International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 06 June 2024, Page no. – 4310-4314

Index Copernicus ICV: 57.55, Impact Factor: 8.316

DOI: 10.47191/ijmcr/v12i6.08

Kepler Banhatti and Modified Kepler Banhatti Indices

V.R.Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

ARTICLE INFO	ABSTRACT
Published Online:	We introduce a novel vertex degree based topological index, called Kepler Banhatti index.
18 June 2024	Also we put forward the modified Kepler Banhatti index of a graph. We propose the Kepler
	Banhatti and modified Kepler Banhatti exponentials of a graph. In this study, we determine
Corresponding Author:	the newly defined the Kepler Banhatti indices and their corresponding exponentials for certain
V.R.Kulli	dendrimers. Furthermore, we establish some properties of the Kepler Banhatti index.
KEYWORDS: Kepler Banhatti index, modified Kepler Banhatti index, graph, dendrimer.	

1. INTRODUCTION

Let *G* be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree d_u of a vertex *u* is the number of vertices adjacent to *u*. We refer [1] for undefined notations and terminologies.

A graph index is a numerical parameter mathematically derived from the graph structure. Several graph indices have been considered in Theoretical Chemistry and many graph indices were defined by using vertex degree concept [2]. The Zagreb, Banhatti, Revan, Gourava indices are the most degree based graph indices in Chemical Graph Theory. Graph indices have their applications in various disciplines in Science and Technology [3, 4, 5].

In applications, Zagreb indices are among the best applications to recognize the physical properties. The first Zagreb index $M_1(G)$ and the second Zagreb index $M_1(G)$ ware introduced by Gutman et al. in [6, 7]. They

 $M_2(G)$ were introduced by Gutman et al. in [6, 7]. They are defined as

$$\begin{split} M_1(G) &= \sum_{uv \in E(G)} \left(d_u + d_v \right) = \sum_{u \in V(G)} d_u^2 \\ M_2(G) &= \sum_{uv \in E(G)} d_u d_v \end{split}$$

The reciprocal Randic index was introduced in [8, 9] and it is defined as

$$RR(G) = \sum_{uv \in E(G)} \sqrt{d_u d_v}$$

The Kepler expression was proposed in [10, 11] $\pi(r_1 + r_2)$

where
$$r_1 = \sqrt{a^2 + b^2}$$
, $r_2 = \frac{1}{\sqrt{2}}(a+b)$,
 $a = d_u, b = d_v, a \ge b$.

The Kepler expression motivates us to introduce a new index, defined as

$$KB(G) = \sum_{uv \in E(G)} [(d_u + d_v) + \sqrt{d_u^2 + d_v^2}]$$

which we propose to be named as Kepler Banhatti index.

Considering the Kepler Banhatti index, we introduce the Kepler Banhatti exponential of a graph G and defined it as

$$KB(G, x) = \sum_{uv \in E(G)} x^{(d_u + d_v) + \sqrt{d_u^2 + d_v^2}}$$

We define the modified Kepler Banhatti index of a graph *G* as

$${}^{m} KB(G) = \sum_{uv \in E(G)} \frac{1}{\left(d_{u} + d_{v}\right) + \sqrt{d_{u}^{2} + d_{v}^{2}}}.$$

Considering the modified Kepler Banhatti index, we introduce the modified Kepler Banhatti exponential of a graph G and defined it as

$${}^{m} KB(G, x) = \sum_{uv \in E(G)} x^{\frac{1}{(d_{u}+d_{v})+\sqrt{d_{u}^{2}+d_{v}^{2}}}}$$

Recently, some graph indices were studied in [12, 13, 14, 15, 16].

2. MATHEMATICAL PROPERTIES

V. R. Kulli, IJMCR Volume 12 Issue 06 June 2024

Proposion1. Let *P* be a path with $n \ge 3$ vertices. Then $KB(P) = (4 + 2\sqrt{2})n + 2\sqrt{5} - 6\sqrt{2} - 6$.

