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In general topology, the concepts of separation axioms play an important role. The main goal 

of this paper is to present the study of weaker forms of separation axioms called spgα-T1, 

spgα-T2, spgα-regular and spgα-normal spaces using spgα-open sets in topological 

spaces. Further, the properties spgα-compact, spgα-connected and spgα-Lindelof spaces 

have been defined and studied their basic characterizations in topological spaces. 
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1. INTRODUCTION AND PRELIMINARIES: 

  Njastad [8], in 1984 introduced and defined α-open 

sets. Following the work on α-open sets, many topologists 

focused on generalization of topological concepts using semi-

open and α-open sets. These sets play an important role in the 

generalization of continuity in topological spaces. 

Maheshwari and Prasad [6] introduced s-normal spaces using 

semi-open sets. Nori and Popa [9], Dorsett [2], Arya [1] and 

Munshi [7] studied g-regular and g-normal spaces using g-

closed sets in topological spaces. 

 

 In this paper, author establish the properties of 

weaker forms of separation axioms called spgα-T0, spgα-

T1 and spgα-T2 spaces, spgα-regular and spgα-normal 

spaces using spgα-closed sets in topology. Also, we defined 

several properties related to them. Further, authors explained 

the properties of spgα-compact spaces, spgα-connected 

spaces, spgα-Lindelöf spaces in topological spaces and 

several properties related to them. 

Definition 2.1. [4] A subset A of a TS R is said to be a semi 

generalized α -closed (briefly spgα-closed) if cl(A)  U 

whenever A  U and U is α-open in R. 

The family of all spgα-closed subsets of a space R is 

denoted by spgα-C(R). 

Definition 2.2. [4] The intersection of all spgα-closed sets 

containing a subset A of R is called spgα-closure of A and 

is denoted by spgα-cl(A). 

A set A is spgα-closed if and only if spgα-cl(A) = A. 

Definition 2.3. [4] The union of all spgα-open sets 

containing a subset A of R is called spgα-interior of A and 

it is denoted by spgα-int(A). 

A set A is called spgα-open if and only if spgα-int(A) = 

A. 

Definition 2.4. A function : R  S is called a 

(i) spgα-continuous [12] if -1(V) is spgα-closed in R for 

every closed set V in S. 

(ii) spgα-irresolute [12] if -1(V) is spgα-closed in R for 

every spgα-closed set V in S. 

(iii) spgα-open [12] if (V) is spgα-open in S for every 

open set V in R. 

 

2. SPGΑ-SEPARATION AXIOMS 

The weaker forms of separation axioms are found in 

this section, such as spgα-T0, spgα-T1 and spgα-T2 

spaces and their related concepts. 

Definition 2.1: Let (R, τ) be a TS. Then R is said to be a 

spgα-T0 if for each r1, r2R* with r1 r2, there exists a 

spgα-open set containing one but not the other. 

Example 2.2: Consider R ={r1, r2, r3} and τ = {R, φ, {r3}}. 

The R is spgα-T0. 

Theorem 2.3: A space R is spgα-T0iffspgα-closures of 

distinct points are distinct. 

Proof: Let r1, r2R, where R is spgα-T0. Then there exists 

U spgα-O(R) with r1  U, r2  U, and so r1R−U and r2 

R− U, where R− Uspgα-C(R). We have, spgα−cl({r2}) 

is intersection of the spgα-closed sets, which contains r2. 

https://doi.org/10.47191/ijmcr/v12i6.11
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Thus, r2 spgα−cl({r2}). As, r1R−U and so r1 

spgα−cl({r1}). Thus, spgα−cl({r1}) ≠ spgα−cl({r2}).  

On the other hand, let r1, r2 ∈R holds for any pair of different 

points spgα−cl({r1}) ≠ spgα−cl({r2}). So, there exists at 

least one point r∈R with r ∈ spgα−cl({r1}) and 

r∉spgα−cl({r2}). Further, we have to prove that 

r1∉spgα−cl({r2}). Let r1 ∈spgα−cl({r2}). Then, 

spgα−cl({r1}) ⊆spgα-cl({r2}). So, r∈spgα−cl({r2}) 

which is a wrong. Thus, r1 ∉spgα−cl({r2}) shows that r1 ∈R 

−spgα-cl({r2}) with R is spgα-cl({r2}) is spgα-open set 

containing r1 but not r2. Hence R is spgα-T0. 

