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1. INTRODUCTION  

There are numerous ways to generalize the idea of metric 

spaces. Czerwik developed the idea of a b-metric space in [3-

4], and many researchers have established fixed-point 

solutions for single-valued and multi-valued mappings in 

(ordered) b-metric spaces (see, e.g., [2, 10]). In 1965, Zadeh 

[25] developed the idea of a fuzzy set. The concept of fuzzy 

metric space was first proposed by Kramosil and Michalek 

[19] in 1975. It is a generalization of statistical (probabilistic) 

metric space. An essential foundation for the development of 

fixed-point theory in fuzzy metric spaces has been established 

by this study.  

 

Park proposed the idea of an intuitionistic fuzzy metric space 

in 2004 [21]. In fixed point theory, the study of expansive 

mappings is an extremely fascinating field of study. 

Expanding mappings were first introduced and several fixed-

point theorems in complete metric spaces were demonstrated 

by Wang et al. in 1984 [24]. Daffer and Kaneko [5] 

established several common fixed-point theorems for two 

mappings in complete metric spaces and provided an 

expanding condition for a pair of mappings in 1992.  

 

In this study, we will extend results from [12, 24] and other 

papers by proving several additional fixed-point and common 

fixed-point theorems for expansion mappings in the context 

of parametric metric space. 

 

2. DEFINITIONS AND PRELIMINARIES  

The notion of parametric metric space was established and 

examined as follows by Hussain et al. [22] in 2014. 

 

Definition 2.1 Let 𝔇 be a nonempty set and 𝒫 ∶  𝔇 × 𝔇 ×

(0, +∞)  → [0, +∞) be a function. We say 𝒫 is a parametric 

metric on 𝔇 if, 

(1) 𝒫(𝜃, 𝜗, 𝑡)  =  0 for all t >  0 if and only if 𝜃 =  𝜗; 

(2) 𝒫(𝜃, 𝜗, 𝑡) = 𝒫(𝜗, 𝜃, 𝑡) for all t >  0; 

(3) 𝒫(𝜃, 𝜗, 𝑡) ≤ 𝒫(𝜃, 𝜔, 𝑡) + 𝒫(𝜔, 𝜗, 𝑡), ∀ 𝜃, 𝜗, 𝜔 ∈ 𝔇  

and all 𝑡 > 0. 

and one says the pair (𝔇, 𝒫) is a parametric metric space. 

 

The following definitions are required in the sequel which can 

be found in [22]. 

 

Definition 2.2 Let {𝜃𝑛}𝑛=1
∞  be a sequence in a parametric 

metric space (𝔇, 𝒫). 

1. {𝜃𝑛}𝑛=1
∞  is said to be convergent to 𝜃 ∈ 𝔇, written 

as lim
n→∞

𝜃𝑛 = 𝜃, for all t > 0, if lim
𝑛→∞

𝒫(𝜃𝑛, 𝜃, 𝑡) = 0. 

2. {θn}n=1
∞  is said to be a Cauchy sequence in 𝔇 if for 

all t > 0, if lim
𝑛,𝑚→∞

𝒫(𝜃𝑛, 𝜃𝑚, 𝑡) = 0. 

https://doi.org/10.47191/ijmcr/v12i6.05
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3. (𝔇, 𝒫)  is said to be complete if every Cauchy 

sequence is a convergent sequence. 

 

Definition 2.3 Let (𝔇, 𝒫) be a parametric metric space and 

𝑓: 𝔇 → 𝔇 be a mapping. We say 𝑓 is a continuous mapping 

at 𝜃  in 𝔇 , if for any sequence {𝜃𝑛}𝑛=1
∞  in 𝔇  such that 

lim
n→∞

𝜃𝑛 = 𝜃, then lim
n→∞

𝑓𝜃𝑛 = 𝑓𝜃. 

