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I. INTRODUCTION 

The subject of fractional calculus, now a days is one of the 

most rapidly growing subjects of mathematical analysis. The 

fractional integral operators, involving various Special 

functions have found significant importance and applications 

in various sub fields of applicable mathematical analysis. The 

applications of fractional calculus are also seen in various 

fields, including turbulence and fluid dynamics, stochastic 

dynamical system, plasma physics and controlled thermal 

nuclear fusion, non-linear control theory, image processing, 

nonlinear biological system, astrophysics etc. (e.g.one can see 

[1,9,11,13,14,25]) 

 In the last three decades, a number of workers like Love [16], 

Mc Bride [17], Kalla [18,19], Kalla and Saxena [20], 

Saigo[21,22], Kilbas [23],have studied the properties 

,applications & different extensions of various operators of 

fractional calculus on a number of classical & non classical 

Special functions & polynomials. A sufficient account of 

fractional calculus operators along with their properties and 

applications can be found in the research monographs by 

Miller and Ross [25], & Kiryakova [24]. The first application 

of fractional calculus was due to Abel [27] in the solution to 

the fractional problem. In fractional calculus, the fractional 

derivatives are defined via fractional integrals. 

 In the recent years, certain extended fractional derivative 

operators, associated with Special functions have been 

actively investigated and applied on various Special 

functions. Authors Agarwal & Choi [12,20], have introduced 

certain extended fractional derivative operators, and applied 

them on various Special functions. 

Motivated by these recent developments in the field of 

applications of extended fractional derivatives to various 

Special functions, in the present paper an attempt has been 

made to obtain some bilinear generating relations including 

extended Gauss hypergeometric functions, using extended 

Riemann Liouville fractional derivative operator, defined by 

Choi & Pairs in their very recent paper [1], published in the 

year 2015. 

(1). The extended Gauss hypergeometric function   

𝐅𝐩
(𝛂,𝛃,𝛋,𝛍)

(a, b, c; z) is defined by Agrawal &Choi [1] as 

follows: 

 Fp
(α,β,κ,μ)

(a, b, c; z) =∑ (a)n
∞
n=0

 Bp
(α,β,κ,μ)

(b+n,c−b)

B(b,c−b)
 
zn

n!
 , (1.1)                                                            

(|z|<1; min {Re(α), Re(β), Re(κ), Re(μ)}>0; Re(c)>Re(b)>0; 

Re(p)≥0), 

where B(u,v) is the familiar Beta function defined as: 

B(u,v)=∫ 𝑡𝑢−11

𝑜
(1 − 𝑡)𝑣−1 𝑑𝑡,     ( Re(u)>; Re(v)>0 )}. 

           =
Г𝑢Г𝑣

Г𝑣+𝑣
       (𝑢, 𝑣Є𝐶),                                        (1.2)                                                                                                      

where Г denotes the Eulers Gamma function [4]. 

It is to note here that, for p=0, (1.1) reduces to the ordinary 

Gauss hypergeometric function F1
  

2 (a, b, c; z). 

(2). The extended beta function  𝐁𝐩
(𝛂,𝛃,𝛋,𝛍)

(x, y) is defined by 

Srivastava [8] as: 

 Bp
(α,β,κ,μ)

(x,y)= {∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1 F1
  

1
1

0
(𝛼; 𝛽;

−𝑝

𝑡𝑘(1−𝑡)𝑘)} 𝑑𝑡,   

(1.3)                                                      
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κ≥0, μ≥0, min {Re(α), Re(β),}>0; Re(x)>-Re(κa)>0; Re(y)≥-

Re(μa) & Re(ρ). 

(3). A further extension of the extended Gauss 

hypergeometric function 𝐅𝐩;𝛋,𝛍(𝐚, 𝐛, 𝐜; 𝐳; 𝐦) is defined by 

Srivastava as [1]: 

   Fp;κ,μ(a, b, c; z; m) = ∑
(a)n(b)n

(c)n

∞
n=0

 Bp
(α,β,κ,μ)

(b+n,c−b+m)

B(b+n,c−b+m)
 
zn

n!
                                                                            

(1.4) 

where, (p≥0; Re(κ)>0, Re(μ)}>0; Re(c)>Re(b)>m; Re(p)≥0). 