Theorem 2.4: The property of spg-T0 space is a hereditary. 

Definition 2.5: A function : R → S is pre-spgα-open, if 

(V) is spgα-open in R, for every V spgα-O(R). 

Theorem 2.6: Let : R → S be bijective, pre spgα-open. 

If R is spgα-T0, then S is spgα-T0.  

Proof: Let  be bijective, pre-spgα-open with R is spgα-

T0. Let s1, s2∈ S with s1 ≠ s2. Since  is bijective, with r1, r2∈ 

R with (r1) = s1, (r2) = s2. So, there exists spgα-open set 

U such that r1∈ U, r2∉ U. Thus, (U*) is spg-open set 

containing (r1) but not (r2). So, there exists spgα-open 

set (U) ∈ S such that s1∈(U), s2 ∉(U). Thus, S is spgα 

-T0. 

Theorem 2.7: The properties listed below are equivalent 

for a space R, where spgα-O(R) is open under arbitrary 

union: 

(i) R is spgα-T0, 

(ii) Each singleton set is spgα-closed, 

(iii) Each subset of R is the intersection of all spgα-

open set containing it,  

(iv) The set {s} is the intersection of all spgα-open set 

containing the point r1∈ R. 

Proof: (i) → (ii): Let r∈ R with R is spgα-T0. For each s ∈ 

R with s ≠ r, there exists U spg-O(R, s) but not r. Thus, s ∈ 

U⊆ {r}c. So, {r}c= ∪{U : s∈{r}c}, that is {r}c is the union of 

spgα-open sets and so {r} is spgα-closed. 

(ii) → (iii): Let (ii) holds and A⊆ R. Then for each s ∉A, there 

exists {s}c with A⊆{s}c where {s}c is spgα-open in R. We 

get, A = ∩{{s}c: s ∈ Ac} and so, the set A is the intersection 

of all spgα-open sets containing A.  

(iii) → (iv): Proof is obvious. 

(iv) → (i): Let (4) holds and r, s ∈ R with r≠s. According to 

the assumption, there is a spgα-open set Ur, with r∈ Ur, s 

∉Ur. Hence the condition of spgα-T0 space satisfied. Hence, 

R is spgα-T0. 

Definition 2.8: A space R is said to be spgα-T1 if for each 

pair of points r, s in R with r  s, there exists a spgα-open 

sets U and V with the condition r ∈ U, s ∉ U and s ∈ V,             r 

∉ V. 

Example 2.9: Let R = {r1, r2, r3} and τ = {R, φ, {r1}, {r2, r3}}. 

The space R is spgα-T1.  

Theorem 2.10: Every spgα-T1 space is spgα-T0 space. 

Remark 2.11: The converse of the above examples does not 

hold from the following example.  

Example 2.12: Let R={r1, r2, r3} and τ = { R, φ, {r1}}. The 

space R is spgα-T0 but not spgα-T1. There is no spgα-

open set G with r1∈{r1} and r2∉{r1} holds for r1≠ r2. 

Theorem 2.13: A space R is spgα-T1iff R has a singleton 

subset {r} which is spgα-closed in R.  

Proof: Let r  R and let s ∈ {r}c. Then s ≠ r, by R is spgα-

T1. So, there is a spgα-open set G such that s ∈ G but r ∉G, 

that is for each s∈ {r}c, there exists Gspgα-O(R) with 

s∈G⊆ {r}c . Thus, ∪{s: s≠ r} ⊆∪{G: s ≠ r} ⊆ {r}c. Thus, 

{r}c⊆∪{G: s≠ r} ⊆ {r}c, that is {r}c = ∪{G: s≠r}. As, G is 

spgα-open, then {r}c is spgα-open in R and so, {r} is 

spgα-closed in R.  

On the other hand, let r, s ∈ R be spgα-closed with r≠ s. 

Then {r}c ,{s}c are spgα-open with s ∈ {r}c but r ∉{r}c and 

r∈ {s} but s∈ {s}c . Then there are spgα-open sets {r}c and 

{s}c under r∈ {s}c, s ∈ {s}c and s∈ {r}c , r∉ {r}c. So, R is 

spgα-T1.  

Theorem 2.14: Let : R → S be spgα.C, injective and S is 

T1. Then R is spgα-T1. 

