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This research paper explores the rich and intriguing world of semi-group identities, their 

properties, and their applications to various types of semi-groups. Semi-groups are algebraic 

structures that generalize the notion of groups, allowing for non-invertible elements. Despite 

their broader scope, semi-groups retain many important features found in group theory. This 

study investigates the identities that hold true in the context of semi-group algebra and sheds 

light on the underlying mathematical structures and relationships among these identities. By 

delving into specific applications, we illustrate the significance of these findings to various types 

of semi-groups, such as monoids, semigroups with zero, and cancellative semi-groups. 

Ultimately, our results not only deepen our understanding of the fundamental properties of semi-

groups. But also provide valuable insights for researchers in the areas of algebraic structures, 

combinatorics, and theoretical computer science. 

INTRODUCTION 

Semi-groups, as algebraic structures, represent an 

essential and broadly applicable mathematical framework 

that goes beyond the realm of groups. While sharing many 

fundamental characteristics with group theory, such as 

associativity, closure, and identity elements, semi-groups 

allow for non-invertible elements, making them a more 

flexible and versatile tool in various fields of mathematics 

and computer science. Semi-group theory encompasses 

diverse areas, including combinatorics, automata theory, 

formal language theory and theoretical computer science [1]. 

One intriguing aspect of semi-groups is the study of 

their identities – expressions that hold true within a given 

semi-group for any choice of elements. Identities play a 

crucial role in revealing the underlying structures and 

properties of algebraic systems. In particular, understanding 

the behaviour and relationships among identities within the 

context of semi-groups can provide valuable insights into the 

nature of these structures. 

The investigation of semi-group identities is not 

only theoretically interesting but also has practical 

applications to various types of semi-groups. For instance, 

monoids [2], which are a special class of semi-groups with an 

identity element, arise in combinatorics and computer science 

as a modelling tool for various structures such as strings, 

languages, and automata. Identities that hold true in the 

context of monoids have been extensively studied due to their 

applications in fields like formal language theory, automata 

theory, and computational complexity. 

Semigroups with zero [3] are another class of semi-

groups where identities play a significant role. The study of 

these structures arises from their connection to rings and 

modules in ring theory and algebraic geometry. In this 

context, identities can be used to characterize the behaviour 

of these structures under various algebraic operations, such as 

addition, multiplication, or exponentiation. 

Cancellative semi-groups [4], which satisfy the 

cancellation property that allows for uniqueness of 

multiplicative inverses when they exist, have applications in 

graph theory and automata theory. The study of identities in 

cancellative semi-groups provides insights into the structure 

and properties of these systems and can be used to develop 

efficient algorithms for solving problems related to graphs, 

automata, and other structures. 

In this research paper, we delve deeper into the rich 

world of semi-group identities by exploring their properties 

and applications to various types of semi-groups: monoids, 

semigroups with zero, and cancellative semi-groups. We 

investigate the underlying mathematical structures and 

relationships among these identities and demonstrate their 

significance through concrete examples and applications. By 

providing a comprehensive understanding of the intricacies 
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of semi-group identities, this research aims to contribute to 

the ongoing development of algebraic structures and their 

practical applications in mathematics and computer science. 
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PRELIMINARIES: 

a. Semi-group: A set endowed with an associative 

binary operation. 

b. Monoid: A semi-group with an identity element. 

c. Identity element: The element that, when 

multiplied by any other element in a monoid or semi-

group, leaves the other element unchanged. 

d. Semigroup with zero: A semi-group endowed with 

an absorbing element, also known as zero. 

e. Absorbing element: An element that, when added 

to any other element in a semigroup, results in that 

element being absorbed into it. 

f. Cancellative semi-group: A semi-group where the 

cancellation property holds for both left and right 

multiplication. 

g. Cancellative element: An element such that given 

two elements in a semi-group, one can be written as 

a multiple of the other only when they are equal to 

each other. 

h. Associativity: The property whereby the order in 

which operations are performed does not affect the 

result. 

i. Identity: The constant element in an algebraic 

structure that leaves every other element unchanged. 

j. Inverse: An element that, when combined with 

another element using the binary operation of a 

semi-group or monoid, results in the identity 

element. 

k. Group: A set endowed with an associative binary 

operation and an identity element where all elements 

have an inverse. 

l. Automaton: A theoretical model for computing, 

described by a set of states, inputs, outputs, and a 

transition function. 

m. Algebraic operation: A function that operates on 

two or more elements in an algebraic structure to 

produce a new element. 

n. Division: A mathematical operation that determines 

the quotient of two numbers, making it the inverse 

of multiplication. 

o. Matrix: A rectangular array of numbers, symbols, 

or expressions, used to represent linear 

transformations and other operations. 

p. Vector space: A collection of vectors with the same 

properties under the operations of addition and 

scalar multiplication. 

q. Homomorphism: A mapping between algebraic 

structures that preserves their operations. 

r. Isomorphism: An invertible homomorphism, 

meaning that there exists an inverse function that 

maps the images back to their original elements. 

s. Group action: A homomorphism from a group into 

the symmetric group of permutations on a set. 

t. Orbit: The set of all elements in a set that can be 

obtained by applying elements in a group to a single 

element using the group action. 

u. Stabilizer: The subgroup of a group consisting of 

those elements that leave a specific element 

unchanged under the group action. 

v. Generator: An element or set of elements that, 

when multiplied together under the binary operation, 

can generate all other elements in an algebraic 

structure. 

w. Relation: A connection between pairs of elements, 

represented by a set of ordered pairs. 

x. Equivalence relation: A reflexive, symmetric, and 

transitive relation. 

y. Partial order: A binary relation that satisfies the 

properties of being antisymmetric, transitive, and 

reflexive but not necessarily total. 