 

Example 2.4 Let 𝔇  denote the set of all functions 𝑓 ∶

(0, +∞) → ℝ . Define 𝒫 ∶  𝔇 × 𝔇 × (0, +∞)  → [0, +∞) 

by 𝒫(𝑓, 𝑔, 𝑡) = |𝑓(𝑡) − 𝑔(𝑡)| ∀  𝑓, 𝑔 ∈ 𝔇  and all  t > 0 . 

Then 𝒫 is a parametric metric on 𝔇 and the pair (𝔇, 𝒫) is a 

parametric metric space. 

 

Let 𝔇 be a set. A point 𝜗 ∈ 𝔇 is a point of coincidence of a 

pair of self-maps 𝑓, 𝑔: 𝔇 → 𝔇 and 𝜃 ∈ 𝔇 is its coincidence 

point if 𝑓𝜃 = 𝑔𝜃 = 𝜗 . Mappings 𝑓 and 𝑔  are weakly 

compatible if 𝑓𝑔𝜃 =  𝑔𝑓𝜃  for each of their coincidence 

points 𝜃  [12,15,17] and occasionally weakly compatible if 

the same holds for some coincidence point [14].  

 

The set of fixed points of a self-map 𝑓: 𝔇 → 𝔇  will be 

denoted as 𝔉(𝑓). The mapping 𝑓 is said to possess property 

(P) if 𝔉(𝑓𝑛) = 𝔉(𝑓) for each 𝑛 ∈ ℕ (see [12, 18]). A pair of 

self-maps 𝑓, 𝑔: 𝔇 → 𝔇  is said to have property (Q) if 

𝔉(𝑓𝑛)⋂𝔉(𝑔𝑛) = 𝔉(𝑓)⋂𝔉(𝑔)  holds for each 𝑛 ∈ ℕ  (see 

[12]). 

 

3. MAIN RESULTS 

We start with a straightforward yet useful lemma. 

Lemma 3.1 Let {𝜃𝑛}𝑛=1
∞  be a sequence in a parametric metric 

space (𝔇, 𝒫) such that 

   𝒫(𝜃𝑛, 𝜃𝑛+1, 𝑡) ⪯  𝜇𝑛𝒫(𝜃0, 𝜃1, 𝑡)                               (1) 

where 𝜇 ∈  [0, 1)  and 𝑛 =  1, 2, . . ..  Then {𝜃𝑛}𝑛=1
∞  is a 

Cauchy sequence in (𝔇, 𝒫). 

Proof Let 𝑚 > 𝑛 ≥ 1. It follows that 

  𝒫(𝜃𝑛, 𝜃𝑚, 𝑡) ≤ 𝒫(𝜃𝑛, 𝜃𝑛+1, 𝑡) + 𝒫(𝜃𝑛+1, 𝜃𝑛+2, 𝑡) 

                  + ⋯ + 𝒫(𝜃𝑚−1, 𝜃𝑚, 𝑡) 

                ≤ (𝜇𝑛 + 𝜇𝑛+1 + ⋯ + 𝜇𝑚−1) 𝒫(𝜃0, 𝜃1, 𝑡) 

                ≤
𝜇𝑛

1−𝜇
 𝒫(𝜃0, 𝜃1, 𝑡) 

for all 𝑡 > 0. Since 𝜇 < 1. Assume that  𝒫(𝜃0, 𝜃1, 𝑡) > 0. By 

taking limit as 𝑚, 𝑛 → +∞  in above inequality we 

get 𝑙𝑖𝑚
𝑛,𝑚→∞

𝒫(𝜃𝑛, 𝜃𝑚, 𝑡) = 0. Therefore, {𝜃𝑛}𝑛=1
∞  is a Cauchy 

sequence in 𝔇. Also, if 𝒫(𝜃0, 𝜃1, 𝑡) = 0, then 𝒫(𝜃𝑛 , 𝜃𝑚, 𝑡) =

0 for all 𝑚 >  𝑛 and hence {𝜃𝑛}𝑛=1
∞   is a Cauchy sequence in 

𝔇. 