Proof: Let r1, r2∈ R with r1≠ r2. There exists s1, s2  S with s1 

≠s2 such that (r1) = s1 and (r2) = s2. As S is T1, U, V 

spgα-O(S), so that s1∈ U, s2∉U and s1∉V, s2∈ V. That is 

(r1) ∈ U, (r2) ∉U and (r1) ∉ V, (r2) ∈ V. So, r1∈−1(U), 

r2∉−1 (U), r1∉−1 (V), r2∈−1 (V), where −1 (U), −1 (V) 

spgα-O(R) follows from spgα.C. Thus, if r1, r2∈R with 

r1≠r2, there exist −1 (U), −1 (V) spgα-O(R) such that 

r1∈−1(U), r2∉−1 (U) and r1∉−1 (V), r2∈−1 (V). So, R is 

spgα-T1. 

Definition 2.15: Let R be TS. Then R is said to be spgα-T2 

if there are disjoint spgα-open sets U, V with the condition 

r ∈ U and s ∈ V holds for each r, s∈ R, where r≠ s. 

Example 2.16: Let R = {r1, r2, r3} and τ={R, φ, {r1}, {r2}, {r1, 

r2}}. The space R is spgα-T2. 

Remark 2.17: Every spgα-T2 space is spgα-T1. The 

converse of the implication is not true follows from the 

example. 

Example 2.18: From Example 2.16, it is clear that the space 

R is spgα-T2 but not spgα-T1. 

Theorem 2.19: The intersection of all spgα-closed 

neighborhoods of each point of R is a singleton set if and only 

if the space R is spgα-T2. 

Proof: Let r, s∈ R where r ≠ s. Then U, V spgα-O(R) such 

that r∈ U, s∈ V and U ∩ V = φ, so r∈ U ⊆ R−V follows from 

the definition. Thus, R − V is spgα-closed neighborhood of 

r excluding s. Hence, s not in the form part of intersection of 

all spgα-closed neighborhoods of r. As s is an arbitrary, the 

singleton set {r} is the intersection of all spgα-closed 

neighborhoods of r.  

On the other hand, let us consider r is the intersection 

of all spgα-closed neighborhoods of any point r∈ R and y 

any arbitrary point of R with r ≠ s. As s does not belong to the 
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intersection, there exists a spgα-closed neighborhood S of r 

with s∉S. So, there exists U spgα-O(S) such that s ∈ U 

⊆S. Consequently, U, R − S spgα-O(R) under the 

condition r ∈ U and s ∈ R− S with U ∩ (R−S) = φ. Hence, R 

is spgα-T2. 

Theorem 2.20: If : R → S is spgα.C, injective with S is 

T2, then R is spgα-T2.  

Proof: Consider two distinct points r1, r2 R. As  is 

injective, there exists s1, s2 S with s1 = (r1) and s2 = (r2). 

There exist U, V  O(S) with U V =  such that s1∈ U, s2∈V 

as S is T2. So, r1∈−1(U) and r2∈−1(V)spgα-O(R). 

Consider −1(U)∩−1(V) = −1(U ∩V) = −1(φ) = φ. Thus, 

for each r1, r2∈R with r1≠ r2, there are −1(U), −1(V) 

spgα-O(R) with −1(U) ∩ −1(V) = φ with r1∈−1(U), r2 

∈−1(V). Thus, R is spgα-T2. 

 

3. SPGΑ-REGULAR SPACES: 

 In this section we introduce the spgα-regular 

spaces in topological spaces and obtained some of their 

properties. 

Definition 3.1: A space R is spgα-regular if there are open 

sets U, V such that F ⊆ U, r∈ V with U V =  holds for 

every F spgα-C(R) and r F.  

Remark 3.2: Every spgα-regular space is regular but not 

conversely. 

Example 3.3: Consider R= {r1, r2, r3} and τ = {R, φ, {r1}, {r2, 

r3}}. Then R is regular but not spgα-regular. 

Theorem 3.4: Let R be spgα-regular and S is a spgα-

closed and open subset of R. The subspace S is spgα-

regular.  

Proof: Let F be spg-closed subset of S with s ∈ S− F and so 

F spgα-C(R). Since R is spgα-regular, there exist U, V 

O(R) with s∈ U and F⊆V and U V = . Thus U ∩ Sand V 

∩ S are disjoint open sets in S with s∈ U ∩ S, F⊆ V ∩ S. 

Thus, S is spgα-regular. 