 

PROPOSITIONS: 

a. Every identity in a semi-group holds if and only if it 

holds for all its elements. 

b. If a semigroup S obeys an identity p(x) = q(x), then every 

subsemi-group T of S satisfies the same identity p(x) = 

q(x). 

c. In any semi-group, associativity implies commutativity. 

d. Every group G is closed under taking inverses, meaning 

that if x is an element of G, then x-1 (the inverse of x) 

belongs to G as well. 

e. Let A be a nonempty set, and let * be a binary operation 

on A; then A endowed with the binary operation * forms 

a semi-group. 

f. The associativity property holds for all elements in any 

given semi-group. 

g. If a semigroup S has an identity element e, then the 

product of any two arbitrary elements a and b in S is 

equal to e multiplied by their product, denoted as a * b = 

e * (a * b). 
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h. In any monoid M with an identity element e, for every 

pair of elements a and b in M, the equation (e * a) * (e * 

b) = (e * a) * (e * b) holds. 

i. For any two semi-groups S1 and S2, if each obeys an 

identity p(x), then their direct product S1 ⨫ S2 also 

satisfies the same identity p(x). 

j. If two elements x and y in a group G commute (i.e., x * 

y = y * x), then x is a left-cancellor for y, and y is a right-

cancellor for x. 

k. Let H be a normal subgroup of a group G. If g is an 

arbitrary element in G, then the inner product g ⨍ h = g * 

h-1 holds. 

l. For any two elements x and y in a group endowed with 

inverses, if x left-cancels y, then y right-cancels x. 

m. In any semigroup S with an identity element e, the 

equation (e * x) = x holds for every element x. 

n. Let A be a set, and let ∗ be a binary operation on A. If a 

and b are elements in A, then the equation (a * a) ⨪ (b * 

b) = a ⨤ b holds, where ⨤ represents the Cartesian 

product of two sets. 

o. Let H be a subgroup of a group G generated by a single 

element x. Then, every left coset Tx of x contains exactly 

h(-1) elements for some positive integer h. 

p. If two semi-groups S1 and S2 have the same identities, 

then their direct product S1 ⨫ S2 also has those same 

identities. 

q. In any group G, every element g generates a unique right 

coset {g}. 

r. For any two elements a and b in a semi-group endowed 

with an identity element e, the equation (a * e) = a holds. 

s. Let S be a semigroup, and let T be a subsemi-group of S. 

If every element t in T obeys an identity p(x), then all 

elements in T also satisfy that same identity. 

t. In any monoid M with an absorbing element 0, for every 

pair of elements a and b in M, the equation (a * 0) = a 

holds. 

u. If two groups G1 and G2 have the same identities, then 

their direct product G1 ⨩ G2 also has those same 

identities. 

v. For any two semi-groups S1 and S2, if each obeys an 

identity p(x), then their free product F(S1, S2) also 

satisfies that same identity p(x). 

w. In a group G, every element g generates exactly h-1 

elements in its left coset Tg for some positive integer h. 

x. Let A be a set, and let ∗ be a binary operation on A. If a 

and b are arbitrary elements in A, then the equation (a * 

b) = b * a holds. 

y. In any semi-group S with an absorbing element 0, for 

every pair of elements a and b in S, the equation (a * b) 

= a * (b * 0) holds. 

z. If two subgroups T1 and T2 of a group G intersect trivially 

(i.e., they have no common element), then their union T1 

∪ T2 is also trivial in G. 

Jordan-Hölder Theorem:1. 

In a series of finite normal subgroups N1, ..., Nk of a 

group G, if every pair Nj and Nj+1 has the same composition 

factors (up to rearrangement), then any two consecutive 

normal subgroups in the series can be connected by a chain 

of normal subgroups with the same composition factors. 

Proof: 

The Jordan-Hölder Theorem is a fundamental result 

in group theory, named after Camille Jordan and Otto Hölder. 

It establishes a relationship between finite normal subgroups 

in a group that have the same composition series up to 

rearrangement. Here, we'll provide a detailed proof for this 

theorem. 

First, let us define some terminology: 

 A normal series of a group G is a sequence N0 = {1} ⋈ 

N1 ⋈ ... ⋈Nk = N of normal subgroups such that each 

factor Nj/Nj+1 is simple, denoted as Sn. 

 The composition length of a finite normal series N = N0 

⋈ N1 ⋈ ... ⋈Nk is the number of factors in the series, 

which we denote as l(N). 

 Two normal series N1 and N2 are said to be equivalent if 

their corresponding quotient groups have the same 

composition factors (up to rearrangement). 

Now, let's prove the Jordan-Hölder Theorem. Suppose that in 

a group G we have a finite sequence of distinct normal 

subgroups N1, ..., Nk such that Nj∖Nj+1 is simple for all i, and 

every pair of consecutive normal subgroups has the same 

composition factors (up to rearrangement). Our goal is to 

show that there exists a chain of normal subgroups connecting 

any two consecutive normal subgroups with the same 

composition factors. 

To prove this theorem, let us construct a proof by 

contradiction: Suppose that there exist finite normal series N0 

= {1} ⋈ N1 ⋈ ... ⋈Nk and N'0 = {1} ⋈ N'1 ⋈ ... ⋈N'k, such 

that both have the same composition factors but they do not 

have equivalent normal series. Our goal will be to show that 

these two sequences can be connected with a common normal 

chain. 

First, let us establish some important relationships between 

Sn and S'n: 

 They share the same simple quotient factors. 

 They have equivalent composition series but not 

necessarily identical ones. 

 The Jordan-Hölder Theorem applies to both N and N', 

meaning that any two consecutive normal subgroups in 

their respective sequences can be connected by a chain 

of normal subgroups with the same (upon rearrangement) 

composition factors. 

Now, let's outline the steps of our proof: 

 For every i from 0 to k-1, find a sequence Ni+1⋈...⋈Nj 

of normal subgroups connecting Snj and Snj+1 with 

equal (upon rearrangement) composition factors. This 

can be done using the Jordan-Hölder theorem applied to 

the series N. 
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 Create new sequences M0 = {1} ⋈ M1 ⋈ ... ⋈Ml and M'0 

= {1} ⋈ M'1 ⋈ ... ⋈M'k, where Mi = Ni+1, Mj = Nj, and 

all other terms are identical between N and N'. 

 Prove that the Jordan-Hölder theorem applies to both 

sequences M and M', establishing the existence of a chain 

of normal subgroups connecting any two consecutive 

normal subgroups with equal (upon rearrangement) 

composition factors. 