Proof: Let *P* be a path with $n \ge 3$ vertices. We obtain two partitions of the edge set of *P* as follows:

$$E_1 = \{uv \in E(P) \mid d_u = 1, d_v = 2\}, |E_1| = 2.$$

$$E_2 = \{uv \in E(P) \mid d_u = d_v = 2\}, |E_2| = n - 3.$$

$$KB(P) = \sum_{uv \in E(G)} \left[\left(d_u + d_v \right) + \sqrt{d_u^2 + d_v^2} \right]$$

= 2[(1+2) + $\sqrt{1^2 + 2^2}$] + (n-3)[(2+2) + $\sqrt{2^2 + 2^2}$]
= (4 + 2 $\sqrt{2}$)n + 2 $\sqrt{5}$ - 6 $\sqrt{2}$ - 6.

Proposion2. Let *G* be an *r*-regular graph with *n* vertices, *m* edges and $r \ge 2$. Then

$$KB(G) = \left(1 + \frac{1}{\sqrt{2}}\right)nr^2.$$

Proof:Let G be an r-regular graph with n vertices, $r \ge 2$ and

 $m = \frac{nr}{2}$ edges. Every edge of *G* is incident with *r* edges. Thus

$$KB(G) = \sum_{uv \in E(G)} [(r+r) + \sqrt{r^2 + r^2}]$$
$$= (2 + \sqrt{2}) rm$$
$$= \left(1 + \frac{1}{\sqrt{2}}\right) nr^2$$

Corollary 2.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$KB(C_n) = \left(1 + \frac{1}{\sqrt{2}}\right) 4n.$$

Corollary 2.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$KB(K_n) = \left(1 + \frac{1}{\sqrt{2}}\right)n(n-1)^2.$$

Theorem 1. Let G be a simple connected graph. Then

$$KB(G) \ge \left(1 + \frac{1}{\sqrt{2}}\right) M_1(G)$$

with equality if G is regular.

Proof: By the Jensen inequality, for a concave function f(x),

$$f\left(\frac{1}{n}\sum x_i\right) \ge \frac{1}{n}\sum f(x_i)$$

with equality for a strict concave function if $x_1 = x_2 = ... = x_n$. Choosing $f(x) = \sqrt{x}$, we obtain

$$\sqrt{\frac{d_{u}^{2}+d_{v}^{2}}{2}} \ge \frac{\left(d_{u}+d_{v}\right)}{2}$$

thus

$$[(d_u + d_v) + \sqrt{d_u^2 + d_v^2}] \ge (d_u + d_v) + \frac{1}{\sqrt{2}}(d_u + d_v).$$

Hence

$$\sum_{uv \in E(G)} \left[\left(d_u + d_v \right) + \sqrt{d_u^2 + d_v^2} \right].$$

$$\geq \left(1 + \frac{1}{\sqrt{2}} \right) \sum_{uv \in E(G)} \left(d_u + d_v \right).$$

Thus

$$KB(G) \ge \left(1 + \frac{1}{\sqrt{2}}\right) M_1(G)$$

with equality if G is regular.

Theorem 2. Let *G* be a simple connected graph. Then
$$KB(G) \le (1 + \sqrt{2})M_1(G) - \sqrt{2}RR(G).$$

Proof: It is known that for $1 \le x \le y$,

$$f(x, y) = (x + y - \sqrt{xy}) - \sqrt{\frac{x^2 + y^2}{2}}$$

is decreasing for each y. Thus $f(x, y) \ge f(y, y) = 0$. Hence

$$x + y - \sqrt{xy} \ge \sqrt{\frac{x^2 + y^2}{2}}$$

or
$$\sqrt{\frac{x^2 + y^2}{2}} \le x + y - \sqrt{xy}.$$

Put
$$x = d_u$$
 and $y = d_v$, we get

$$\sqrt{\frac{d_{u}^{2} + d_{v}^{2}}{2}} \leq (d_{u} + d_{v}) - \sqrt{d_{u}d_{v}}$$

or $\sqrt{d_{u}^{2} + d_{v}^{2}} \leq \sqrt{2}[(d_{u} + d_{v}) - \sqrt{d_{u}d_{v}}].$

Thus
$$(d_u + d_v) + \sqrt{d_u^2 + d_v^2}$$

 $\leq (d_u + d_v) + \sqrt{2}[(d_u + d_v) - \sqrt{d_u d_v}]$

which implies

$$\sum_{uv \in E(G)} \left(d_u + d_v \right) + \sqrt{d_u^2 + d_v^2}$$

$$\leq \left(1 + \sqrt{2} \right) \sum_{uv \in E(G)} \left(d_u + d_v \right) - \sqrt{2} \sum_{uv \in E(G)} \sqrt{d_u d_v}.$$

V. R. Kulli, IJMCR Volume 12 Issue 06 June 2024

Thus $KB(G) \leq \left(1 + \sqrt{2}\right) M_1(G) - \sqrt{2}RR(G).$

Theorem 3. Let *G* be a simple connected graph. Then $KB(G) < 2M_1(G)$.

