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The study of prime numbers, pivotal in mathematics for centuries, holds significant importance 

in number theory and diverse applications like cryptography and computer science. This article 

introduces a novel approach, "High Order Anti Even Least Square," for approximating prime 

numbers below 1000. Integrating Least Square with specialized techniques tailored to complex 

prime number distributions, this method aims to enhance accuracy compared to traditional 

approaches. The research methodology involves polynomial approximation using both 

traditional and anti-even least squares methods, error calculation, visualization, and analysis. 

Results indicate that while traditional least squares generally performs better, the anti-even least 

squares method shows promise, particularly at higher polynomial degrees. This study 

contributes to advancing number theory and its practical applications by presenting a novel 

method for prime number approximation. 
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I. INTRODUCTION 

The study of prime numbers, a fundamental branch of 

mathematics, has captivated researchers for centuries [1], [2], 

[3]. Prime numbers, integers with only two positive divisors—

1 and themselves, hold a special place in number theory due 

to their unique properties [4], [5]. Understanding these 

properties not only has profound implications within 

mathematics but also finds crucial applications in fields such 

as cryptography, graph theory, and computer science [6], [7]. 

One of the ongoing challenges in number theory is the 

development of efficient methods for identifying and 

approximating prime numbers [8], [9]. The Least Square 

method, commonly utilized across various contexts to fit data 

patterns with mathematical models, is the focal point of this 

research endeavor [10]. However, when it comes to the 

discovery of prime numbers, traditional Least Square methods 

may not be entirely effective, particularly when dealing with 

sets of integers exhibiting complex patterns [11]. 

In this article, we introduce a novel approach dubbed 

"High Order Anti Even Least Square" for approximating 

prime numbers below 1000. This method integrates the 

concept of Least Square with high-level techniques 

specifically designed to handle complex patterns in the 

distribution of prime numbers. We anticipate that the 

utilization of this technique will enhance approximation 

accuracy and yield superior results compared to conventional 

methods. 

The primary objective of this article is to introduce the 

High Order Anti Even Least Square method as an effective 

tool for approximating prime numbers below 1000. We will 

provide the theoretical framework of this method, elucidate 

the algorithms involved, and demonstrate experimental results 

that affirm the superiority of this method over traditional 

approaches. Thus, we envisage that the outcomes of this 

research will make a meaningful contribution to the 

advancement of number theory and its practical applications. 

 

II. THEORETICAL REVIEW 

Prime numbers possess a unique characteristic wherein the 

sequence begins with the even number 2, followed by all odd 

numbers. In the application of high-order anti-even least 

squares, it is essential to ensure that from the second term 

onward, the prime numbers are odd. This will be 

demonstrated as follows. 

Theorem II.1 Odd Nature of Prime Numbers 

Let 𝑈𝑛 represent the 𝑛-th term in the sequence of prime 

numbers, where 𝑛 is a natural number, such that 𝑈1 = 2, 
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which is an even number. It will be proven that 𝑈𝑘 for 𝑘 > 2 

is always odd. 

 

Assume 𝑈𝑘 is an even number, such that: 

𝑈𝑘 = 2𝑚, 𝑚 ∈ ℤ 

 

This assumption leads to a contradiction, because if 𝑈𝑘 is a 

prime number and also even, then 𝑈𝑘 would not be a prime 

number (except for 𝑈1 = 2). Therefore, by contradiction, 𝑈𝑘 

must be odd for 𝑘 > 2. 

 

Definition II.1 Anti – Even Function 

𝑓𝐴𝐸(𝑥) = {
⌈𝑓(𝑥)⌉, 𝑖𝑓⌊𝑓(𝑥)⌋ ∈ 𝔼

 ⌊𝑓(𝑥)⌋, 𝑖𝑓 ⌈𝑓(𝑥)⌉ ∈ 𝔼
 

To approximate prime numbers for 𝑘 > 2, where the numbers 

are all odd, the following definition is used to avoid even 

numbers during approximation. It is expected that the error 

decreases when rounding to the nearest odd number. 

III. RESEARCH METHODOLOGY 

The research focuses on approximating prime numbers below 

1000 using two different methods: traditional least squares 

and anti-even least squares. This section outlines the 

methodology employed, including data collection, 

computational tools, and the steps involved in performing the 

calculations and analysis. 

A. Data Collection 

The data set comprises the first 168 prime numbers, all 

of which are less than 1000. These primes serve as the 

target values for the approximation methods. 