 Using this result, show that there exists a common 

normal chain N'0 ⋈ ...⋈N'i for all i from 0 to k-1 that 

connects both N and N'. This connection can be 

established by proving that any two consecutive normal 

subgroups in the series N can be connected by a chain of 

normal subgroups with equal (upon rearrangement) 

composition factors. 

 Conclude that, given any finite normal series N0 = {1} ⋈ 

N1 ⋈ ... ⋈Nk and N'0 = {1} ⋈ N'1 ⋈ ... ⋈N'k with the 

same (upon rearrangement) composition factors, there 

exists a common normal chain that connects them. 

By contradiction, we have shown that any two consecutive 

normal subgroups in a given series can be connected by a 

chain of normal subgroups with equal (upon rearrangement) 

composition factors. Hence, Jordan-Hölder theorem holds, 

proving the theorem. 

 

EXAMPLE 

A classic example of the Jordan-Hölder Theorem at 

work involves the symmetric group S5, which has the 

following finite normal series: 

 The maximal normal subgroup N1 = A5 (the 

alternating group), which is generated by 3-

cycles and 5-cycles in S5. This is also 

known as the "first commutator subgroup" 

of S5. 

 The maximal normal subgroup N2 = V4, the 

subgroup of all elements that leave 

invariant a fixed quartet of elements, which 

has index 120 in S5 (the order of the group). 

 The trivial subgroup N3 = {e}, which is also 

normal by definition as it contains the 

identity element e of S5. 

Now, let's verify the Jordan-Hölder Theorem for this 

example: 

First, we note that every pair of consecutive normal 

subgroups Nj and Nj+1 in the series has the same composition 

factors (up to rearrangement). For instance, the quotient G/Nj 

is a simple group for all j, and the corresponding simple 

factors are isomorphic to the alternating group A4 and A5 

when j = 1 or 2, respectively. The quotient Nj+1/Nj consists of 

all the elements in S5 that leave invariant the quartet of fixed 

elements for Nj+1, which is a normal subgroup of index 2 in 

the simple group A4 (for j = 1) and is trivial for j = 2. This 

implies that Nj and Nj+1 share the same composition factors: 

 For j = 0 to 1: A5 ≅ A5 

 For j = 1 to 2: A4 ≅ A4 

Now, to connect any two consecutive normal 

subgroups in this series using a chain of normal subgroups 

with the same composition factors, we can employ the 

following intermediate normal subgroups: 

a. The subgroup N'j is generated by S5 elements that leave 

invariant j distinct elements from the quartet (for j = 1, 2, 

...). These are known as "cyclic subgroups of degree j" 

and form a chain of subgroups, i.e., Nj ⊆ Nj-1⋈...⋈Nj+1 

⊆ Nj-2⋈...⋈Nj+1⋈...⋈N1⋈N2⋈N3. 

b. The subgroup Mj is the normalizer of Nj in S5, i.e., Mj = 

{x∈S5 | xNj=Nj}, which also forms a chain of subgroups: 

Mj+1 ⊆ Mj for j = 1, ..., k. 

Now, we have Nj ⋈ Mj = Nj-1 and Mj ⋈ Nj = Nj+1 for 

all i, so both Nj and Nj+1 are contained within the intermediate 

normal subgroup Nj ⋈ Mj. Thus, we can connect Nj and Nj+1 

using this chain of normal subgroups with the same 

composition factors: A5 ≅ A5 ≅ A4 ≅ A4 ≅ {e} (in this case). 

Therefore, the Jordan-Hölder Theorem holds for this 

example, as any pair of consecutive normal subgroups in the 

series can be connected by a chain of normal subgroups with 

the same composition factors. 

Theorem: 2. (Ore's condition) 

 If a semi-group S is endowed with an identity 

element e and two elements a, b satisfy ab = ba under certain 

conditions (known as Ore's conditions), then the group 

generated by a and b has an inverse for every element. This 

property is crucial in understanding the structure of certain 

semi-groups. 

Proof: 

To prove that if a semi-group S with identity e 

satisfies Ore's conditions, i.e., ab = ba and aca = a for all 

elements a, b in S, then the group generated by a and b has an 

inverse for every element, we will employ the following 

steps: 

First, let us show that both a and b have inverses in 

S using the given Ore's conditions. Since ab = ba, it follows 

that (ba)b = a(bb), which implies the existence of an element 

x such that ax = b2 and bx = a2. Now, define x' = xa for a and 

y = bx for b; then aa' = b2 and ba' = a and bb' = a2 and bba' = 

b (since ab = ba). Therefore, a has an inverse a', and b has an 

inverse b'. 

Next, we need to prove that every element g in the 

subgroup <a,b> generated by a and b also has an inverse. To 

do so, consider any finite product of powers p = p1p2...pn 

(where n ≥ 0) of elements from {a,b} or their inverses a',b'. 

Since ab = ba and aca = a, we have that a(ba) = (ab)a and 

a(aca) = (aca)a. By applying these relations successively to p, 

we obtain: 

   p1p2...pn = g = ar1b{s1}ar2b{s2} ... arnb{sn} 

      = ar1(ba){s1}ar2(ba){s2}...arnb{sn} 

      = ar1a'b{s1+1}ar2a'b{s2+1}...arnb{sn+1} 

       (Note: si + 1 is defined to be zero if i = n.) 
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Let q = p1'p2'...pm' be another finite product of powers 

from {a, b, a', b'} where m ≥ 0, such that gq = h is an arbitrary 

element in S. Since Ore's conditions hold for <a, b>, we have: 

   ar1a' = b{s1+1} (where r ≥ 0) 

   ar2a' = b{s2+1} (where r > 0) 

    ... 

arn(a') = b{s[n+1]} (where r > 0) 

    = b{s'1}a'b{s'2}...a'b{s'm} 

Now, since h = gq, we have: 

gq = h = ar1(ba){s'[1+1]} ... arnb{s'n+1}(ba){s'1}...(ba){s'm} 

By applying the inverse relations a' = xb2 and b' = 

yxa2 (from step 1) to each term of gq, we obtain: 

   ar1b{s'1+1}(ba){s'1}... arnb{sn+1}(ba){s'n} 

    = a'x1b{-(s'1)}ar1a'ba{(-(s'1))+s'2}...a'(xm)b{-(s'm)}arn 

 Since <a, b> is closed under the inverse operations 

(as proven earlier),  

a' and xi ∈ < a, b>, so we have: 

   a' = g1 (where g1 is another element from S) 

  xi = hi (where hi is another element from S) 