 

Now, our first main result as follows. 

Theorem 3.2 Let (𝔇, 𝒫)  be a complete parametric metric 

space and 𝑓, 𝑔: 𝔇 → 𝔇 be two maps such that 𝑓𝔇 ⊃ 𝑔𝔇 and 

one of the subsets 𝑓𝔇 and 𝑔𝔇 is complete. Suppose that  

                    𝒫(𝑓𝜃, 𝑓𝜗, 𝑡) ≥ 𝜇𝒫(𝑔𝜃, 𝑔𝜗, 𝑡)                        (2)  

for some 𝜇 > 1 and all 𝜃, 𝜗 ∈ 𝔇 and for all 𝑡 > 0. Then 𝑓 

and 𝑔 have a unique point of coincidence. If, moreover, the 

pair (𝑓, 𝑔) is (occasionally) weakly compatible, then f and g 

have a unique common fixed point. 

Proof Take arbitrary 𝜃0 ∈ 𝔇. Construct sequences {𝜃𝑛} and 

{𝜗𝑛} such that 𝜗𝑛 = 𝑔𝜃𝑛 = 𝑓𝜃𝑛+1  for 𝑛 = 0, 1, 2, . .. For all 

𝑡 > 0, condition (2) implies that  

        𝒫(𝜗𝑛, 𝜗𝑛−1, 𝑡) = 𝒫(𝑓𝜃𝑛+1, 𝑓𝜃𝑛, 𝑡) 

      ≥ 𝜇𝒫(𝑔𝜃𝑛+1, 𝑔𝜃𝑛, 𝑡) 

      = 𝜇𝒫(𝜗𝑛+1, 𝜗𝑛, 𝑡) 

Hence  

        𝒫(𝜗𝑛+1, 𝜗𝑛, 𝑡) ≤ 𝜇−1𝒫(𝜗𝑛, 𝜗𝑛−1, 𝑡) 

       ≤ ⋯ 

                                 ≤ (𝜇−1)𝑛𝒫(𝜗1, 𝜗0, 𝑡) 

Since 𝜇−1 ∈ (0,1), Lemma 3.1 implies that {𝜗𝑛} is a Cauchy 

sequence. Let, e.g., 𝑓𝔇 be complete. Then there exists 𝜔 ∈ 𝔇 

such that 𝜗𝑛 → 𝑓𝜔, when 𝑛 → ∞. Let us prove that 𝑓𝜔 =

𝑔𝜔. Putting 𝜃 = 𝜃𝑛 , 𝜗 =  𝜔 in (2) we obtain for all 𝑡 > 0, 

                    𝒫(𝑓𝜃𝑛, 𝑓𝜔, 𝑡) ≥ 𝜇𝒫(𝑔𝜃𝑛 , 𝑔𝜔, 𝑡)  

and 𝜗𝑛−1 = 𝑓𝜃𝑛 → 𝑓𝜔  implies that 𝑔𝜃𝑛 → 𝑔𝜔 . Since also 

𝑔𝜃𝑛 → 𝑓𝜔 it follows that 𝑓𝜔 = 𝑔𝜔. Thus, 𝑓𝜔 = 𝑔𝜔 = 𝜛 is 

a point of coincidence for (𝑓, 𝑔) . Suppose that there is 

another point of coincidence 𝜛1 = 𝑓𝜔1 = 𝑔𝜔1. Then for all 

𝑡 > 0, 

              𝒫(𝜛, 𝜛1, 𝑡) = 𝒫(𝑓𝜔, 𝑓𝜔1, 𝑡) 

                      ≥ 𝜇𝒫(𝑔𝜔, 𝑔𝜔1𝑡)  

         = 𝜇𝒫(𝜛, 𝜛1 , 𝑡), 

implying (since 𝜇 > 1) that 𝒫(𝜛, 𝜛1, 𝑡) = 0. Thus, the point 

of coincidence is unique. If the pair (𝑓, 𝑔)  is weakly 

compatible, applying [12, Proposition 1.12] we conclude that 

𝑓  and 𝑔  have a unique common fixed point. If (𝑓, 𝑔)   is 

occasionally weakly compatible, the same conclusion follows 

from [13, Lemma 1.6]. 