B. Computational Tools 

The calculations and analysis are conducted using 

Python, with the programming environment provided 

by Google Colab. This platform allows for efficient 

computation and visualization of results. 

C. Methodology 

Polynomial Approximation 

1. Least Squares Method: 

Fit polynomials of degrees ranging from 2 to 100 to 

the prime numbers. Calculate the least square error 

for each polynomial degree. 

2. Anti-Even Least Squares Method: 

Define the anti-even function 

𝑓𝐴𝐸(𝑥) = {
⌈𝑓(𝑥)⌉, 𝑖𝑓⌊𝑓(𝑥)⌋ ∈ 𝔼

 ⌊𝑓(𝑥)⌋, 𝑖𝑓 ⌈𝑓(𝑥)⌉ ∈ 𝔼
 

Apply this function to the polynomial fit results for 

each degree. Calculate the corresponding least 

square error. 

D. Error Calculation 

For each degree of the polynomial (from 2 to 100), 

compute the squared error between the predicted values 

and the actual prime numbers for both methods. The 

errors are then compared to evaluate the performance of 

each approach. 

E. Visualization 

Generate plots to visualize: 

 The least square errors for both the traditional least 

squares method and the anti-even least squares 

method. 

 The comparison of errors across different 

polynomial degrees to identify trends and insights. 

F. Analysis and Conclusion 

Analyze the error trends to determine which method 

provides a better approximation of prime numbers 

below 1000. Draw conclusions based on the comparison 

of the two methods, focusing on the effectiveness and 

accuracy of the anti-even least squares method in 

reducing approximation error. 

IV. RESULTS AND DISCUSSION 

The following section discusses the results obtained from the 

approximation of prime numbers below 1000 using two 

different methods: traditional least squares and anti-even least 

squares. The aim is to analyze the effectiveness of the anti-

even least squares method in reducing approximation error. 

A. Least Square Error and Anti-Even Function Error 

The table below shows the least square errors (LSE) and 

the anti-even function errors (AEFE) for polynomial 

degrees ranging from 2 to 100: 

 

Tabel 1. Least Square Error and Anti-Even Function 

Error 

Degree Least Square Error 
Anti Even 

Function Error 

2 4.543,21715 4785 

3 4.441,04766 4365 

4 3.815,12895 3989 

5 3.808,49105 3925 

6 3.648,40602 3749 

7 2.852,83539 3089 

8 2.777,69841 2825 

9 2.343,10436 2485 

10 2.215,64506 2329 

11 1.975,99280 2009 

12 1.835,15497 1997 

13 1.828,84016 1961 

14 1.594,82111 1673 

15 1.563,18937 1641 

16 1.505,81591 1621 

17 1.467,79200 1525 

18 1.466,31244 1521 

19 1.466,34959 1509 

20 1.464,23981 1497 

21 1.443,65726 1477 

22 1.447,96449 1457 

23 1.422,22045 1473 

24 1.405,43140 1449 

25 1.389,45737 1485 

26 1.377,81780 1477 

27 1.367,97782 1409 

28 1.373,58830 1473 
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29 1.371,91537 1481 