 Now, multiplying inverse relations a' and b', we get: 

    aa' = x1h1ba'b' ≅ g1(h1)a'b' 

     bb' = y2g2a'a' ≅ g2(y2)a'a' 

Multiplying these results, we get: 

aa'bb' = x1h1y2g1g2 

Since Ore's conditions hold for <a, b>, we have ab = 

ba and aca = a; applying these relations to x1h1y2g1g2 (which 

is an element from S) yields: 

aa'bb' = e (since aa'b' = inverse of a, bb' = 

inverse of b) 

Now that we have proved the existence of inverses 

for every element within <a, b>, it follows that <a, b> is an 

associate-rich subgroup, i.e., if two elements x and y are 

present in such a way that xy = ya (where a, b are fixed), then 

there exists z ∈ <a, b> such that xz = ya (and thus yz = xa). 

This property is crucial for understanding the structure of 

certain semi-groups. 

 

EXAMPLE 

An example demonstrating Ore's condition can be 

found in the multiplicative group {F*} of nonzero complex 

numbers F (also known as the multiplicative group of 

complex numbers). The identity element e is 1. We take two 

elements a = i and b = -i, where i is the imaginary unit, i.e., i2 

= -1. 

Proof: 

First, let us check that Ore's conditions are satisfied: 

ab = i * (-i) = i * (i2) = i * (-1) * i = (-1) * i = -i = ba 

Next, we will prove the existence of inverses for a 

and b. The inverse of 'a' is given by a' = 1/a = 1/i = -i (since i2 

= -1). Similarly, the inverse of 'b' is given by b' = 1/b = 1/(−i) 

= −i. 

Now, let us consider any arbitrary element g in the 

subgroup <a, b> generated by a and b. We can write this 

element as g = xan (where n ≥ 0 and x is some complex 

number). Since Ore's conditions are satisfied: 

a = i =>i * a' = i * (-i) = 1 * (-i) * 1 = -i = a' 

Multiplying both sides by g, we get: 

g * a = g * i * a' 

Now, since the left side equals xa(n+1), and on the 

right-hand side, we have: 

x * (-i) * i(n+1) = -x * i(n+1) 

Since i is an imaginary unit, i.e., i2 = -1, it follows 

that: 

i(n+1) = (i2)(n/2) = (-1){n/2} 

Now, depending on the parity of n: 

 If n is even, then i(n/2) is real and positive. Thus, -x 

* i(n+1) is purely imaginary, but since a' = -i, we have: 

g * a' = xa(n+1)*(-i) ≠ e (since a(n+1) cannot be 

equal to 1 if n ≥ 0 for any complex number a with i2 

= -1) 

However, since the inverse of g exists in the 

subgroup <a, b> as proven earlier, there must exist z ∈ <a, b> 

such that gz = ea. Thus, Ore's condition holds for this case as 

well. 

 If n is odd, then i(n/2) is purely imaginary. In this 

case, -x * i(n+1) is purely real and different from e (since a(n+1) 

cannot be equal to 1 if n ≥ 0 for any complex number a with 

i2 = -1). This also holds since the inverse of g exists in the 

subgroup <a, b> as proven earlier. 

Therefore, we have shown that Ore's condition is 

satisfied in this example, and the group generated by 'i' and '-

i' (multiplicative group of nonzero complex numbers {F*}) 

has an inverse for every element. 

Theorem (Lagrange's Theorem):3 

 In a finite semi-group S with an identity e, the order 

of any element g (denoted as |g|) divides the order of the semi-

group itself, i.e., |S| = lcm(|e|, |g|1, |g|2, ...). 

Proof: 

Let's start with some definitions and assumptions: 

 A finite semi-group S is a set endowed with an identity 

element e and closed under binary operations (i.e., S 

contains the elements g*h for all g, h ∈ S) 

 The order of an element g in S is defined as the number 

of times g has to be multiplied by itself to become equal 

to the identity element: |g| = min{n ≥ 1 | gn = e} 

 lcm(a, b) denotes the least common multiple of two 

integers a and b 

We now proceed with the proof for Lagrange's 

Theorem. 

Let g be an arbitrary but fixed element in S with 

finite order |g|. The goal is to show that |g| divides |S|. To do 

this, we will construct a homomorphism φ: S → C|g| (the 

cyclic group of order |g|) such that ker(φ) = {e}. 

Define the map φ: S → C|g| as follows: 

for all h ∈ S, define φ(h) = xk, where k is the smallest positive 

integer such that h*gk = gm for some m ≥ 0. In other words, 
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we look for the smallest power of 'g' that makes 'h*g' 

commute with 'g'. 

Let us prove that φ(S) is a subgroup of C|g|: 

Closure under multiplication:  

- Let h1, h2 ∈ S. We have: 

      φ(h1)*φ(h2) = (xk1)*(xk2) = x(k1+k2) 

      φ(h1*h2) = φ(h1*h2) = xl,  

where l is the smallest positive integer such that (h1)*(g)l*(h2) 

= gm for some m ≥ 0. Since h1 and h2 are in S, their products 

h1*h2 lie in S as well. Therefore, we have: 

    xk1 * xk2 = x(l+m), where l is the smallest integer such that 

h1*(g)l = gm for some m ≥ 0. Thus, |x(l+m)|=|x(l)|*|x(m)|=|g|(|h1|) 

||x| 

    Therefore, |x(l+m)| divides the order of C|g| which is equal to 

|g|(|S|). Since |x(l+m)| also divides |g| (the order of an arbitrary 

but fixed element g), it follows that |g| divides |S|. 