Proof: It is known that for $1 \le x \le y$,

$$\sqrt{x^2 + y^2} < x + y$$

 $(x + y) + \sqrt{x^2 + y^2} < 2(x + y)$

Setting $x = d_u$ and $y = d_v$, we get

$$(d_u + d_v) + \sqrt{d_u^2 + d_v^2} < 2(d_u + d_v).$$

Thus

$$\sum_{uv \in E(G)} \left[\left(d_u + d_v \right) + \sqrt{d_u^2 + d_v^2} \right] < 2 \sum_{uv \in E(G)} \left(d_u + d_v \right).$$

Hence

 $KB(G) < 2M_1(G)$.

3. RESULTS FOR DENDIMER NANOSTARS D₁[n]

In this section, we consider a family of dendrimer nanostars with *n* growth stages, denoted by $D_1[n]$, where $n \ge 0$. The molecular graph of $D_1[4]$ with 4 growth stages is depicted in Figure 1.

Figure 1. The molecular graph of $D_1[4]$.

Let *G* be the molecular graph of dendrimer nanostar $D_1[n]$. From Figure 1, it is easy to see that the vertices of dendrimter nanostar $D_1[n]$ are either of degree 1, 2 or 3. We obtain that *G* has $2^{n+4} - 9$ vertices and $18 \times 2^n - 11$ edges. Also by calculation, we partition the edge set $E(D_1[n])$ into three sets as follows:

$$\begin{split} E_1 &= \{ uv \in E(G) \mid d_u = 1, \, d_v = 3 \}, \quad |E_1| = 1. \\ E_2 &= \{ uv \in E(G) \mid d_u = d_v = 2 \}, \quad |E_2| = 6 \times 2^n - 2. \\ E_3 &= \{ uv \in E(G) \mid d_u = 2, \, d_v = 3 \}, |E_3| = 12 \times 2^n - 10. \end{split}$$

Theorem 4. The Kepler Banhatti index of a dendrimer nanostar $D_1[n]$ is given by

$$KB(G) = (84 + 12\sqrt{2} + 12\sqrt{13})2^{n}$$

-54 + $\sqrt{10}$ + 4 $\sqrt{2}$ - 10 $\sqrt{13}$.

Proof: We have

$$KB(G) = \sum_{uv \in E(G)} \left[\left(d_u + d_v \right) + \sqrt{d_u^2 + d_v^2} \right]$$

= 1[(1+3) + $\sqrt{1^2 + 3^2}$]
+ (6 × 2ⁿ - 2)[(2+2) + $\sqrt{2^2 + 2^2}$]
+ (12 × 2ⁿ - 10)[(2+3) + $\sqrt{2^2 + 3^2}$]
= (84+12 $\sqrt{2}$ + 12 $\sqrt{13}$)2ⁿ - 54 + $\sqrt{10}$ + 4 $\sqrt{2}$ - 10 $\sqrt{13}$.

Theorem 5. The Kepler Banhatti exponential of a dendrimer nanostar $D_1[n]$ is given by

$$KB(G, x) = 1x^{4+\sqrt{10}} + (6 \times 2^{n} - 2)x^{4+2\sqrt{2}} + (12 \times 2^{n} - 10)x^{5+\sqrt{13}}.$$

Proof: We have

$$\begin{split} KB(G, x) &= \sum_{uv \in E(G)} x^{(d_u + d_v) + \sqrt{d_u^2 + d_v^2}} \\ &= 1x^{(1+3) + \sqrt{1^2 + 3^2}} + (6 \times 2^n - 2) x^{(2+2) + \sqrt{2^2 + 2^2}} \\ &+ (12 \times 2^n - 10) x^{(2+3) + \sqrt{2^2 + 3^2}} \\ &= 1x^{4 + \sqrt{10}} + (6 \times 2^n - 2) x^{4 + 2\sqrt{2}} + (12 \times 2^n - 10) x^{5 + \sqrt{13}} \end{split}$$