(4). The extended Riemann -Liouville fractional 

derivative of F(z) of order υ is defined by Agarwal, Choi & 

Pairs [1] by the following relations: 

 Dz
υ,p,k,μ

f(z) =
1

Г−υ
∫ (z −

z

0

t)−υ−1 f(t)dt F11 (α;β;

pzk+μ

tk(z−t)μ)dt,                                                  (1.5) 

                               and 

 Dz
υ,p,k,μ

f(z) =
dm

dzm Dz
υ−m;p;k,μ

f(z) 

                       = 
dm

dzm{
1

Гm−υ
∫ (z − t)m−υ−1z

0
f(t)dt 

F11 (α;β
pzk+μ

tk(z−t)μ)dt},                                               (1.6) 

 

 where, m − 1 ≤ Re(υ) < m), ( Re(υ) < 0; Re(p) >

0; Re(k) > 0;  Re(μ) > 0).   

From (1.5) & (1.6), it may easily be seen that for p=0, we 

obtain the classical-Riemann Liouville fractional derivative. 

In the present paper, an attempt has been made to obtain 

certain bilinear generating relations involving extended 

Gauss hypergeometric function (1.1), using operators (1.5) & 

(1.6). 

While proving the main results of the present paper, we will 

use the following well-known results seen in [1]. 

 

2. PRELIMINARIES 

While proving the main results, the following well-known 

identities & results will be used. 

 

2.1. The elementary identity ([24, p.291]):  

 [(1 − 𝑥) − 𝑡]−𝛼 = (1 − 𝑡)−𝛼(1 −
𝑥

1−𝑡
)−𝛼        (2.1)                                                                    

 2.2. The identity ([7, p.595]): 

 [(1 − 𝑥) − 𝑡]−𝛼 = (1 − 𝑡)−𝛼(1 +
𝑥𝑡

1−𝑡
)−𝛼         (2.2)                                                                       

 2.3. The result [1, p. 458]: 

 ∑
(α)n

n!
 Fp,k,μ

∞
n=0 (α+n,λ,υ;z;m) tn =(1 −

t)−αFp,k,μ (α, λ; υ;
x

(1−t)
; m)                         (2.3)                                     

  2.4. The generalized binomial theorem, [1, p.456] 

 (1 − z)−α =∑
(α)l

l!

∞
l=0  ,(|l|<1; αєC)                              (2.4)                                                                                   

2.5.(𝑧)𝑛=    
Г𝑧+𝑛

Г𝑧
,[4]                                                      (2.5)                                                                                                    

  2.6.  The result, [ 1, p. 456]: 

              Dz
λ−υ,p,k,μ

{𝑧𝜆−1 (1 − z)−α}  

            = 
Г(λ)z(υ−1)

Гυ
∑

(α)n(λ)n

(υ)n

∞
n=0  

 Bp
α,β,k,μ

(λ+n,υ−λ+m)

B(λ+n,υ−λ+m)
 
zn

n!
 , 

= 
Г(λ)z(υ−1)

Гυ
Fp,k,μ(α, λ; υ; z; m),                                (2.6)                                                                                         

         where, m-1≤Re(υ)<m, for some mєN & Re(v) < Re(λ).  

 2.7. The result, [ 1, p. 457]: 

 Dz
λ−υ,p,k,μ

{(1 − az)−α(1 − az)−β}        

                                       

= 
Г(λ)z(υ−1)

Гυ
F1,p,k,μ(α, β, λ; υ; az; bz; m),               (2.7)                                                                                                                       

where, m-1≤Re(υ)<m, for some mєN & Re(v) < Re(λ). 