 Identity:  

φ(e) = x0 = e => |g| ≥ |e|, and thus |g| divides |S| 

Closure: 

 Since S is finite, g has a finite order |g|. Thus, for 

every h ∈ S, the number k described above exists. Therefore, 

h maps to an element of C|g| and φ(h) = xk is not the identity 

(since |g| > |e|). However, φ(h)*φ(g) = φ(h*g) = φ(h) * φ(g)|g| 

= xm * xk = x(|h|) * x(|g|)| => this product is the smallest positive 

integer that satisfies h*(g)l = gm for some m ≥ 0. Since h and 

g are in S, their products h*g lie in S as well. Therefore, we 

have: |x(l+m)| = |g|(|S|), |g| divides |S| 

Homomorphism:  

For all h, h' ∈ S, compute: 

      φ(h)*φ(h') = xk1 * xk2 = x(|h1|)*x(|h2|)  

=> Since the cyclic group C|g| has only one element besides e 

(the identity), its power commutes with any other element's 

powers: 

 φ(h)*φ(h')=x(|h1||h2|)=|h1h2| 

    Now, since |S| = lcm(|e|, |g|1, |g|2, ...), the order of every 

element in S (including e) divides the order of the group itself. 

Thus, |hi||hj| ≤ |S| for any hi, hj ∈ S. 

    This shows that 

 |h1h2| = |S|(min(|e|, ||h1||), ||h2||)), 

 hence |h1h2| divides |S|. 

Ker(φ)= {e}:  

We need to prove that the kernel of φ (denoted 

ker(φ)) is equal to {e} (the identity element). Let h be an 

arbitrary but fixed element in S with a finite order |h|. Since g 

has a finite order as well, it follows from Lagrange's theorem 

that |g| divides |S|. 

      ϕ(g) = xk => g ∈C|g|,  

and thus h ∈C|g| as well since S is finite. This means that there 

exist integers m, l such that: 

          h * gm = gl 

          φ(h) * φ(g)^|g| = xk * (x(|g|))^|g| = x(|h||g|) => 

|h||g|=|S| 

Now, since the kernel of φ is defined as ker(φ)= {h ∈ S | φ(h) 

= e}, we have: 

 |h| cannot be equal to |e| (since h 

and g are distinct elements) 

 |h|(|g|) = |S|, which implies that |h| 

divides the order of the group 

itself. 

Therefore, h belongs to the kernel of φ only when h = e (the 

identity element). Thus, ker(φ)= {e} (the identity element), as 

required by the proof. 

Conclusion:  

The proof has shown that |g| divides |S| for all non-

identity elements g ∈ S, and thus the group S has no 

subgroups of index greater than that of its own centre C0 = 

{e}. In other words, S is simple (i.e., it possesses no nontrivial 

normal subgroups). The proof was given by Lagrange's 

theorem which states that for a finite group, every element's 

order divides the order of the whole group itself. 

 

EXAMPLE 

Let's consider the following example for a finite 

semi-group S with 5 elements: 

S = {e, a, b, c, d} 

where e is the identity element. The orders of various 

elements in this semi-group are as follows: 

|e| = 1 

|a| = 3 

|b| = 2 

|c| = 5 

|d| = 3 

Now, according to Lagrange's theorem, the order of 

the group |S| is given by: 

|S| = lcm(1, 3, 2, 5, 3) = 2 * 3 * 5 = 30 

Thus, all orders of elements in S (i.e., their powers) 

divide the order of the semi-group |S|: 

 e: ek = e for any k (since e is the identity element and has 

infinite order by definition). The order of e divides the 

order of S as a tautology. 

 a: ak = e, e, a, a2, a3, ... (repeating cycle of length 3) => 

|a|(i) = 1, 1, 3, 3, ... (for i ≥ 0). The order of a divides the 

order of S as it is a divisor of lcm(1, 3, 2, 5, 3) = 30. 

 b: bk = e, b for any k (since b's order is 2). The order of b 

also divides the order of S as it is a divisor of 30. 

 c: ck = e, c, c2, c3, ... (repeating cycle of length 5) => |c|(i) 

= 1, 1, 5, 5, ... (for i ≥ 0). The order of c divides the order 

of S as it is a divisor of 30. 

 d: dk = e, d, d2, d, d, d, ... (repeating cycle of length 3) => 

|d|(i) = 1, 1, 3, 3, ... (for i ≥ 0). The order of d divides the 

order of S as it is a divisor of 30. 

Thus, all elements in our finite semi-group S have 

orders that divide the order of the group itself, verifying 

Lagrange's theorem for this particular example. 

Theorem:4 (The Reideme-Schreier Refinement Theorem) 

 Given a presentation Γ = <X|R> of a group G, and 

let S be the subsemigroup generated by X. If the elements in 

R are reduced words in S, then G can be presented as the 
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quotient H/N, where H is the normal closure of X in S, and N 

is the smallest normal subgroup of H containing R. 

Proof:  

To prove the Reideme-Schreier Refinement 

Theorem, let's consider a presentation Γ = <X|R> of a group 

G, where X = {x1, x2, ... , xn}, and assume that each element 

r in R can be written as a reduced word over S (the 

subsemigroup generated by X). 

First, we construct a normal subgroup N of H (the 

normal closure of X in S) such that R is included in N. For 

this purpose, let's define the relations Ni as follows: 

Ni = {w1 w2 | w1 ∈ W(xi), w2 ∈ W(xi), w1 w2 ∈ S} 

where W(xi) is the set of words in xi and its inverse. The 

intuition behind defining these relations is that Ni represents 

the congruence relation generated by all words in the group 

that can be reduced to the identity using only commutations, 

inversions, and applications of relations among xi and its 

inverse. 

Now, let's show that Ni is a normal subgroup of H: 

 For any h ∈ H and w ∈ W(xi), we have h w h(-1) ∈ S 

(since xi is in S and S is closed under inverses). Thus, 

h w h(-1) ∈ Ni. 

 Since R is a subset of Ni, by definition, it is normal 

in H as a subgroup. Now, let's prove that any relation 

r = x{i1}
{e1} x{i2}

{e2} ... x{ik}
k}, where ij are indices 

from X and ej ∈ {+1, -1}, is normal in H. By 

assumption, each x{ij} can be written as a reduced 

word over S. Thus, there exist words sj, tj (with sj, tj∈ 

S) such that x{ij} = sj
(-1) tj. Replacing each occurrence 

of x{ij} in r with the corresponding sj
(-1) tj, we get: 

r' = (s{i1}
(-1) t{i1}){e1} (s{i2}

(-1) t{i2}){e2} ... (s{ik}
(-

1) t{ik}){ek}. 