Theorem 6. The modified Kepler Banhatti index of a dendrimer nanostar $D_1[n]$ is

$${}^{m}KB(G) = \frac{1}{4 + \sqrt{10}} + \frac{6 \times 2^{n} - 2}{4 + 2\sqrt{2}} + \frac{12 \times 2^{n} - 10}{5 + \sqrt{13}}$$

Proof: We have

$${}^{m}KB(G) = \sum_{uv \in E(G)} \frac{1}{\left(d_{u} + d_{v}\right) + \sqrt{d_{u}^{2} + d_{v}^{2}}}$$

= $\frac{1}{(1+3) + \sqrt{1^{2} + 3^{2}}} + \frac{6 \times 2^{n} - 2}{(2+2) + \sqrt{2^{2} + 2^{2}}} + \frac{12 \times 2^{n} - 10}{(2+3) + \sqrt{2^{2} + 3^{2}}}$
= $\frac{1}{4 + \sqrt{10}} + \frac{6 \times 2^{n} - 2}{4 + 2\sqrt{2}} + \frac{12 \times 2^{n} - 10}{5 + \sqrt{13}}.$

Theorem 7. The modified Kepler Banhatti exponential of a dendrimer nanostar $D_1[n]$ is given by

$${}^{m}KB(G,x) = 1x^{\frac{1}{4+\sqrt{10}}} + (6 \times 2^{n} - 2)x^{\frac{1}{4+2\sqrt{2}}} + (12 \times 2^{n} - 10)x^{\frac{1}{5+\sqrt{13}}}.$$

V. R. Kulli, IJMCR Volume 12 Issue 06 June 2024

Proof: We have

$${}^{m} KB(G, x) = \sum_{uv \in E(G)} x^{\overline{(d_{u}+d_{v})+\sqrt{d_{u}^{2}+d_{v}^{2}}}}$$

= $1x^{\overline{(1+3)+\sqrt{1^{2}+3^{2}}}} + (6 \times 2^{n}-2) x^{\overline{(2+2)+\sqrt{2^{2}+2^{2}}}}$
+ $(12 \times 2^{n}-10) x^{\overline{(2+3)+\sqrt{2^{2}+3^{2}}}}$
= $1x^{\overline{1}+\sqrt{10}} + (6 \times 2^{n}-2) x^{\overline{1}+2\sqrt{2}} + (12 \times 2^{n}-10) x^{\overline{1}+\sqrt{13}}$

4. RESULTS FOR DENDIMER NANOSTARS $D_3[n]$

In this section, we consider of dendrimer nanostars with *n* growth stages, denoted by $D_3[n]$, where $n \ge 0$. The molecular structure of $D_3[n]$ with 3 growth stages is shown in Figure 2.

Figure 2. The molecular structure of $D_3[3]$

Let *G* be the graph of a dendrimer nanostar $D_3[n]$. From Figure 2, it is easy to see that the vertices of dendrimter nanostar $D_3[n]$ are either of degree 1, 2 or 3. By algebraic method, we obtain that *G* has $24 \times 2^n - 20$ vertices and $24 \times 2^{n+1} - 24$ edges. Also by algebraic method, we obtain that the edge set $E(D_3[n])$ can be divided into four partitions:

$$E_{1} = \{uv \in E(G) \mid d_{G}(u) = 1, d_{G}(v) = 3\}$$

$$|E_{1}| = 3 \times 2^{n}.$$

$$E_{2} = \{uv \in E(G) \mid d_{G}(u) = d_{G}(v) = 2\}$$

$$|E_{2}| = 12 \times 2^{n} - 6.$$

$$E_{3} = \{uv \in E(G) \mid d_{G}(u) = 2, d_{G}(v) = 3\}$$

$$|E_{3}| = 24 \times 2^{n} - 12.$$

$$E_{4} = \{uv \in E(G) \mid d_{G}(u) = d_{G}(v) = 3\}$$

$$|E_{4}| = 9 \times 2^{n} - 6.$$

Theorem 8. The Kepler Banhatti index of a dendrimer nanostar $D_3[n]$ is given by

