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In general topology, the concepts of separation axioms play an important role. The main goal
of this paper is to present the study of weaker forms of separation axioms called spgwa-Tj,
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have been defined and studied their basic characterizations in topological spaces.
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1. INTRODUCTION AND PRELIMINARIES:

Njastad [8], in 1984 introduced and defined a-open
sets. Following the work on a-open sets, many topologists
focused on generalization of topological concepts using semi-
open and a-open sets. These sets play an important role in the
generalization of continuity in topological spaces.
Maheshwari and Prasad [6] introduced s-normal spaces using
semi-open sets. Nori and Popa [9], Dorsett [2], Arya [1] and
Munshi [7] studied g-regular and g-normal spaces using g-
closed sets in topological spaces.

In this paper, author establish the properties of
weaker forms of separation axioms called spgwa-To, sSpgwa-
T1 and spgwa-T, spaces, spgma-regular and spgma-normal
spaces using spgwa-closed sets in topology. Also, we defined
several properties related to them. Further, authors explained
the properties of spgma-compact spaces, spgwa-connected
spaces, spgwma-Lindeldf spaces in topological spaces and
several properties related to them.

Definition 2.1. [4] A subset A of a TS R is said to be a semi
generalized wa -closed (briefly spgwa-closed) if cl(A) < U
whenever A — U and U is wa-open in R.

The family of all spgwa-closed subsets of a space R is
denoted by spgwa-C(R).

Definition 2.2. [4] The intersection of all spgma-closed sets
containing a subset A of R is called spgwa-closure of A and
is denoted by spgwa-cl(A).

A set Ais spgoa-closed if and only if spgwa-cl(A) = A.

Definition 2.3. [4] The union of all spgwa-open sets
containing a subset A of R is called spgwa-interior of A and
it is denoted by spgwa-int(A).

A set A is called spgwa-open if and only if spgwa-int(A) =
A.

Definition 2.4. A function f: R — Sis called a

(i) spgwa-continuous [12] if f2(V) is spgwa-closed in R for
every closed set V in S.

(i) spgwa-irresolute [12] if f(V) is spgwa-closed in R for
every spgmoa-closed set V in S.

(iii) spgwa-open [12] if f(V) is spgwa-open in S for every
opensetVinR.

2. SPGwA-SEPARATION AXIOMS

The weaker forms of separation axioms are found in
this section, such as spgwa-To, Spgwa-T1 and spgwa-T»
spaces and their related concepts.
Definition 2.1: Let (R, t) be a TS. Then R is said to be a
spgwa-To if for each ry, r,eR* with ry #rp, there exists a
Spgwa-open set containing one but not the other.
Example 2.2: Consider R ={ry, 2, r3} and 1= {R, ¢, {r3}}.
The R is spgwa-To.
Theorem 2.3: A space R is spgoa-Toiffspgwa-closures of
distinct points are distinct.
Proof: Let ry, r2eR, where R is spgwoa-To. Then there exists
U espgoa-O(R) withry € U, r2 ¢ U, and so r1gR—U and r2
eR—- U, where R— Uespgma-C(R). We have, spgwo—cl({r2})
is intersection of the spgwa-closed sets, which contains r».
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Thus, r2 espgwa—cl({rz}). As, rgR-U and so n
gspgma—cl({r1}). Thus, spgwo—cl({r1}) # spgwa—cl({r2}).
On the other hand, let r1, r2 €R holds for any pair of different
points spgwo—cl({r1}) # spgwa—cl({r.}). So, there exists at
least one point reR with r € spgwo—cl({r:}) and
réspgma—cl({r2}). Further, we have to prove that
réspgoo——cl({r.}). Let r espgoo—cl({rz}). Then,
spgwo—cl({r1}) <Sspgwa-cl({r.}). So, respgoa—cl({r2})
which is a wrong. Thus, r1 €spgma—cl({r2}) shows that r; ER
—spgwa-cl({r:}) with R is spgwa-cl({r.}) is spgwa-open set
containing ry but not ro. Hence R is spgwa-To.
Theorem 2.4: The property of spg-To space is a hereditary.
Definition 2.5: A function ¥: R — S is pre-spgwa-open, if
Y(V) is spgwa-open in R, for every V espgwa-O(R).
Theorem 2.6: Let ¥: R — S be bijective, pre spgma-open.
If R is spgwa-To, then S is spgwa-To.