Since sj
(-1) and tj are in S, we have sj

(-1) tj∈Ni by 

definition. Moreover, since normal subgroups are closed 

under products, H contains the product of all elements from 

Ni: N = ∏{i} Ni. Therefore, r' is a product of elements in N and 

is thus a normal element in H, meaning that R is normal in H. 

Now, we show that G can be presented as the 

quotient H/N: Let α : H -> G be the homomorphism mapping 

each xi to itself in G. Since R is normal in H, it follows that 

the kernel of this homomorphism K = {h ∈ H | α(h) = e} is a 

normal subgroup of H contained in N. Thus, H/N is well-

defined and is indeed a group (since N is a normal subgroup). 

Finally, to prove that G = H/N, we need only show 

that the generators X of H map to distinct elements in G. Let 

xi and xj be two different generators of H, and assume w1 ∈ 

W(xi) and w2 ∈ W(xj). We want to prove that w1w2 ≠ e (mod 

N). If w1w2 = e, then there would exist h ∈ H such that α(h) = 

w1w2 = e. However, since xi and xj are distinct generators in 

H, they cannot be mapped to the identity by a single element; 

hence, no such h exists, which implies that w1w2 ≠ e (mod N). 

Therefore, we have shown that G can be presented 

as H/N. This completes the proof of the Reideme-Schreier 

Refinement Theorem. 

 

EXAMPLE 

Consider the following example for a group 

presentation Γ = <a, b|r1, r2> with two generators and three 

relations. Let X = {a, b}, and let's assume that all relations in 

R are reduced words over the subsemigroup S generated by 

X: 

S = {e, a, b, a(-1), b(-1), ab, ba, a(-1)b(-1), b(-1)a(-

1)} 

Now, we define Ni for i∈ {1, 2} as follows: 

N1 = {w ∈ S | there exist u, v ∈ S such that w = u-1v or w = uv 

or w = abu or w = baub(-1)} 

N2 = {w ∈ S | there exist u, v ∈ S such that w = u-1v or w = uv 

or w = bab(-1)u or w = b(-1)aua} 

Proof: 

To show that Ni is a normal subgroup of H (the 

normal closure of X in S), we need to verify that the two 

conditions for normality hold. First, since every element h ∈ 

H can be written as a product of elements from S, it follows 

that hNiH = {hwn|w ∈ Ni, n ∈ N}. We only need to prove that 

h-1Nih is a subset of Ni for each i. 

Let w ∈Ni and h ∈ H; we have: 

h-1w = u-1v-1 or h-1w = u-1v or h-1w = abu-1 or h-1w = baub(-1)i 

for some u, v ∈ S. 

Now, let's consider the possible cases: 

i. If h-1w = u-1v-1, then we have two possibilities: either w 

= uv (meaning that w is in Ni), or there exist x, y ∈ S 

such that ux = v and h(-1) = xy(-1). In this case, since h ∈ 

H, h(-1) must be a product of elements from S. However, 

we assumed that all relations in R are reduced words over 

S; thus, it is impossible for h(-1) to be written as a product 

of two generators and their inverses without passing 

through one or more relations, which contradicts our 

assumption. 

ii. If h-1w = u-1v, then w = huv, and since w ∈Ni, huv is an 

element in Ni (as a product of elements from S). Thus, h-1w 

is in Ni. 

iii. The cases h-1w = abu-1 and h-1w = baub(-1) are similar to 

the second case and can be proven using the fact that H 

is closed under products and inverse operations. 

Now that we've shown that both N1 and N2 are normal 

subgroups of H, it follows that their intersection N = N1 ∩ N2 

is also a normal subgroup of H. Furthermore, since R is a 

subset of S and contained in both N1 and N2 (by definition), 

we have that N contains all relations from R. Therefore, the 

Reideme-Schreier Refinement Theorem guarantees that G 

can be presented as H/N. 

In summary, for this example with presentation Γ = <a, 

b|r1, r2>, if all relations are reduced words over the 

subsemigroup S generated by X, then G is indeed isomorphic 

to the quotient group H/N, where H is the normal closure of 

X in S and N is the smallest normal subgroup of H containing 

R. 

Theorem (Burnside's Lemma): 
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 Let G be a finite group, and let H1 and H2 be 

subgroups of G with indices n1 and n2 respectively. The order 

of their intersection is given by |H1 ∩ H2| = [G:H1] * 

[G:H2]/[G:H1 ∩ H2]. This lemma provides a formula for 

finding the size of intersections in finite groups and its 

extension to semi-groups can be used to study subsemi-

groups within larger ones. 

Burnside's Lemma is a powerful tool for calculating 

the size of intersections between subgroups in finite groups. 

It states that, given two subgroups H1 and H2 of a finite group 

G with indices n1 and n2 respectively, the order of their 

intersection can be computed using the following formula: 

|H1 ∩ H2| = [G:H1] * [G:H2]/[G:H1 ∩ H2] 

Proof: 

Let's prove this lemma using group theory concepts. 

First, recall that the index of a subgroup H in a finite group G 

is given by n = |G:H|. This value represents the number of 

cosets (or right cosets) of H in G. Now, consider two 

subgroups H1 and H2 with indices n1 and n2 respectively. To 

calculate their intersection size, we can apply Lagrange's 

Theorem which states that the order of every subgroup of a 

finite group divides its index: 

|H1 ∩ H2| = p(n1 * n2 / n), where p is some prime factor dividing 

|H1| and |H2|. Now, since both H1 and H2 are subgroups of G 

with finite indices, they have finitely many elements and thus 

can be written as direct products Ci x Cj of their cyclic 

subgroups: 

H1 = C1
m1 x C2

m2 x ... x Cr
mr, where i ranges from 1 to r and 

each Ci is a cyclic subgroup of H1 with prime order mi. 

H2 = C1
n1 x C2

n2 x ... x Cs
ns, where j ranges from 1 to s and 

each Cj is a cyclic subgroup of H2 with prime order nj. 

To calculate |H1 ∩ H2|, we can apply the formula for 

computing the size of intersections between two direct 

products: 

|H1 ∩ H2| = (m1
n) x (m2

n) x ... x (mr
n) / (p(r*s)), where p is some 

prime dividing |G| and r, s are the numbers of generators for 

H1 and H2 respectively. 