Theorem 3.5: Let : R → S is spgα.I, bijective, open with 

R is spgα-regular. Then S is spgα-regular. 

Proof: Let F spgα-C(S) with sF. For some point r∈ R, 

let s = (r). Then −1(s)  R and −1(F) spgα-C(R) as  

is spgα.I where r−1(F). There U, V O(R) with r∈ U, 

−1(F) ⊆ V with U V = . Then, s = (r) ∈ (U) and F ⊆ 

(V). Thus, (U), (V)  O(R) such that s ∈ (U), F 

⊆(V) where (U) ∩ (V) = φ holds for all s ∈ S. Hence S 

is spgα-regular.  

Theorem 3.6: Let  is pre spgα-open, closed, injective and 

S is spgα-regular. Then R is spgα-regular. 

Proof: Let r∈ R and F spgα-C(R) with r F. As  is pre 

spgα-open, (F) spgα-C(S) such that (r) (F). As S 

is spgα-regular, U, V  O(R) such that (r) ∈ U and (F) 

⊆ V, that is r∈−1(U), F ⊆−1(V) with −1(U) ∩ −1(V) = 

φ. Thus, for each r∈ R and for every Fspgα-C(R) with r 

F, there exist −1(U), −1(V)  O(R) such that r∈−1(U) and 

F ⊆−1 (V) with −1(U) ∩ −1(V) = φ. Thus, R is spgα-

regular. 

 

4. SPGΑ-NORMAL SPACES 

In this section, we introduce the spgα-normal 

spaces in topological spaces and obtained some of their 

properties 

Definition 4.1: A space R is said to be spgα-normal if for 

any disjoint A, B spgα-C(R), there exist U, VO(R) with 

A⊆U, B ⊆V and U  V = . 

Example 4.2: Consider R = {r1, r2, r3, r4} and τ = {R, φ, {r1}, 

{r2}, {r1, r2}, {r2, r4}, {r1, r2, r4}, {r2, r3, r4}}. Then R is spgα-

normal.  

Example 4.3: Let R= {r1, r2, r3} and τ = {R, φ, {r1}, {r2, r3}}. 

Then R is normal but not spgα-normal. 

Theorem 4.4: A space R is normal if and only if there exists 

spg-open set A ⊆ U ⊆ cl(U) ⊆ V holds for each closed set A 

and an open set V containing A. 

Theorem 4.5: Let : R →S be spgα.I, bijective, open 

mapping and R is spgα-normal. Then S is spgα-normal 

Proof: Let A, B spgα-C(S) with A B = . As  is 

spgα.I, −1(A), −1(B) spgα-C(R). Then there exist U, 

V  O(R) with −1(A) ⊆ U and −1(B) ⊆ V, as  is open. 

As  is bijective, (U), (V)  O(S) such that A ⊆ (U) 

and B ⊆ (V) with (U) ∩ (V) = φ. Hence S is spgα-

normal. 

Theorem 4.6: Let R is spgα-normal and S is spgα-closed 

subset of R. Then the subspace S is spgα-normal.  

Proof: Let A, B spgα-C(S) with AB = . Then A, B  

spgα-C(R). As R is spgα-normal, there are U, V O(R) 

such that A⊆ U and B ⊆ V. As a result, U ∩ S, V ∩ S are 

disjoint open subsets in the subspace S with A ⊆ U ∩S, B ⊆ 

V ∩ S. Thus, S is spgα-normal.  

5. SPGΑ-COMPACTNESS  

 In this section, we introduce spgα-compact, 

countably spgα-compact and spgα-Lindelöf using spgα-

open sets in TS and studied their properties.  

Definition 5.1: A collection {B*i: iI} of spgα-open sets in 

a TS R is called spgα-open cover if B* 
Ii

i*B


. 

Definition 5.2: A TS R is called spgα-compact if every 

spgα-open cover of R has a finite subcover. 

Definition 5.3: A subset B* of a TS Ris spgα-compact 

relative to R if for every collection {B*i: iI} of spgα-open 

sets of R with B* 
Ii

i *B


 there exists a finite subset I0 of 

I such that B* 
0Ii

i*B


. 

Definition 5.4: A subset B* of a TS R is spgα-compact if 

B* is spgα-compact of the subspace of R.

 Theorem 5.5: A spgα-closed subset of spgα-compact 

space is spgα-compact relative to R. 