Proof: Let ¥ be bijective, pre-spgwa-open with R is spgwa-
To. Let s1, 52€ S with s1 # 5. Since W is bijective, with ry, 1€
R with W(r) = s1, ¥(r2) = s2. S0, there exists spgma-open set
U such that rie U, ¢ U. Thus, W(U*) is spgw-open set
containing W(r1) but not W(r2). So, there exists spgma-open
set W(U) € S such that s;€¥(U), s; (V). Thus, S is spgwa
-To.
Theorem 2.7: The properties listed below are equivalent
for a space R, where spgwa-O(R) is open under arbitrary
union:

(i) R is spgma-To,

(i) Each singleton set is spgwa-closed,

(iii) Each subset of R is the intersection of all spgwa-

open set containing it,
(iv) The set {s} is the intersection of all spgma-open set
containing the point rie R.

Proof: (i) — (ii): Let re R with R is spgwa-To. For each s €
R with s # 1, there exists U espg-O(R, s) but notr. Thus, s €
uc {r}° So, {r}°= u{U : se{r}‘}, that is {r}¢is the union of
spgwa-open sets and so {r} is spgwa-closed.

(ii) — (iii): Let (ii) holds and AS R. Then for each s €A, there
exists {s}¢ with AcS{s}* where {s}°is spgwa-open in R. We
get, A= N{{s}% s € A%} and so, the set A is the intersection
of all spgwa-open sets containing A.

(iii) — (iv): Proof is obvious.

(iv) — (i): Let (4) holds and r, s € R with r#s. According to
the assumption, there is a spgoa-open set U,, with re Uy, s
¢U,. Hence the condition of spgma-Tospace satisfied. Hence,
R is spgma-To.

Definition 2.8: A space R is said to be spgoa-T; if for each
pair of points r, s in R with r = s, there exists a spgoa-open
sets U and V with the conditionre U,s¢ U ands e V, r
¢ V.

Example 2.9: Let R = {ry, 12, 13} and t= {R, o, {r:}, {r2, r3}}.
The space R is spgoo-Ti.

Theorem 2.10: Every spgoa-T1 space is spgwa-To Space.

Remark 2.11: The converse of the above examples does not
hold from the following example.
Example 2.12: Let R={ry, Iz, 3} and t = { R, ¢, {r1}}. The
space R is spgwa-To but not spgwa-T1. There is no spgoa-
open set G with rie{r:} and r.&{r.} holds for ri# ra.
Theorem 2.13: A space R is spgwa-T1iff R has a singleton
subset {r} which is spgma-closed in R.
Proof: Letr € Rand let s € {r}°. Then s #r, by R is spgwo-
Ti. So, there is a spgwa-open set G such that s € G but r ¢G,
that is for each se {r}°, there exists Gespgwa-O(R) with
SEGC {r}° . Thus, U{s: s 1} SU{G: s # r} € {r}°. Thus,
{r}*cu{G: s£ 1} € {r}, that is {r}* = U{G: s#r}. As, G is
spgma-open, then {r}¢ is spgwa-open in R and so, {r} is
spgma-closed in R.
On the other hand, let r, s € R be spgwa-closed with r# s.
Then {r}° ,{s}° are spgwa-open with s € {r}° but r ¢{r}°and
re {s} but s€ {s}°. Then there are spgma-open sets {r}° and
{s}° under re {s}%, s € {s}° and se {r}°, r¢ {r}°. So, R is
spgma-Ti.
Theorem 2.14: Let ¥: R — S be spgwa.C, injective and S is
T1. Then R is spgwa-Ti.
Proof: Let ry, r2€ R with ri1# 1. There exists 1, S2 € S with s,
#sp such that W(r1) = s; and W(r2) = s2. As Sis Ty, U, V
espgma-O(S), so that s1€ U, s2&U and 1€V, s;€ V. That is
Y(r) € U, ¥(r2) €U and P(r1) € V, P(r2) € V. So, ne¥ (U),
rRg¥Y?! (U), ng? ! (V), ne¥? (V), where ¥1(U), ¥ (V)
espgwa-O(R) follows from spgwa.C. Thus, if r1, rER with
ri#r, there exist ¥1 (U), ¥ (V) espgoa-O(R) such that
rnevY (), rng¥?! (U) and rig¥? (V), ne¥? (V). So, Riis
spgmo-T1.
Definition 2.15: Let R be TS. Then R is said to be spgoa-T2
if there are disjoint spgoa-open sets U, V with the condition
r € Uands € V holds for each r, s€ R, where r#s.
Example 2.16: Let R = {ry, 2, r3} and =={R, o, {r1}, {r2}, {r1,
r2}}. The space R is spgwa-To.
Remark 2.17: Every spgwa-T, space is spgwa-Ti. The
converse of the implication is not true follows from the
example.
Example 2.18: From Example 2.16, it is clear that the space
R is spgwa-T, but not spgma-Ti.
Theorem 2.19: The intersection of all spgwa-closed
neighborhoods of each point of R is a singleton set if and only
if the space R is spgwa-To.
Proof: Letr, s€ R where r #s. Then U, V espgwa-O(R) such
thatre U,se Vand U NV = g, so r€ U € R-V follows from
the definition. Thus, R — V is spgwa-closed neighborhood of
r excluding s. Hence, s not in the form part of intersection of
all spgwa-closed neighborhoods of r. As s is an arbitrary, the
singleton set {r} is the intersection of all spgwa-closed
neighborhoods of r.