 

Now we give an example illustrating Theorem 3.2. 

Example 3.3 Let 𝔇 = [0, +∞) be endowed with parametric 

metric,                

                   𝒫(𝜃, 𝜗, 𝑡) = {
𝑡 max{𝜃, 𝜗} ,      𝜃 ≠ 𝜗
0,                         𝜃 = 𝜗

 

for all 𝜃, 𝜗 ∈ 𝔇 and 𝑡 > 0. Consider functions 𝑓, 𝑔: 𝔇 → 𝔇 

defined by 

   𝑓𝜃 =
𝜃

3
, 𝑔𝜃 =

𝜃

5
  

and take arbitrary 1 < 𝜇 ≤
5

3
. Then all the conditions of 

Theorem 3.2 are fulfilled. Obviously, 𝑓 and 𝑔 have a unique 

common fixed point. 

 

Taking 𝑔 = 𝑖𝐷  in Theorem 3.2 we obtain the following 

parametric metric version of [11].  

Corollary 3.4 Let (𝔇, 𝒫) be a complete parametric metric 

space and let 𝑓: 𝔇 → 𝔇 be a surjection. If there is a constant 

𝜇 > 1 such that 

                          𝒫(𝑓𝜃, 𝑓𝜗, 𝑡) ≥ 𝜇𝒫(𝜃, 𝜗, 𝑡)                        (3) 

 ∀ 𝜃, 𝜗 ∈ 𝔇 and all 𝑡 > 0. Then 𝑓 has a unique fixed point. 
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Lemma 3.5 Let (𝔇, 𝒫)  be a complete parametric metric 

space and let 𝑓: 𝔇 → 𝔇 such that 𝔉(𝑓) ≠ ∅ and that 

                𝒫(𝑓𝜃, 𝑓2𝜃, 𝑡) ≥ 𝜇𝒫(𝜃, 𝑓𝜃, 𝑡)                       (4)  

holds for some 𝜇 > 1 and all 𝑡 > 0 and either (i) for all 𝜃 ∈

𝔇, or (ii) for all 𝜃 ∈ 𝔇, 𝜃 = 𝑓𝜃. Then 𝑓 has the property (P).  

Proof. (i) Suppose that (4) holds for some 𝜇 > 1 and each 

𝜃 ∈ 𝔇 and let 𝜉 ∈ 𝔉(𝑓𝑛) for some 𝑛 > 1. Then for all 𝑡 > 0, 

              𝒫(𝜉, 𝑓𝜉, 𝑡) = 𝒫(𝑓𝑛𝜉, 𝑓𝑛+1𝜉, 𝑡) 

                                 = 𝒫(𝑓𝑓𝑛−1𝜉, 𝑓2𝑓𝑛−1𝜉, 𝑡) 

        ≥ 𝜇𝒫(𝑓𝑛−1𝜉, 𝑓𝑛 𝜉, 𝑡) 

        = 𝜇𝒫(𝑓𝑓𝑛−2𝜉, 𝑓2𝑓𝑛−2𝜉, 𝑡) 

        ≥ 𝜇2𝒫(𝑓𝑛−2 𝜉, 𝑓𝑛−1𝜉, 𝑡) 

        ≥ ⋯ 

        ≥ 𝜇𝑛𝒫( 𝜉, 𝑓𝜉, 𝑡)  

If 𝒫( 𝜉, 𝑓𝜉, 𝑡) > 0 then 1 ≥ 𝜇𝑛  which is a contradiction. It 

follows that 𝜉 ∈ 𝔉(𝑓) and 𝔉(𝑓𝑛) = 𝔉(𝑓). 