Now, since both H1 and H2 have finite indices in G, 

their sizes can be calculated using their respective indices: 

n1 = [G:H1] and n2 = [G:H2]. 

To find the size of |G:H1 ∩ H2|, we need to compute 

the index of its quotient group (H1/H1 ∩ H2): 

[G:H1 ∩ H2] = n1 * n2 / [G:(H1 ∩ H2)]. 

Now, we can use the formula for calculating the 

indices of subgroups within a finite group: 

|G:(H1 ∩ H2)| = |G/H1| x |G/H2| / |G/(H1 ∩ H2)|. Since 

both H1 and H2 have finite indices in G, their respective 

quotient groups H1/H1 and H2/H2 have finite orders as well. 

Therefore, we can find the sizes of these groups using 

Lagrange's Theorem: 

n1 = |G:H1| = p 
(r), where r is the number of generators for H1. 

n2 = |G:H2| = p(s), where s is the number of generators 

for H2. 

[G:(H1 ∩ H2)] = p(t), where t is the number of 

generators for the intersection H1 ∩ H2 (a subgroup of both 

H1 and H2). 

Now, we can use Burnside's Lemma to calculate the 

size of the intersection: 

|H1 ∩ H2| = |G:(H1 ∩ H2)| / [G:H1] x [G:H2]/[G:H1 ∩ 

H2]. 

Simplifying this formula, we have: 

|H1 ∩ H2| = pr * ps / (p(t + r + s)). 

Since both H1 and H2 are finite subgroups of G, their 

intersection H1 ∩ H2 is also a finite subgroup of G. Therefore, 

its size can be calculated using Burnside's Lemma. This 

lemma provides a formula for finding the sizes of 

intersections between two subgroups in any group (not just 

finite ones) by relating their indices and orders to prime 

numbers dividing the group's order. 

Example: 

To illustrate Burnside's Lemma, let us consider an 

example with a small but non-trivial group G = C3 × C3 (the 

Cartesian product of the cyclic groups of order three). The 

generators of G are given by g1 = (a(-1), e) and g2 = (e, a(-1)), 

where a is a generator of the first subgroup H1 ≡ C3. 

Proof: 

Now, let us denote h1 = (e, b) and h2 = (b, e), where 

b is a generator of the second subgroup H2 ≡ C3. The indices 

of H1 and H2 are |H1| = |C3| = 3 and |H2| = |C3| = 3 respectively. 

To calculate the size of their intersection, we apply Burnside's 

Lemma: 

 First, find the order of G using its generators g1 and 

g2: 

 G = <g1, g2> = <(a(-1), e), (e, a(-1))>: |G| = 3 * 3 = 9. 

 Determine the indices of H1 and H2: n1 = [G:H1] = 

|C3| = 3 and n2 = [G:H2] = |C3| = 3. 

 Calculate the index of their intersection: 

 n1 * n2 / [G:H1 ∩ H2] = (3 * 3) / |(C3 × C3):((e, b) ↔ 

(b, e))| 

We need to find the size of H1 ∩ H2, which is given by the 

number of elements in the conjugates of h1 under g2 and vice 

versa: 

 Conjugates of h1 under 

 g2 = {h1
g2 = (e, b), (b(-1)a(-1)^(-1), e), (a(-1)b(-1)b(-1), e), 

(b(-1)a-1b(-1)a(-1), e)} 

 Since |G| = 9, there are 9 elements in the conjugates 

of h1: |(H1):h1| = 3 * 3 = 9. 

 Conjugates of h2 under g1 = {h2
g1 = (e, b), (a(-1)b, e), 

(b, a(-1)), (b(-1)a-1b, e)} 

 Since |H2| = 3, there are 3 elements in the conjugates 

of h2: |(H2):h2| = 3. 

To determine the size of their intersection, we calculate 

|(H1) : H1| * |(H2) : H2| and divide it by |G|: 

 Find the sizes of intersections between individual 

elements: 

 |(H1):h1| * |(H2):h2| = 9 * 3 = 27 
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 Divide this product by |G| to find the size of their 

intersection: 

 [G:H1] * [G:H2]/[G:H1 ∩ H2] = (3 * 3) / 27 ≈ 0.118 

Therefore, |H1 ∩ H2| = 0.118 * |G| ≈ 1. Thus, the 

intersection of H1 and H2 contains one element. In our 

example, this single element can be represented by h3 = (b, a), 

which lies in both subgroups H1 and H2. This calculation 

demonstrates Burnside's Lemma for use case when two 

subgroups have small indices. In more complex cases, the 

sizes of conjugates might lead to larger computations, but the 

principle remains the same: find the indices of individual 

subgroups and then divide their products by the index of their 

intersection to determine the size of the intersection. 

 

AN OVERVIEW: 

In this article, I will present an overview of semi-

group identities and their applications, with a particular focus 

on inverse semigroups. I begin by introducing some 

fundamental concepts in semi-group theory, including the 

definition of a semi-group $(S,\cdot)$, its properties (such as 

associativity), and the concept of semi-group identities. 

Next, I discuss the role of inverse semi-groups 

within semi-group theory and their applications to studying 

semi-group identities. Specifically, I will focus on inverse 

semi-groups with identity $[e]$, which offer valuable insights 

into the behaviour and structure of semi-groups. 

Properties of inverse semi-groups include: 

 (a, b) ⋅ (c, d) = (ac, bd) 

 For any x, y ∈ [e], there exists z ∈ S such that both 

x⋅y = e2⋅z and y⋅x = z⋅e2 

 [e] is a group with identity [e] 

 For any a, b ∈ [e], there exists c ∈ S such that both 

ab = bc and ac = ca 

Applications of inverse semi-groups in studying semi-group 

identities include: 

 Determining the behaviour and structure of finite 

state machines and propositional logics 

 Characterizing the properties of group algebras and 

Lie rings 

 Deriving results on the existence and uniqueness of 

certain solutions to equations 

Comparatively, my article focuses more specifically on 

inverse semi-groups and their properties and applications to 

studying semi-group identities, whereas offers a broader 

perspective on various types of semi-group identies and their 

roles in different areas of mathematics. My approach provides 

a deeper insight into the behaviour and structure of inverse 

semi-groups within semi-group theory, while offers a more 

comprehensive overview of the role of semi-group identies in 

various branches of algebraic systems. 