$$KB(G) = (12\sqrt{10} + 114\sqrt{2} + 72\sqrt{5})2^{n}$$

-60\sqrt{2} - 36\sqrt{5}.
Proof: We have

$$KB(G) = \sum_{uv \in E(G)} (d_u + d_v) + \sqrt{d_u^2 + d_v^2}$$

= 3× 2ⁿ [(1+3) + \sqrt{1^2 + 3^2}]
+ (12× 2ⁿ - 6) [(2+2) + \sqrt{2^2 + 2^2}]
+ (24× 2ⁿ - 12) [(2+3) + \sqrt{2^2 + 3^2}]
+ (9× 2ⁿ - 6) [(3+3) + \sqrt{3^2 + 3^2}]
= (12\sqrt{10} + 114\sqrt{2} + 72\sqrt{5}) 2ⁿ - 60\sqrt{2} - 36\sqrt{5}.

Theorem 9. The Kepler Banhatti exponential of a dendrimer nanostar $D_3[n]$ is given by

$$KB(G, x) = 3 \times 2^{n} x^{4+\sqrt{10}} + (12 \times 2^{n} - 6) x^{4+2\sqrt{2}} + (24 \times 2^{n} - 12) x^{5+\sqrt{13}} + (9 \times 2^{n} - 6) x^{6+3\sqrt{2}}.$$
Proof: We have
$$KB(G, x) = \sum_{uv \in E(G)} x^{(d_{u}+d_{v})+\sqrt{d_{u}^{2}+d_{v}^{2}}} + (12 \times 2^{n} - 6) x^{(2+2)+\sqrt{2^{2}+2^{2}}} + (24 \times 2^{n} - 12) x^{(2+3)+\sqrt{2^{2}+3^{2}}} + (9 \times 2^{n} - 6) x^{(3+3)+\sqrt{3^{2}+3^{2}}} = 3 \times 2^{n} x^{4+\sqrt{10}} + (12 \times 2^{n} - 6) x^{4+2\sqrt{2}} + (24 \times 2^{n} - 12) x^{5+\sqrt{13}} + (9 \times 2^{n} - 6) x^{6+3\sqrt{2}}.$$

Theorem 10. The modified Kepler Banhatti index of a dendrimer nanostar $D_3[n]$ is

$${}^{m}KB(G) = \frac{3 \times 2^{n}}{4 + \sqrt{10}} + \frac{12 \times 2^{n} - 6}{4 + 2\sqrt{2}} + \frac{24 \times 2^{n} - 12}{5 + \sqrt{13}} + \frac{9 \times 2^{n} - 6}{6 + 3\sqrt{2}}.$$

Proof: We have

$${}^{m}KB(G) = \sum_{uv \in E(G)} \frac{1}{\left(d_{u} + d_{v}\right) + \sqrt{d_{u}^{2} + d_{v}^{2}}}$$

= $\frac{3 \times 2^{n}}{(1+3) + \sqrt{1^{2} + 3^{2}}} + \frac{12 \times 2^{n} - 6}{(2+2) + \sqrt{2^{2} + 2^{2}}}$
+ $\frac{24 \times 2^{n} - 12}{(2+3) + \sqrt{2^{2} + 3^{2}}} + \frac{9 \times 2^{n} - 6}{(3+3) + \sqrt{3^{2} + 3^{2}}}$
= $\frac{3 \times 2^{n}}{4 + \sqrt{10}} + \frac{12 \times 2^{n} - 6}{4 + 2\sqrt{2}} + \frac{24 \times 2^{n} - 12}{5 + \sqrt{13}} + \frac{9 \times 2^{n} - 6}{6 + 3\sqrt{2}}.$

Theorem 11. The modified Kepler Banhatti exponential of a dendrimer nanostar $D_3[n]$ is given by

$${}^{m}KB(G,x) = 3 \times 2^{n} x^{\frac{1}{4+\sqrt{10}}} + (12 \times 2^{n} - 6) x^{\frac{1}{4+2\sqrt{2}}} + (24 \times 2^{n} - 12) x^{\frac{1}{5+\sqrt{13}}} + (9 \times 2^{n} - 6) x^{\frac{1}{6+3\sqrt{2}}}.$$