(ii) Let (4) holds whenever 𝜃 ≠ 𝑓𝜃 , and let 𝜉 ∈ 𝔉(𝑓𝑛) for 

some 𝑛 > 1. If 𝜉 = 𝑓𝜉, the proof is complete. Suppose 𝜉 ≠

𝑓𝜉. Then, similarly as in the case (i) we get that for all 𝑡 > 0, 

    𝒫(𝜉, 𝑓𝜉, 𝑡) = 𝒫(𝑓𝑓𝑛−1𝜉, 𝑓2𝑓𝑛−1𝜉, 𝑡). 

In order to use (4) we need that 𝑓𝑛−1𝜉 ≠ 𝑓𝑓𝑛−1𝜉 = 𝑓𝑛𝜉 . 

But, if this is not the case, then  𝑓𝑛𝜉 = 𝜉 and so 𝜉 = 𝑓𝑛𝜉 =

𝑓𝜉, a contradiction. Hence, applying (4) we obtain that  

    𝒫(𝜉, 𝑓𝜉, 𝑡) = 𝒫(𝑓𝑓𝑛−1𝜉, 𝑓2𝑓𝑛−1𝜉, 𝑡) 

         ≥ 𝜇𝒫(𝑓𝑛−1𝜉, 𝑓𝑛 𝜉, 𝑡) 

                        = 𝜇𝒫(𝑓𝑓𝑛−2𝜉, 𝑓2𝑓𝑛−2𝜉, 𝑡) 

Repeating the same argument several times we finally obtain, 

similarly as in case (i), that 𝒫(𝜉, 𝑓𝜉, 𝑡) ≥ 𝜇𝑛𝒫( 𝜉, 𝑓𝜉, 𝑡) , 

which again implies 𝜉 = 𝑓𝜉 since 𝜇 > 1. Contradiction. 

 

Lemma 3.6 Let (𝔇, 𝒫)  be a complete parametric metric 

space and let 𝑓: 𝔇 → 𝔇 be a continuous surjective self-map. 

If 

                    𝒫(𝑓𝜃, 𝑓2𝜃, 𝑡) ≥ 𝜇𝒫(𝜃, 𝑓𝜃, 𝑡)                        (5)  

holds for some 𝜇 > 1,  for all 𝜃 ∈ 𝔇  and all 𝑡 > 0 . Then 

𝔉(𝑓) ≠ ∅. 

Proof Let 𝜃0 ∈ 𝔇 be arbitrary and choose a sequence {𝜃𝑛} 

such that 𝜃𝑛 = 𝑓𝜃𝑛+1 𝑛 =  0, 1, 2, . .. Then using (5), we get 

   𝒫(𝜃𝑛, 𝜃𝑛−1, 𝑡) = 𝒫(𝑓𝜃𝑛+1, 𝑓2𝜃𝑛+1, 𝑡) 

              ≥ 𝜇𝒫(𝜃𝑛+1, 𝑓𝜃𝑛+1, 𝑡) 

              = 𝜇𝒫(𝜃𝑛+1, 𝜃𝑛, 𝑡), 

for each n ∈ N. Hence, 𝒫(𝜃𝑛+1, 𝜃𝑛 , 𝑡) ≤ 𝜇−1𝒫(𝜃𝑛 , 𝜃𝑛−1, 𝑡) 

and, by Lemma 3.1, {𝜃𝑛} is a Cauchy sequence in 𝔇. If 𝜃𝑛 →

𝜃, when 𝑛 → ∞, then, using continuity of 𝑓, we easily get 

that 𝑓𝜃 = 𝜃. Hence 𝔉(𝑓) ≠ ∅. 