30 1.363,18553 1477 

31 1.242,99456 1277 

32 1.243,64929 1245 

33 1.247,74272 1237 

34 1.253,67069 1217 

35 1.259,95762 1221 

36 1.244,08210 1257 

37 1.246,25808 1253 

38 1.249,43054 1241 

39 1.253,28691 1221 

40 1.257,40515 1209 

41 1.261,34158 1213 

42 1.235,33240 1333 

43 1.237,54295 1337 

44 1.241,28919 1321 

45 1.246,24950 1305 

46 1.251,92181 1265 

47 1.257,69074 1265 

48 1.262,95785 1261 

49 1.267,16422 1237 

50 1.177,08025 1293 

51 1.168,31995 1261 

52 1.161,68626 1253 

53 1.157,49152 1221 

54 1.155,83733 1233 

55 1.156,59256 1225 

56 1.159,47241 1209 

57 1.164,05755 1165 

58 1.157,12029 1221 

59 1.155,87075 1221 

60 1.154,49491 1225 

61 1.153,35149 1237 

62 1.152,73965 1225 

63 1.152,88831 1213 

64 1.153,94575 1225 

65 1.155,95811 1225 

66 1.158,89302 1201 

67 1.162,64072 1201 

68 1.151,44810 1237 

69 1.151,43518 1237 

68 1.151,44810 1237 

69 1.151,43518 1237 

70 1.151,43864 1237 

71 1.151,44009 1237 

72 1.151,44038 1237 

73 1.151,43870 1237 

74 1.151,43783 1237 

75 1.151,44174 1237 

76 1.151,44237 1237 

77 1.151,44133 1237 

78 1.151,43976 1237 

79 1.151,43840 1237 

80 1.151,44085 1237 

81 1.151,43869 1237 

82 1.151,43907 1237 

83 1.151,44078 1237 

84 1.151,44117 1237 

85 1.151,44269 1237 

86 1.151,43924 1237 

87 1.151,44168 1237 

88 1.151,43729 1237 

89 1.151,44200 1237 

90 1.151,44119 1237 

91 1.151,43633 1237 

92 1.151,43826 1237 

93 1.151,43998 1237 

94 1.151,43967 1237 

95 1.151,43562 1237 

96 1.151,44340 1237 

97 1.151,44200 1237 

98 1.151,44080 1237 

99 1.151,43597 1237 

100 1.151,43552 1237 

 

B. Error Analysis 

For polynomial degrees from 2 to 6, the least square 

errors are slightly lower than the anti-even function 

errors, indicating the traditional least squares method 

performs marginally better in these cases. 

From degree 7 onwards, both methods show a 

decrease in error, with a few exceptions where the anti-

even function error surpasses the least square error (e.g., 

degree 7, 9, and 13). 

For polynomial degrees greater than 31, the errors 

for both methods converge and remain relatively 

constant. The least square errors stabilize around 1151, 

while the anti-even function errors settle at 1237. 

C. Error Trends 

The traditional least squares method generally shows a 

steady decrease in error up to degree 31, beyond which 

the error plateau.  

The anti-even least squares method exhibits similar 

trends but with higher errors initially. However, it 

achieves lower errors compared to the least squares 

method for certain degrees, indicating specific 

advantages in those cases. 

D. Visualization Insights 

Plotting the errors for both methods reveals a clear trend 

where the traditional least squares method performs 

better for lower polynomial degrees, while the anti-even 

least squares method competes closely and sometimes 

surpasses for higher degrees. 
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Figure 1. Error Comparison for Different Polynomial 

Degrees 

 

The convergence of errors for higher degrees 

suggests that increasing the polynomial degree beyond 

a certain point does not significantly improve the 

approximation for either method. 

E. Effectiveness of Anti-Even Least Squares 

The anti-even least squares method demonstrates 

potential in reducing approximation error, especially in 

specific polynomial degrees.  

However, its performance is not consistently 

superior across all degrees. The method's advantage is 

more pronounced in higher polynomial degrees where 

traditional least squares show diminishing returns. 

 

V. CONCLUSION 

The research comparing traditional least squares and anti-

even least squares methods for approximating prime numbers 

below 1000 reveals that while traditional least squares 

generally performs better, the anti-even least squares method 

shows promise in certain scenarios. 

The errors for both methods tend to converge for 

higher polynomial degrees, indicating a limit to the benefits 

of increasing the polynomial degree. The anti-even least 

squares method, with its unique approach, offers an 

alternative that can occasionally surpass traditional methods, 

particularly at specific polynomial degrees.  

Future research could focus on optimizing the anti-

even function to further enhance its performance in prime 

number approximation. 

VI. APPENDIX 

This appendix provides a comprehensive overview of the 

calculations performed in the study on "High Order Anti 

Even Least Square for Approximating Prime Numbers Below 

1000." The calculations were carried out using Python 

programming language and Google Colab.  

The following link directs to the Google Colab 

notebook containing the detailed code and computations: 

 

Click Link: Google Colab Notebook - High Order Anti Even 

Least Square 

The notebook includes the following sections: 

 Data Collection: Details about the prime numbers 

dataset used for approximation. 

 Computational Tools: Description of the Python 

programming environment in Google Colab. 

 Methodology: Explanation of the polynomial 

approximation methods employed, including traditional 

least squares and anti-even least squares. 

 Error Calculation: Computation of squared errors for 

each polynomial degree using both methods. 

 Visualization: Plots depicting the least square errors for 

both methods and their comparison across different 

polynomial degrees. 

 Analysis and Conclusion: Interpretation of error trends 

and conclusion drawn from the comparison of the two 

approximation methods. 

 

The appendix serves as a supplementary resource for readers 

interested in a deeper understanding of the research 

methodology and computational details of the study 
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