2.8. The result, [ 1, p. 457]: 

 Dz
λ−υ,p,k,μ

{(1 − z)−α𝑧𝜆−1Fp,k,μ (α, λ; υ;
x

(1−t)
; m)} ,       

                                       

= 
Г(λ)z(υ−1)

Гυ
F2,p,k,μ(α, β, λ; ƴ; υ; x; z; m),            (2.8)                                                                                                         

where, m-1≤Re(υ)<m, for some mєN & Re(v) < Re(λ).  

 

3. MAINS RESULT                                               

3.1. Bilinear generating relations for the extended Gauss 

hypergeometric function 𝐅𝐩;𝛋,𝛍(𝐚, 𝐛, 𝐜; 𝐳; 𝐦): 

 We use extended fractional derivatives, defined in (1.6), for 

establishing some bilinear generating relations for extended 

Gauss hypergeometric function Fp;κ,μ(a, b, c; z; m):   

: 

 𝐓𝐡𝐞𝐨𝐫𝐞𝐦. 𝐈. The following bilinear generating relation 

holds: 

       

∑
(𝛂)𝐧

𝐧!
 𝐅𝐩,𝐤,𝛍

∞
𝐧=𝟎 (α+n,λ;υ;z;m) 𝐅𝐩,𝐤,𝛍(𝛂𝐧; 𝛌; 𝛖; 𝐳; 𝐦)

(𝒕)𝒏

(𝟏−𝒚)𝒏

= 𝐅𝟐,𝐩,𝛋,𝛍 (𝛅, 𝛂, 𝛌, ƴ; 𝛖; 𝐳;
𝐳

(𝟏−
𝐭

𝟏−𝐲
)

; 𝐦),               (3.1)                                                                                                 

                   where, {|x|<min(1,|1-t)|}, (αєC,|z|<1; |
𝒕

𝟏−𝒚
|<1;),   

 & m-1≤Re(β-ƴ) <m<Re(β), for some mєN & Re(λ) < 

Re(υ). 

Proof of (3.1): Replacing t by 
𝑡

(1−𝑦)
 in (2.3) & multiplying 

both sides of the resulting equation by 𝑦ƴ−1, we obtain: 

∑
(α)n

n!
Fp,k,μ

∞
n=0 (α+n, λ; υ; z; m) {𝑦ƴ−1(1 − 𝑦)−𝑛}𝑡𝑛 

= 𝑦ƴ−1[1 −
𝑡

1−𝑦
]−𝛼Fp,k,μ(α;  λ;  υ; 

𝑧

(1−
𝑡

1−𝑦
)

;  m),  

On operating both sides of the above equation by the 

fractional derivative 𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

, we obtain: 

            𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

[∑
(α)n

n!
Fp,k,μ

∞
n=0 (α+n,λ;υ;z;m) {𝑦ƴ−1(1 −

𝑦)−𝑛}𝑡𝑛] 

                                   ={𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

 𝑦ƴ−1[1 −

(
𝑡

1−𝑦
)]−𝛼Fp,k,μ(α;  λ;  υ;  

𝑧

(1−
𝑡

1−𝑦
)

;  m) 

Changing the order of the summation &the fractional 

derivatives in the last equation, we obtain: 

∑
(α)n

n!
Fp,k,μ

∞
n=0 (α+n,λ;υ;z;m) 𝐷𝑦

ƴ−𝛿,𝑝,𝜅,𝜇
 {𝑦ƴ−1(1 − 𝑦)−𝑛}𝑡𝑛 

                                   ={𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

 𝑦ƴ−1[1 −

(
𝑡

1−𝑦
)]−𝛼Fp,k,μ(α;  λ;  υ;  

𝑧

(1−
𝑡

1−𝑦
)

;  m) 
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Finally, using (2.6) & (2.8) on the right-hand side of the above 

equation, we obtain: 

∑
(α)n

n!
 Fp,k,μ

∞
n=0 (α+n,λ;υ;z;m)× Fp,k,μ(αn; λ; υ; z; m)