 

Theorem 3.7 Let (𝔇, 𝒫)  be a complete parametric metric 

space and 𝑓, 𝑔: 𝔇 → 𝔇 be two maps such that 𝑓𝔇 ⊃ 𝑔𝔇 and 

that at least one of these subspaces is complete. Suppose that 

there exist 𝑎, 𝑏, 𝑐 ≥ 0 with  𝑎 + 𝑏 + 𝑐 > 1 such that  

              𝒫(𝑓𝜃, 𝑓𝜗, 𝑡) ≥ 𝑎 𝒫(𝑔𝜃, g𝜗, 𝑡) 

         +𝑏 𝒫(𝑔𝜃, 𝑓𝜃, 𝑡) 

        +𝑐 𝒫(𝑔𝜗, 𝑓𝜗, 𝑡)                               (6) 

∀ 𝜃, 𝜗 ∈ 𝔇 with 𝜃 ≠ 𝜗  and all 𝑡 > 0. Then 𝑓  and 𝑔 have a 

unique point of coincidence. If, moreover, the pair (𝑓, 𝑔) is 

(occasionally) weakly compatible, then 𝑓  and 𝑔  have a 

unique common fixed point. 

Proof Let 𝜃0 ∈ 𝔇 be arbitrary. As in the proof of Theorem 

3.2 choose sequences {𝜃𝑛}  and {𝜗𝑛}  such that 𝜗𝑛 = 𝑔𝜃𝑛 =

𝑓𝜃𝑛+1  for 𝑛 = 0, 1, 2, . ..  For all 𝑡 > 0,  applying (6), we 

obtain 

             𝒫(𝜗𝑛, 𝜗𝑛−1, 𝑡) = 𝒫(𝑓𝜃𝑛+1, 𝑓𝜃𝑛 , 𝑡) 

             ≥ 𝑎 𝒫(𝑔𝜃𝑛+1, 𝑔𝜃𝑛 , 𝑡) 

           +𝑏 𝒫(𝑔𝜃𝑛+1, 𝑓𝜃𝑛+1, 𝑡) 

            +𝑐 𝒫(𝑔𝜃𝑛, 𝑓𝜃𝑛, 𝑡) 

          ≥ 𝑎 𝒫(𝜗𝑛+1, 𝜗𝑛 , 𝑡) 

           +𝑏 𝒫(𝜗𝑛+1, 𝜗𝑛 , 𝑡) 

           +𝑐 𝒫(𝜗𝑛, 𝜗𝑛−1, 𝑡) 

           = (𝑎 + 𝑏) 𝒫(𝜗𝑛+1, 𝜗𝑛 , 𝑡)  

                        +𝑐 𝒫(𝜗𝑛, 𝜗𝑛−1, 𝑡) 

Hence  

        (1 − 𝑐) 𝒫(𝜃𝑛−1, 𝜃𝑛, 𝑡) ≥ (𝑎 + 𝑏) 𝒫(𝜃𝑛+1, 𝜃𝑛, 𝑡)                                        

If 𝑎 + 𝑏 = 0, then 𝑐 > 0. The above inequality implies that a 

negative number is greater then or equal to zero. This is 

impossible. So, 𝑎 + 𝑏 ≠ 0 and (1 − 𝑐) > 0. Therefore, 

                   𝒫(𝜃𝑛+1, 𝜃𝑛, 𝑡) ≤ 𝜇𝒫(𝜃𝑛−1, 𝜃𝑛, 𝑡)                         (7) 

where 𝜇 =
1−𝑐

𝑎+𝑏
< 1 for all 𝑛 ∈ ℕ ∪ {0} and 𝑡 > 0. Repeating 

(7) n-times, we get 

𝒫(𝜃𝑛+1, 𝜃𝑛, 𝑡) ≤ 𝜇𝑛 𝒫(𝜃0, 𝜃, 𝑡)  

for all 𝑡 > 0. By Lemma 3.1, {𝜃𝑛}𝑛=1
∞  is a Cauchy sequence. 

