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We introduce a novel vertex degree based topological index, called Kepler Banhatti index. 

Also we put forward the modified Kepler Banhatti index of a graph. We propose the Kepler 

Banhatti and modified Kepler Banhatti exponentials of a graph. In this study, we determine 

the newly defined the Kepler Banhatti indices and their corresponding exponentials for certain 

dendrimers. Furthermore, we establish some properties of the Kepler Banhatti index.  
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1. INTRODUCTION 

Let G be a finite, simple, connected graph with vertex set 

V(G) and edge set E(G). The degree du of a vertex u is the 

number of vertices adjacent to u. We refer [1] for undefined 

notations and terminologies. 

A graph index is a numerical parameter mathematically 

derived from the graph structure. Several graph indices have 

been considered in Theoretical Chemistry and many graph 

indices were defined by using vertex degree concept [2]. 

The Zagreb, Banhatti, Revan, Gourava indices are the most 

degree based graph indices in Chemical Graph Theory. 

Graph indices have their applications in various disciplines 

in Science and Technology [3, 4, 5].  

In applications, Zagreb indices are among the best 

applications to recognize the physical properties. The first 

Zagreb index  
1M G and the second Zagreb index 

 
2M G were introduced by Gutman et al. in [6, 7]. They 

are defined as 

   
   

2
1 u v u

uv E G u V G

M G d d d
 

     

 
 

2 u v

uv E G

M G d d


   

 

The reciprocal Randic index was introduced in [8, 9] and it 

is defined as 

 
 

u v

uv E G

RR G d d


   

 

The Kepler expression was proposed in [10, 11]    

π  1 2r r  
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 The Kepler expression motivates us to introduce a new 

index, defined as 

   
 

2 2[ ]u v u v

uv E G

KB G d d d d


   
 

which we propose to be named as  Kepler Banhatti   index. 

 

Considering the Kepler Banhatti index, we introduce the 

Kepler Banhatti exponential of a graph G and defined it as 
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We define the modified Kepler Banhatti index of a graph G 

as  

 

   2 2

1
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uv E G u v u v

KB G
d d d d


  


 

Considering the modified Kepler Banhatti index, we 

introduce the modified Kepler Banhatti exponential of a 

graph G and defined it as 

   

 

2 2

1

, .u v u vd d d dm

uv E G

KB G x x
  



 
 

Recently, some graph indices were studied in [12, 13, 14, 

15, 16]. 

 

 

 

2. MATHEMATICAL PROPERTIES 
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Proposion1. Let P be a path with n≥3 vertices. Then   

   4 2 2 2 5 6 2 6.KB P n      

Proof: Let P be a path with n3vertices. We obtain two 

partitions of the edge set of P as follows: 

 

E1 = {uv  E(P) | du=1, dv=2}, | E1| = 2. 

E2 = {uv  E(P) | du = dv=2}, | E2| = n – 3. 

 

   
 

2 2[ ]u v u v

uv E G

KB P d d d d


     

     2 2 2 22[ 1 2 1 2 ] 3 [ 2 2 2 2 ]n        

  4 2 2 2 5 6 2 6.n    

  

Proposion2. Let G be an r-regular graph with n vertices, m 

edges and r2. Then  

  21
1 .

2
KB G nr

 
  
 

 

 

Proof:Let G be an r-regular graph with n vertices, r2 and 

m=
2

nr
 edges. Every edge of G is incident with r edges. 

Thus  
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Corollary 2.1. Let Cn be a cycle with n 3 vertices. Then  

1
( ) 1 4 .

2
nKB C n

 
  
 

 

 

Corollary 2.2. Let Kn be a complete graph with n3 

vertices. Then  

 
21

( ) 1 1 .
2

nKB K n n
 

   
   

 

Theorem 1. Let G be a simple connected graph. Then  

   
1

1
1

2
KB G M G

 
  
 

 

with equality if G is regular. 

 

Proof: By the Jensen inequality, for a concave function f(x),  

1 1
( )i if x f x

n n

       

with equality for a strict concave function if  x1 = x2  = …= 

xn.    Choosing   f(x) = √x , we obtain 
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thus                                            
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Thus                                           

   
1

1
1

2
KB G M G

 
  
 

 

with equality if G is regular. 