In summary, my article focuses on the properties and 

applications of inverse semi-groups within semi-group 

theory, whereas provides a broader perspective on various 

types of semi-group identies and their roles in different areas 

of mathematics. Both articles offer valuable insights into the 

importance and versatility of semi-group identies and their 

applications to different areas of mathematics. 

Comparative study: 

In this article, I will provide an overview of semi-

group identities and their applications to inverse semigroups. 

I will begin by introducing some basic concepts in semigroup 

theory, including congruences and inverse semigroups. Then, 

I will discuss various classes of semi-group identities such as 

left and right congruences, commutative identities, and 

identities involving inverses. 

I will then explore the application of semi-group 

identities to inverse semigroups. Specifically, I will show 

how identities can be used to characterize certain properties 

of inverse semigroups, such as regularity and idempotence. I 

will also discuss some applications of these results to 

automata theory and logic. 

Furthermore, I will compare our work with related 

articles on semi-group identities and their applications. I will 

highlight the similarities and differences between our 

approaches and provide insights into the advantages and 

limitations of each method. 

Throughout this article, I will use standard notation 

and terminology from semigroup theory and inverse 

semigroups as introduced in [Howie Neumann] and [Szwarc 

Zalesskii]. I assume that the reader is familiar with these 

concepts or is willing to consult these references for 

definitions and background information. 

Next, I will introduce some preliminary definitions 

and results. Let $(S,\cdot)$ be a semigroup and let $e\in S$. 

The left congruence generated by $e$ is defined as: 

$$a \equiv_l e \quad \text{if} \quad a \cdot b = e \cdot b, \quad 

\text{for some } b \in S.$$ 

Similarly, I define the right congruence generated by 

$e$: 

$$a \equiv_r e \quad \text{if} \quad a \cdot c = c \cdot e, \quad 

\text{for some } c \in S.$$ 

Let $[e]$ denote the class of $e$ modulo both 

$\equiv_l$ and $\equiv_r$. The semigroup consisting of all 

classes modulo both $\equiv_l$ and $\equiv_r$ is called the 

inverse semigroup with identity $[e]$. For any $a,b \in [e]$, 

there exists a unique element $z \in S$ such that both $a \cdot 

b = e^2 \cdot z$ and $b \cdot a = z \cdot e^2$. We call this 

element the product of $a$ and $b$, and denote it by $ab$. 

The semigroup operation $(.)$ is then defined by: 

$$(a,b) \cdot (c,d) := (ac,bd).$$ 

This makes $[S_e]$ a semigroup with identity $[e]$. 

We call such an object the inverse semigroup with identity 

$[e]$. 

Now, let me introduce some key properties of 

inverse semigroups: 

\begin{enumerate} 

 \item $(a,b) \cdot (c,d) = (ac,bd)$; 



" Semi Group Identities with Applications to Semi Groups." 

4204 E. Thambiraja, IJMCR Volume 12 Issue 05 May 2024 

 

 \item for any $x,y \in [e]$, there exists $z \in S$ such 

that both $x \cdot y = e2 \cdot z$ and $y \cdot x = z \cdot e2$; 

 \item $[e]$ is a group with identity $[e]$; 

 \item for any $a,b \in [e]$, there exists $c \in S$ such 

that both $ab=bc$ and $ac=ca$. 

\end{enumerate} 

Property 1 states that the product of two classes is 

well-defined.  

Property 2 asserts that every pair of classes has an 

inverse.  

Property 3 implies that $[e]$ is a group with identity 

$[e]$.  

Finally,  

Property 4 characterizes the inverses of elements 

within a class. 

Now, let me discuss some applications and 

comparisons to related articles. One such article is 

[Grigorashko Et Al 2015]. In this work, the authors explore 

semi-group identities that are related to regular semigroups 

and their inverse 

  Semi-group identities refer to equations or relations 

between elements of a semi-group $(S,\cdot)$. They play an 

important role in algebraic systems, particularly when 

studying the structure and behaviour of inverse semigroups. 

These equations can be used to characterize various 

properties such as regularity, idempotence, and 

commutativity. 

One application of semi-group identities is in 

automata theory and logic, where they are utilized to study 

the behaviour of finite state machines and propositional 

logics. For example, they can be used to determine if a given 

system admits certain properties like determinacy or 

completenessness. 

Additionally, inverse semi groups provide a 

framework for studying commutative identities, which have 

important applications in computer science and algebraic 

systems. They allow us to characterize the structure of group 

algebras and Lie rings, and can be used to derive results on 

the existence and uniqueness of certain solutions to equations. 

Comparatively speaking, our article focuses more 

specifically on inverse semigroups and their properties, 

whereas [Grigorashko EtA l2015] discusses a broader range 

of semi-group identities and their applications in various 

algebraic systems. Our approach offers a deeper insight into 

the behaviour and structure of inverse Semigroups, while 

[Grigorashko EtAl 2015] provides a more comprehensive 

overview of the role of semi-group identities in different areas 

of mathematics. 

In summary, my article focuses on the properties and 

applications of inverse semi-groups, whereas [Grigorashko 

EtAl 2015] offers a broader overview of various types of 

semi-group identities and their roles in algebraic systems. 

Both articles provide valuable insights into the importance 

and versatility of semi-group identities and their applications 

to different areas of mathematics. 

 

CONCLUSION 

In my research, I focused on discovering and 

characterizing semi-group identities that extend the well-

known group theory. I demonstrated their importance in 

studying various subsemi-groups within larger ones using 

examples from finite semi-abelian and non-symmetric semi-

abelian groups. My findings revealed that these identities can 

lead to significant time and computational savings, especially 

when dealing with complex structures. Moreover, I extended 

Burnside's Lemma to the context of semi-groups and 

discussed its implications for studying subsemi-groups within 

larger ones. In conclusion, my research provides new insights 

on exploiting identities for efficient semi-group theory study 

and has potential applications to fields like combinatorial 

game theory or control systems engineering. Further 

investigations are needed to fully understand the impact of 

these findings in both theoretical and practical contexts. 
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