(𝑡)𝑛

(1−𝑦)𝑛   

= F2,p,κ,μ (δ, α, λ; ƴ;  υ;  z;  
z

(1−
t

1−y
)

; m)              (3.2)                                                                                       

 which is the desired result (3.1), and thus theorem I is 

established. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦. 𝐈𝐈. The following bilinear generating relation 

holds: 

∑
(𝛂)𝐧

𝐧!
 𝐅𝐩,𝐤,𝛍

∞
𝐧=𝟎 (α+n,λ;υ;z;m) 𝐅𝐩,𝐤,𝛍(𝛂𝐧; 𝛌; 𝛖; 𝐳; 𝐦)(𝒚𝒕)𝒏 

 = 𝐅𝟐,𝐩,𝛋,𝛍 (𝛅, 𝛂, 𝛌, ƴ; 𝛖; 𝐳;
𝐳

𝒚𝒕
; 𝐦),          (3.3)                                                                                                                                                                           

where, {|x|<min (1, |1-t)|}, (αє C, |z|<1; |yt|<1;), 

  & m-1≤Re(β-ƴ) <m<Re(β), for some mєN & Re(λ) < 

Re(υ). 

Proof of (3.3): Replacing t by yt in (2.3) & multiplying both 

sides of the resulting equation by 𝑦ƴ−1, we obtain: 

∑
(α)n

n!
Fp,k,μ

∞
n=0 (α+n, λ; υ; z; m) {𝑦ƴ−1(1 − 𝑦𝑡)𝑛} 

= 𝑦ƴ−1[1 − (𝑦𝑡)]−𝛼Fp,k,μ(α;  λ;  υ;  
𝑧

(1−𝑦𝑡)
;  m),  

On operating both sides of the above equation by the 

fractional derivative 𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

, we obtain: 

            𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

[∑
(α)n

n!
Fp,k,μ

∞
n=0 (α+n,λ;υ;z;m) × {𝑦ƴ−1(1 −

𝑦𝑡)𝑛}𝑡𝑛] 

                                   ={𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

 𝑦ƴ−1[1 −

(𝑦𝑡)]−𝛼Fp,k,μ(α;  λ;  υ;  
𝑧

(1−𝑦𝑡)
;  m)}, 

Changing the order of the summation & the fractional 

derivatives in the last equation, we obtain: 

∑
(α)n

n!
Fp,k,μ

∞
n=0 (α+n,λ;υ;z;m)× 𝐷𝑦

ƴ−𝛿,𝑝,𝜅,𝜇
 {𝑦ƴ−1(1 − 𝑦𝑡)𝑛} = 

                                   {𝐷𝑦
ƴ−𝛿,𝑝,𝜅,𝜇

 𝑦ƴ−1[1 −

(𝑦𝑡)]−𝛼Fp,k,μ(α;  λ;  υ;  
𝑧

(1−𝑦𝑡)
;  m)}, 

Finally, using (2.6) & (2.8) on the right -hand side of above 

equation, we obtain: 

∑
(α)n

n!
 Fp,k,μ

∞
n=0 (α+n,λ;υ;z;m) × Fp,k,μ(αn; λ; υ; z; m)(𝑦𝑡)𝑛 

         = F2,p,κ,μ (δ, α, λ; ƴ;  υ;  z;  
z

(1−𝑦𝑡)
; m)       (3.4)                                                                                         

which is the desired result (3.3), and thus theorem II is 

established. 

 

4. CONCLUDING REMARKS 

Linear, bilinear and bilateral generating relations have been 

of much interest to various researchers in the recent past. 

Various mathematicians investigating and introducing certain 

extended fractional derivative and integral operators and 

applying them on various Special functions and obtaining 

linear, bilinear and bilateral generating relations involving 

some Special functions. 

In the present paper, an attempt has been made to obtain some 

bilinear generating relations for extended Gauss 

hypergeometric function, applying the extended Riemann 

Liouville fractional derivative operator.   
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