 

Theorem 2. Let G be a simple connected graph. Then  

 
1( ) 1 2 ( ) 2 ( ).KB G M G RR G    

 

Proof: It is known that for 1≤x ≤y, 

   
2 2

,
2

x y
f x y x y xy


     

is decreasing for each y. Thus    , , 0.f x y f y y   

Hence 

2 2

2

x y
x y xy


    

or            

2 2

.
2

x y
x y xy


    

 

Put x=
ud and y=

vd , we get 

 
2 2

2
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u v u v

d d
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or  2 2 2[ ].u v u v u vd d d d d d     

 

Thus     2 2
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which implies  
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Thus            

 
1( ) 1 2 ( ) 2 ( ).KB G M G RR G    

 

Theorem 3. Let G be a simple connected graph. Then  

   
12 .KB G M G  

 

Proof: It is known that for 1≤x ≤y, 

2 2x y x y    

   2 2 2x y x y x y      

 

Setting x=
ud and y=

vd , we get 

   2 2 2 .u v u v u vd d d d d d      

 

Thus                           

   
  

2 2[ ] 2 .u v u v u v

uv E G uv E G

d d d d d d
 

       

 

 Hence                
12 .KB G M G  

 

3. RESULTS FOR DENDIMER NANOSTARS D1[n] 

In this section, we consider a family of dendrimer nanostars 

with n growth stages, denoted by D1[n], where n0. The 

molecular graph of D1[4] with 4 growth stages is depicted in 

Figure 1.  

 
Figure 1. The molecular graph of D1[4]. 

  

Let G be the molecular graph of dendrimer nanostar D1[n]. 

From Figure 1, it is easy to see that the vertices of 

dendrimter nanostar D1[n] are either of degree 1, 2 or 3. We 

obtain that G has 2
n+4

 – 9 vertices and 18 × 2
n
 – 11 edges. 

Also by calculation, we partition the edge set E(D1[n]) into 

three sets as follows:   

E1 = {uv  E(G) | du = 1, dv = 3},  |E1| =1. 

E2 = {uv  E(G) | du = dv = 2},  |E2| = 6 × 2
n
– 2. 

 E3 = {uv  E(G) | du = 2, dv = 3},|E3| = 12 × 2
n
 – 10. 

 

Theorem 4. The Kepler Banhatti index of a dendrimer 

nanostar D1[n] is given by 

 

   84 12 2 12 13 2nKB G     

54 10 4 2 10 13.     
  

Proof: We have 

 

   
 

2 2[ ]u v u v

uv E G

KB G d d d d


     

  2 21 1 3 1 3       

    2 26  2 – 2 2 2 2 2n         

    2 212  2 –10 2 3 2 3n         
 

 84 12 2 12 13 2 54 10 4 2 10 13.n        
 

Theorem 5. The Kepler Banhatti exponential of a dendrimer 

nanostar D1[n] is given by 

 

   4 10 4 2 2, 1 6  2 – 2 nKB G x x x   
 

   5 1312  2 –10 .n x    

Proof: We have 

   

 

2 2

, u v u vd d d d

uv E G

KB G x x
  



    

     2 2 2 21 3 1 3 2 2 2 21 6  2 – 2 nx x       

     2 22 3 2 312  2 –10n x      

   4 10 4 2 2 5 131 6  2 – 2 12  2 –10 .n nx x x      

  

Theorem 6. The modified Kepler Banhatti index of a 

dendrimer nanostar D1[n] is  

  1 6  2 – 2 12  2 – 10
.

4 10 4 2 2 5 13

n n
m KB G

 
  

  
   

Proof: We have 

 

  
2 2

1m

uv E G
u v u v

KB G
d d d d


  

  

     2 2 2 2 2 2

1 6  2 – 2 12  2 –10

1 3 1 3 2 2 2 2 2 3 2 3

n n 
  

        

 

1 6  2 – 2 12  2 –10
.

4 10 4 2 2 5 13

n n 
  

    

 

 

Theorem 7. The modified Kepler Banhatti exponential of a 

dendrimer nanostar D1[n] is given by 

   
1 1

4 10 4 2 2, 1 6  2 – 2 m nKB G x x x      

 
1

5 1312  2 – 10 .n x    
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Proof: We have 

   

 

2 2

1

, u v u vd d d dm

uv E G

KB G x x
  



    

     2 2 2 2

1 1

1 3 1 3 2 2 2 21 6  2 – 2 nx x       

 
    2 2

1

2 3 2 312  2 –10n x    

 
   

1 11

4 10 5 134 2 21 6  2 – 2 12  2 –10 .n nx x x       

 

4.  RESULTS FOR DENDIMER NANOSTARS D3[n] 

In this section, we consider of dendrimer nanostars with n 

growth stages, denoted by D3[n], where n0. The molecular 

structure of D3[n] with 3 growth stages is shown in Figure 2.  