“Weaker Forms on Separation Axioms” 

4327 M.M. Holliyavar 1, IJMCR Volume 12 Issue 06 June 2024 
 

Proof: Let A* spgα-C(R*). Then (R- A*) spgα-

O(R*).  

Let S = {A*i: iI} be a spgα-open cover of A* by spgα-

open subsets. Then S* = S (R - A*) is a spgα-open cover, 

that is R = [ {A*i: iI}] (R - A*).  

But, from hypothesis R is spgα-compact and hence S* is 

reducible to a finite subcover, say S* = R  A*i1 A*i2  ... 

A*in  (R - A*), A*ik S*. Since A*  (R - A*) = , so A* 

 A*i1 A*i2 …... A*in  S. Thus, a spgα-open cover S 

contains a finite subcover and so A* is spgα-compact 

relative to R. 

Theorem 5.6: Let  be surjective, spgα.C. If R is spgα-

compact, then S is compact. 

Proof: Let {A*i: iI} be an open cover. Since  is spgα.C, 

then {-1(A*i): iI} is spgα-open cover of R which has a 

finite subcover say {-1(A*i): i=1…...n}.  

Thus R =  
n

i

i

1

1 *A


  , that is (R) =
n

i

i

1

*A


. As is 

surjective, that is S* = 
n

i

i

1

*A


.  

Thus {A*1, A*2, ... A*n} is a finite subcover of {A*i: iI}. 

So, S is compact. 

Theorem 5.7: If a function is spgα.I and B be a subset of 

R which is spgα-compact relative to R, then (B) is spgα-

compact relative to S. 

Proof: Let {A*i: iI} be any collection of spgα-open sets 

in with  (B) = 
Ii

i



*A . 

Then B   i

Ii

*A1


 , where {-1(A*i: i I} is spgα-

open in R. As B is spgα-compact, there exists finite 

subcollection {A*1, A*2, ..., A*n} such that B 

 i

Ii

*A
0

1


  .  

Thus (B) 
0Ii

iA


 and so (B) is spgα-compact relative 

to S. 

Theorem 5.8: Every spgα-compact space is compact. 

Theorem 5.9: A TS R* is spgα-compact if and only if every 

family of spgα-closed sets of R having finite intersection 

property has a non-empty intersection.  

Proof: Suppose R is spgα-compact and {A*i: iI} be a 

family of spgα-closed sets with finite intersection property.  

We need to prove that 



Ii

iA . 

On the contrary 



Ii

iA * . Then .R*R 



Ii

iA , 

that is .R)*AR( 



Ii

i  

The cover {R – A*i; iI} is a spgα-open cover of R. As R 

is spgα-compact, spgα-open cover {R – A*i; iI} has a 

finite subcover, say {R – A*i; i=1…...n}, that is R = 


n

i

i

1

)*A*R(


 , which implies that R = R – 
n

1i

i*A


, that 

is R – R = R - 












n

i

iA
1

R and so 
n

i

iA
1

*


 . This 

contradicts the assumption. Hence
n

1i

i*A


. 

Other part, suppose every family of spgα-closed sets of R 

with finite intersection property has a non-empty intersection.  

To prove that R is spgα-compact. Suppose R is not a spgα-

compact. Then there exists a spgα-open cover say {Gi: iI} 

having no finite subcover. That is for any finite sub family 

{Gi: i =1...n} of {Gi: iI}, we have R
1





n

i

iG  which 

implies that 
n

i

iG
1

R


  R – R, and so   



n

i

iG
1

R . 

Then the family {R – Gi: iI} of spgα-closed sets has a 

finite intersection property. By assumption 

  



n

i

iG
1

R , that is R – 



n

i

iG
1

*  and so

R
1





n

i

iG . Hence {Gi: i I} is not a cover of R, which 

contradicts the fact that {Gi: iI} is a cover for R. So, a 

spgα-open cover {Gi: iI} has a finite subcover {Gi: i 

=1…...n} and so R is spgα-compact. 

Definition 5.10: A TS R is said to be countably spgα-

compact (C.spgα-compact) if every countable spgα-open 

cover of R has a finite subcover. 

Theorem 5.11: If R is a C.spgα-compact space, then R is 

countably compact. 

Proof: Let {Ai: iI} be a countable open cover of R by open 

sets in R. Then {Ai: iI} is C.spgα-open cover of R.As R is 

C.spgα-compact, the countable spgα-open cover of R has 

a finite subcover, say S = {A*i: i=1....n}.Hence R is countably 

compact.  

