac{1}{2}$, $b = \frac{2}{5}$ and $c = 0$ (a +2b+ 2c = $\frac{9}{10}$ < 1) G is a generalized non-expansive mapping. With the help of manual computation, we compute that the sequence $\{p_n\}$ generated by JF iteration scheme converges to a fixed point 0.99999 of G, where an initial point $p_0 = u_0 = 0.9$ and for all $n \ge 0$, we choose real sequence in $[0,1]$ as 1 $\frac{1}{10n+2}$, $r_n = 1$ and $s_n = 1$ which is shown by the Table 1 and G has a unique fixed point 0.999999.Which is shown by the Table 1.

Table 1: Sequence generated by generalized JF- iteration scheme

Iterate	Generalized JF- iteration scheme
p_{0}	0.9
p_{1}	0.999121
p_{2}	0.999997
p_3	0.999999
p_4	0.999999
p_{5}	0.999999
p_{6}	0.999999

5. CONCLUSION

Our results extend the corresponding results of Ali [3] & P. Chuadchawna[5] in two ways; first, from M-iterative process to JF-iterative process, Second, from Banach spaces to the general setting of hyperbolic spaces.

REFERENCES

- 1. Agrawal R P, O'Regan D, Sahu D R(2007) Iterative construction of fixed points of nearly asymptotically non-expansive mappings. J Nonlinear Convex Anal 8(1):61–79.
- 2. Ali J, Ali F, Kumar P(2019) Approximation of fixed points for Suzuki's generalized non-expansive mappings. Mathematics 7(6): 522.
- 3. Ali F, Ali J, Nieto J(2020) Some observation on generalized non-expansive mappings with an application. Comput Appl Math39:74.
- 4. Bogin J(1976) A generalization of a fixed points theorem of Goebel,Kirk and Shimi.Can Math Bull 19:7-12.
- 5. Chuadchawna P, Ali F, Kaewcharoen A(2020) fixed point approximate of generalized non-expansive mapping via generalized-iterative process in hyperbolic spaces. I J Math Sci 6435043: p6s.
- 6. Dhomphongsa S, Panyanak B(2008) ∆-Convergence theorem in CAT(0) spaces. Comput Math Appl 56(10) :2572–2579.
- 7. Dhomphongsa S, Inthakon W, Kaewkhao A(2009) Edelstein's method and fixed point theorems for some generalized non-expansive mappings. J Math Anal Appl 350(1):12–17.
- 8. Fukhar-ud-din H, Saleh K(2018) One-step iterations for a finite family of generalized non-expansive mappings in CAT(0) spaces. Bull Malays Math Sci Soc 41(2):597-608.
- 9. Fuster E L, Gàlvez E M(2011) The fixed point theory for some generalized non-expansive mappings, Abst Appl Anal 2011:p15s.
- 10. Goebel K, Kirk W A, Shimi T N(1973) A fixed point theorem in uniformly convex spaces. Boll Un Mat Ital.7:67–75.
- 11. Gromov M(2001) Mesoscopic curvature and Hyperbolicity. Cont math 288:58-69
- 12. Gursoy F, Karakaya V(2014) A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. [arXiv:1403.2546v2.](http://arxiv.org/abs/1403.2546v2)
- 13. Gürsoy F(2016) A Picard-S iterative method for approximating fixed point of weak-contraction mappings. Filomat 30(10):2829–2845.
- 14. Gürsoy F, Khan A R, Ertürk M, Karakaya V(2018) Convergence and data dependency of normal-S iterative method for discontinuous operators on Banach space. Numer Funct Anal Optim 39(3):322– 345.
- 15. Gürsoy F, Eksteen J A, Khan A R, Karakaya V(2019) An iterative method and its application to stable inversion. Soft Comput 23(16):7393–7406.
- 16. Hardy G F,Rogers T D(1973) A generalization of a fixed-point theorem of Reich.Can Math Bull16:201- 206.
- 17. Ishikawa S(1974) Fixed points by a new iteration method. Proc Am Math Soc 44:147–150.
- 18. Khan R A, Fukhar-ud-din H(2012) An implicit algorithm for two finite families of non-expansive maps in hyperbolic spaces. Fixed point theory A54.
- 19. Kohlenbach U(2005), Some logical meta theorems with applications in functional analysis. Trans Ameri Math Soci 357(1):89–129.
- 20. Leustean L(2007) A quadratic rate of asymptotic regularity for CAT(0) spaces. J Math Anal Appl 235:386–399.
- 21. Leustean L(2010) Non-expansive iteration in uniformly convex -hyperbolic spaces, in Nonlinear Anal Opt I. Nonlinear Anal. Conte Math, Leizarowitz A, Mordukhovich B S, Shafrir I, Zaslavski A, Eds., Ramat Gan Am Math Soci.
- 22. Lim T C(1976) Remark on some fixed point theorems. Proc Amer Math Soc 60:179–182.
- 23. Mann W R(1953) Mean value methods in iteration. Proc Amer Math Soc 4:506–510.

- 24. Markin J(1973), Continuous depence of fixed point sets. Proc Am Math Soci 38:545–547.
- 25. Noor M A(2000) New approximation schemes for general variational inequalities.J Math Appl 251(1):217-229.
- 26. Picard E(1890) Memoire sur la theorie des equations aux derivees partielles et la methode desapproximations successives. J Math Pures Appl 6:145–21.
- 27. Reich S, Shafrir I(1990) Non-expansive iterations in hyperbolic spaces.Nonlinear Anal Theo,Meth Appl 15(6):537–558.
- 28. Senter H F, Dotson W G(1974) Approximating fixed points of non-expansive mappings. Proc Am Math Soc 44(2):375–380.
- 29. Suzuki T(2008) Fixed point theorems and convergence theorems for some generalized non-

expansive mappings. J Math Anal Appl 340(2):1088– 1095.

- 30. Thakur B S, Thakur D, Postolache M(2016) A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized non-expansive mappings. Appl Math Comput 275:147–155.
- 31. Uddin I, Imdad M(2015) Some convergence theorems for a hybrid pair of generalized nonexpansive mappings in CAT(0) spaces. J Nonlinear Convex Anal 16(3):447–457.
- 32. Uddin I, Imdad M(2015) On certain convergence of S-iteration scheme in CAT(0) spaces. Kuwait J Sci 42(2):93–106.
- 33. Uddin I, Imdad M(2018) Convergence of SP-iteration for generalized non-expansive mapping in Hadamard spaces. Hacet J Math Stat 47(6):1595–1604.
- 34. Wong C S(1974) Generalized contractions and fixed point theorems. Proc Am Math Soc 42:409–41.