Suppose that, e.g., 𝑓𝔇 is complete. Then there exists 𝜃⋆ ∈ 𝔇 

such that 𝑓𝜃𝑛 → 𝑓𝜃⋆ when n → ∞. Let us prove that 𝑓𝜃⋆ =

𝑔𝜃⋆. Then, using (6), we get 

        𝒫(𝜃𝑛, 𝑓𝜃⋆, 𝑡) = 𝒫(𝑓𝜃𝑛+1, 𝑓𝜃⋆, 𝑡) 

                       ≥ 𝑎 𝒫(𝑔𝜃𝑛+1, 𝑔𝜃⋆, 𝑡) 

+𝑏  𝒫(𝑔𝜃𝑛+1, 𝑓𝜃𝑛+1, 𝑡) 

    +𝑐 𝒫(𝑔𝜃⋆, 𝑓𝜃⋆, 𝑡) 

                       =  𝑎 𝒫(𝑓𝜃𝑛+2, 𝑔𝜃⋆, 𝑡) 

    +𝑏  𝒫(𝑓𝜃𝑛+2, 𝑓𝜃𝑛+1, 𝑡) 

    +𝑐 𝒫(𝑔𝜃⋆, 𝑓𝜃⋆, 𝑡) 

which implies that as 𝑛 → +∞,  

   0 ≥ (𝑎 + 𝑐) 𝒫(𝑔𝜃⋆, 𝑓𝜃⋆, 𝑡) 

Hence  𝑔𝜃⋆ = 𝑓𝜃⋆ . Thus, 𝑔𝜃⋆ = 𝑓𝜃⋆ = 𝜛  is a point of 

coincidence for (𝑓, 𝑔). Suppose that there is another point of 

coincidence 𝜛1 = 𝑓𝜔1 = 𝑔𝜔1. Then for all 𝑡 > 0, 

            𝒫(𝜛, 𝜛1 , 𝑡) = 𝒫(𝑓𝜃⋆, 𝑓𝜔1, 𝑡) 

      ≥ 𝑎 𝒫(𝑔𝜃⋆, 𝑔𝜔1, 𝑡) 

+𝑏 𝒫(𝑔𝜃⋆, 𝑓𝜃⋆, 𝑡) 

+𝑐 𝒫(𝑔𝜔1, 𝑓𝜔1, 𝑡) 

        = 𝑎 𝒫(𝜛, 𝜛1, 𝑡) 

        +𝑏 𝒫(𝜛, 𝜛, 𝑡) 

       +𝑐 𝒫(𝜛1, 𝜛1, 𝑡) 

        = 𝑎 𝒫(𝜛, 𝜛1, 𝑡), 

implying (since 𝑎 > 1) that 𝒫(𝜛, 𝜛1, 𝑡) = 0. Thus, the point 

of coincidence is unique. If the pair (𝑓, 𝑔)  is weakly 

compatible, applying [13, Proposition 1.12] we conclude that 
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𝑓  and 𝑔  have a unique common fixed point. If (𝑓, 𝑔)   is 

occasionally weakly compatible, the same conclusion follows 

from [14, Lemma 1.6]. This completes the proof. 

 

Setting 𝑏 = 𝑐 = 0  and 𝑎 = 𝜇  in Theorem 7.3.2, we can 

obtain the following result. 

Corollary 3.8 (𝔇, 𝒫) be a complete parametric metric space 

and 𝑓, 𝑔: 𝔇 → 𝔇 be two maps such that 𝑓𝔇 ⊃ 𝑔𝔇 and that at 

least one of these subspaces is complete. Suppose that there 

exists a real 𝜇 > 1 such that  

                    𝒫(𝑓𝜃, 𝑓𝜗, 𝑡) ≥ 𝜇𝒫(𝑔𝜃, g𝜗, 𝑡)                      (8) 

∀ 𝜃, 𝜗 ∈ 𝔇 with 𝜃 ≠ 𝜗  and all 𝑡 > 0. Then 𝑓  and 𝑔 have a 

unique point of coincidence. If, moreover, the pair (𝑓, 𝑔) is 

(occasionally) weakly compatible, then 𝑓  and 𝑔  have a 

unique common fixed point. 