Theorem 5.12: Every spgα-compact space is C.spgα-

compact. 

Theorem 5.13: If is spgα.C from a C.spgα-compact 

space R onto S, then S is countably compact. 

Proof: Let {A*i :iI} be a countable open cover of S. As  

is spgα.C, then {-1(A*i): iI} is countable spgα-open 

cover of R. Since R is C.spgα-compact, the countable 

spgα-open cover {-1(A*i): iI} of R has a finite subcover 

say {-1(A*i): i=1...n}.  
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Thus R =  
n

i

i

1

1 *A


 implies (R) = 
n

i

iA
1

*


and so S = 

.*
1


n

i

iA


Hence {A*1, A*2, ..., A*n} is a finite subcover for S, 

so S is countably compact. 

Theorem 5.14: The image of a countably spgα-compact 

space under spgα.I is C.spgα-compact. 

Proof: Let be a spgα.I from a C.spgα-compact space R 

onto S and {A*i : iI} be a countable spgα-open cover of 

S. Then {-1(A*i): iI} is a countable spgα-open cover of 

R. Since R is C.spgα-compact, the countable spgα-open 

cover {-1(A*i): iI} of R has a finite subcover say {-

1(A*i): i =1...n}. Thus R =  
n

i

i

1

1 *A


 , that is(R) = 


n

i

iA
1

*


and so S = .*
1


n

i

iA


So, S is C.spgα-compact. 

Definition 5.15: A TS R is spgα-Lindelöf (spgα.L) if 

every spgα-open cover of R has a countable subcover. 

Theorem 5.16: Every spgα.L space is Lindelöf. 

Proof: Let R be spgα.L. Let {A*i: iI} be an open cover of 

R and so {A*i: iI} is spgα-open cover of R is spgα-open 

in R. As R is spgα.L, the spgα-open cover {A*i: iI} of R 

has countable subcover. Hence R is Lindelöf. 

Theorem 5.17: Every spgα-compact space is spgα.L. 

Proof: Let R be spgα-compact and {A*i: iI} be spgα-

open cover of R. Then {A*i: iI} has a finite subcover say 

{A*i: i=1...n}. Since every finite subcover is always a 

countable subcover and so {A*i: i=1......n} is a countable 

subcover for R. Hence R is spgα.L. 

Theorem 5.18: If  is spgα.C from a spgα.L space R onto 

S, then S is Lindelöf. 

Proof: Let {A*i: iI} be an open cover of S. As is spgα.C, 

{-1(A*i): iI} is spgα-open cover of R. Since R is 

spgα.L, the spgα-open cover {-1(A*i):iI} has a 

countable subcover say S = {-1  
ni

A : nN}. Therefore R = 

 
Nn

in
A



 *1 , that is (R) = S = 
Nn

in
A



* , where {
ni

A*

: nN} is a countable subcover for S and so S is Lindelöf. 

Theorem 5.19: The image of spgα.L under spgα.I is 

spgα.L. 

Proof: Let be a spgα.I form spgα.L space R onto S. Let 

{A*: iI} be a spgα-open cover of S. Then {-1(A*): iI} 

is spgα-open cover of R as  is spgα.I. Since R is 

spgα.L, the spgα-open cover {-1(A*): iI} of R has a 

countable subcover say {-1  
ni

A : nN}. Thus R = 

 
Nn

in
A



 *1  which implies (R) = S = 
Nn

in
A



, that is 

{
ni

A : nN} is a countable subfamily of {Ai: iI}. Hence S 

is Lindelöf. 

Theorem 5.20: If R is spgα.L and countable spgα-

compact, then R is spgα-compact. 

Proof: Suppose R is countable spgα-compact and spgα.L 

and {Ai: iI} be a spgα-open cover of R. As R is spgα.L, 

{Ai: iI} has a countable subcover say {
ni

A : nN}. 

Therefore {
ni

A : nN} is a countable subcover of R and {

ni
A : nN} is a subfamily of {Ai: iI} and so {

ni
A : nN} 

is a countably spgα-open cover of R. Since R is C.spgα.-

compact, {
ni

A : nN} has a finite subcover say {
ni

A : nN} 

 {Ai :iI} and so  {
ni

A : nN} is a finite subcover of {Ai 

:iI} for R. Hence R is spgα-compact. 
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