V. R. Kulli, IJMCR Volume 12 Issue 06 June 2024

"Kepler Banhatti and Modified Kepler Banhatti Indices"

Proof: We have

$${}^{m} KB(G, x) = \sum_{uv \in E(G)} x^{\frac{1}{(d_{u}+d_{v})+\sqrt{d_{u}^{2}+d_{v}^{2}}}}$$

= $3 \times 2^{n} x^{\frac{1}{(1+3)+\sqrt{l^{2}+3^{2}}}} + (12 \times 2^{n} - 6) x^{\frac{1}{(2+2)+\sqrt{2^{2}+2^{2}}}}$
+ $(24 \times 2^{n} - 12) x^{\frac{1}{(2+3)+\sqrt{2^{2}+3^{2}}}} + (9 \times 2^{n} - 6) x^{\frac{1}{(3+3)+\sqrt{3^{2}+3^{2}}}}$
= $3 \times 2^{n} x^{\frac{1}{4+\sqrt{10}}} + (12 \times 2^{n} - 6) x^{\frac{1}{4+2\sqrt{2}}}$
+ $(24 \times 2^{n} - 12) x^{\frac{1}{5+\sqrt{13}}} + (9 \times 2^{n} - 6) x^{\frac{1}{6+3\sqrt{2}}}.$

5. CONCLUSION

We have introduced the Kepler Banhatti and modified Kepler Banhatti indices and their exponentials of a graph. Furthermore the Kepler Banhatti and modified Kepler Banhatti indices and their exponentials for two families of dendrimer nanostars are determined. Also some mathematical properties of Kepler Banhatti index are obtained.

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- V.R.Kulli, Graph indices, in *Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society*, M. Pal. S. Samanta and A. Pal, (eds) IGI Global, USA (2019) 66-91.
- 3. I.Gutman and O.E.Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin (1986).
- 4. V.R.Kulli, *Multiplicative Connectivity Indices* of *Nanostructures*, LAP LEMBERT Academic Publishing (2018).
- 5. R.Todeschini and V.Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley-VCH, Weinheim, (2009).
- I.Gutman and N.Trinajstic, Graph Theory and Molecular Orbitals. Total phi-electron energy of alternant hydrocarbons, *Chemical Physics Letters*, 17(4) (1972) 535-538.
- T.Doslic, B.Furtula, A.Graovac, I.Gutman, S.Moradi and Z.Yarahmadi, On vertex degree based molecular structure descriptors, *MATCH Commun. Math. Comput. Chem.* 66 (2011) 613-626.
- X.Li and I.Gutman, Mathematical aspects of Randic type molecular structure descriptors, Univ. Kragujevac, Kragujevac, (2006).

- 9. I.Gutman and B.Furtula (eds.) Recent results in theory of Randic index, Univ. Kragujevac, Kragujevac, (2008).
- 10. I.Gutman, B.Furtula and M.S.Oz, Geometric approach to vertex degree based topological indices-Elliptic Sombor index theory and application, *International Journal of Quantum Chemistry*, 124(2) (2024) e27151.
- 11. G.Almkvist and B.Bemdt, *Am.Math. Monthly*, 95 (1988) 585.
- I.Gutman, V.R.Kulli, B. Chaluvaraju and H.S.Boregowda, On Banhatti and Zagreb indices, Journal of the International Mathematical Virtual Institute, 7(2017) 53-67. DOI: 10.7251/JIMVI17011053G.
- 13. V.R.Kulli, Elliptic Revan index and its exponential of certain networks, *International Journal of Mathematics and Computer Research*, 12(2) (2024) 4055-4061.
- M.Aruvi, J.M.Joseph and E.Ramganesh, The second Gourava index of some graph products, *Advances in Mathematics: Scientific Journal*, 9(12) (2020) 10241-10249.
- G.N.Adithya, N.D.Soner and M.Kirankumar, Gourava indices for Jahangir graph and phase transfer catalyst, *Journal of Emerging Technologies and Innovative Research*, 10(6) (2023) f394-f399.
- 16. B.Basavanagoud and S.Policepatil, Chemical applicability of Gourava and hyper Gourava indices, *Nanosystems: Physics, Chemistry, Mathematics*, 12(2) (2021) 142-150.