 

Corollary 3.9 Let (𝔇, 𝒫) be a complete parametric metric 

space and 𝑓: 𝔇 → 𝔇 be a surjection. Suppose that there exists 

a constant 𝜇 > 1 such that  

    𝒫(𝑓𝜃, 𝑓𝜗, 𝑡) ≥ 𝜇𝒫(𝜃, 𝜗, 𝑡)                   (9)   

∀ 𝜃, 𝜗 ∈ 𝔇 and all 𝑡 > 0. Then 𝑓 has a unique fixed point in 

𝔇. 

Proof From Corollary 3.8, it follows that 𝑓 has a fixed point 

𝜃⋆ in 𝔇 by setting 𝑔 = 𝑖𝐷.  

Uniqueness. Suppose that  𝜃⋆ ≠ 𝜗⋆ is also another fixed point 

of  𝑓, then from condition (9), we obtain 

      𝒫(𝜃⋆, 𝜗⋆, 𝑡) = 𝒫(𝑓𝜃⋆, 𝑓𝜗⋆, 𝑡) 

                                       ≥ 𝜇𝒫(𝜃⋆, 𝜗⋆, 𝑡) 

which implies  𝒫(𝜃⋆, 𝜗⋆, 𝑡) = 0,  that is 𝜃⋆ = 𝜗⋆. This 

completes the proof. 

 

Corollary 3.10 Let (𝔇, 𝒫) be a complete parametric metric 

space and 𝑓: 𝔇 → 𝔇 be a surjection. Suppose that there exists 

a positive integer 𝑛 and a real number 𝜇 > 1 such that  

                 𝒫(𝑓𝑛𝜃, 𝑓𝑛𝜗, 𝑡) ≥ 𝜇𝒫(𝜃, 𝜗, 𝑡)            (10)   

∀ 𝜃, 𝜗 ∈ 𝔇 and all 𝑡 > 0. Then 𝑇 has a unique fixed point in 

𝔇. 

Proof From Corollary 3.9, 𝑓𝑛 has a fixed point  𝜃⋆. 

But 𝑓𝑛(𝑓𝜃⋆) = 𝑓(𝑓𝑛𝜃⋆) = 𝑓𝜃⋆ , So 𝑓𝜃⋆ is also a fixed point 

of 𝑓𝑛 . Hence 𝑓𝜃⋆ = 𝜃⋆, 𝜃⋆ is a fixed point of 𝑓. Since the 

fixed point of 𝑓 is also fixed point of  𝑓𝑛 , the fixed point of 

𝑓 is unique. 

 

Example 3.11 Let 𝔇 = [0,1] be endowed with parametric 

metric  𝒫(𝜃, 𝜗, 𝑡) = 𝑡|𝜃 − 𝜗|for all 𝜃, 𝜗 ∈ 𝔇  and all 𝑡 > 0. 

Then (𝔇, 𝒫)is a complete parametric metric space. Define 

𝑓: 𝔇 → 𝔇 by 𝑓(𝜃) = 3𝜃 for all 𝜃 ∈ 𝔇. Then 𝑓 is surjection 

on 𝔇. Further 

                     𝒫(𝑓𝜃, 𝑓𝜗, 𝑡) = 𝑡|3𝜃 − 3𝜗| 

                                          = 3𝑡|𝜃 − 𝜗| 

                                          ≥ 2𝒫(𝜃, 𝜗, 𝑡) 

                                          = 𝜇𝒫(𝜃, 𝜃, 𝑡)                                          

for all 𝜃, 𝜗 ∈ 𝐷 and all 𝑡 > 0,where 𝜇 = 2 > 1. Then (9) is 

satisfied. Thus, all conditions of Corollary 3.9 are satisfied 

and 𝜃⋆ = 0 is a fixed point of 𝑓. 
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