 

 
 

Figure 2. The molecular structure of D3[3] 

 

Let G be the graph of a dendrimer nanostar D3[n]. From 

Figure 2, it is easy to see that the vertices of dendrimter 

nanostar D3[n] are either of degree 1, 2 or 3. By algebraic 

method, we obtain that G has 24 × 2
n
 – 20 vertices and 24 × 

2
n+1

 – 24 edges. Also by algebraic method, we obtain that 

the edge set E(D3[n]) can be divided into four partitions: 

 

 E1 = {uv  E(G) | dG(u) = 1, dG(v) = 3} 

 |E1| = 3×2
n
. 

 E2 = {uv  E(G) | dG(u) = dG(v) = 2}  |E2| = 

12×2
n 
– 6. 

 E3 = {uv  E(G) | dG(u) = 2, dG(v) = 3} 

 |E3| = 24×2
n 
– 12. 

 E4 = {uv  E(G) | dG(u) = dG(v) = 3}  |E4| = 

9×2
n 
– 6. 

 

 

Theorem 8. The Kepler Banhatti index of a dendrimer 

nanostar D3[n] is given by 

 

   12 10 114 2 72 5 2nKB G     

 60 2 36 5.   

Proof: We have 

   
 

2 2

u v u v

uv E G

KB G d d d d


     

  2 23  2 1 3 1 3n         

    2 212  2 – 6 2 2 2 2n         

    2 224  2 –12 2 3 2 3n         

    2 29  2 – 6 3 3 3 3n         

 12 10 114 2 72 5 2 60 2 36 5.n      
 

Theorem 9. The Kepler Banhatti exponential of a dendrimer 

nanostar D3[n] is given by 

   4 10 4 2 2, 3 2 12 2 – 6 n nKB G x x x    
    5 13 6 3 224  2 –12 9  2 – 6 .n nx x      

Proof: We have 

   

 

2 2

, u v u vd d d d

uv E G

KB G x x
  



    

     2 2 2 21 3 1 3 2 2 2 23 2 12 2 – 6 n nx x          

       2 2 2 22 3 2 3 3 3 3 324  2 –12 9  2 – 6n nx x        

  4 10 4 2 23 2 12 2 – 6 n nx x    

    5 13 6 3 224  2 –12 9  2 – 6 .n nx x    

 
 

Theorem 10. The modified Kepler Banhatti index of a 

dendrimer nanostar D3[n] is  

 

  3  2 12  2 – 6

4 10 4 2 2

n n
m KB G

 
 

   

 
24  2 – 12 9  2 – 6

.
5 13 6 3 2

n n 
 

 
  

Proof: We have 

 

  
2 2

1m

uv E G
u v u v

KB G
d d d d


  

  

   2 2 2 2

3  2 12  2 – 6

1 3 1 3 2 2 2 2

n n 
 

     
 

   2 2 2 2

24  2 –12 9  2 – 6

2 3 2 3 3 3 3 3

n n 
 

     
 

3  2 12  2 – 6 24  2 –12 9  2 – 6
.

4 10 4 2 2 5 13 6 3 2

n n n n   
   

     
 

 

Theorem 11. The modified Kepler Banhatti exponential of a 

dendrimer nanostar D3[n] is given by 

   
1 1

4 10 4 2 2, 3 2 12  2 – 6m n nKB G x x x    
 

   
1 1

5 13 6 3 224  2 –12 9  2 – 6 .n nx x      
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Proof: We have 

   

 

2 2

1

, u v u vd d d dm

uv E G

KB G x x
  



    

     2 2 2 2

1 1

1 3 1 3 2 2 2 23 2 12  2 – 6n nx x          

       2 2 2 2

1 1

2 3 2 3 3 3 3 324  2 –12 9  2 – 6n nx x          

 
1 1

4 10 4 2 23 2 12  2 – 6n nx x      

   
1 1

5 13 6 3 224  2 –12 9  2 – 6 .n nx x      

 

5.  CONCLUSION 

We have introduced the Kepler Banhatti and modified 

Kepler Banhatti indices and their exponentials of a graph. 

Furthermore the Kepler Banhatti and modified Kepler 

Banhatti indices and their exponentials for two families of 

dendrimer nanostars are determined. Also some 

mathematical properties of Kepler Banhatti index are 

obtained. 
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