On the other hand, let us consider r is the intersection
of all spgwa-closed neighborhoods of any point re R and y
any arbitrary point of R with r #s. As s does not belong to the
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intersection, there exists a spgwa-closed neighborhood S of r
with s¢S. So, there exists U espgwa-O(S) such that s € U
cS. Consequently, U, R — S espgoa-O(R) under the
conditionr € U and s € R— S with U N (R—S) = ¢. Hence, R
is spgoa-To.

Theorem 2.20: If ¥: R — S is spgwa.C, injective with S is
T, then R is spgwa-To.

Proof: Consider two distinct points ri, r,e R. As ¥ is
injective, there exists s1, Se S with sy = (r1) and sp = W (ry).
There exist U, V € O(S) with U nV = ¢ such that s;€ U, s,€V
as S is T2. So, neY(U) and re¥ *(V)espgoa-O(R).
Consider ¥ {U)NY (V) = ¥ XU NV) = ¥ Y(p) = ¢. Thus,
for each ri, €R with rn# r,, there are ¥1(U), ¥ (V)
espgoo-O(R) with ¥ 4(U) N ¥ (V) = ¢ with rne¥ 1(U), r
€Y (V). Thus, R is spgwa-Ta.

3. SPGowA-REGULAR SPACES:

In this section we introduce the spgwa-regular
spaces in topological spaces and obtained some of their
properties.

Definition 3.1: A space R is spgwa-regular if there are open
sets U, V such that F € U, re VV with U nV = ¢ holds for
every F espgwa-C(R) and re F.

Remark 3.2: Every spgwa-regular space is regular but not
conversely.

Example 3.3: Consider R={r1, Iz, r3} and 1= {R, o, {r1}, {r2,
rs}}. Then R is regular but not spgwa-regular.

Theorem 3.4: Let R be spgwa-regular and S is a spgwa-
closed and open subset of R. The subspace S is spgwa-
regular.

Proof: Let F be spg-closed subset of S with s € S— F and so
F espgwa-C(R). Since R is spgwa-regular, there exist U, Ve
O(R) with se U and FEV and U NV = ¢. Thus U N Sand V
N S are disjoint open sets in S with s€e U N S, FE V N S.
Thus, S is spgwa-regular.

Theorem 3.5: Let ¥: R — S is spgwa.l, bijective, open with
R is spgwa-regular. Then S is spgwa-regular.

Proof: Let F espgoa-C(S) with seF. For some point re R,
let s ="P(r). Then ¥71(s) € R and ¥Y(F) espgwoa-C(R) as ¥
is spgwo.] where re P 1(F). There U, Ve O(R) with re U,
YYF) €V withUnV =¢. Then,s="P(r) € ¥(U) and F
Y(V). Thus, ¥(U), Y(V) € O(R) such that s € W(U), F
C¥(V) where ¥(U) N W(V) = ¢ holds for all s € S. Hence S
is spgwa-regular.

Theorem 3.6: Let W is pre spgwa-open, closed, injective and
S is spgwa-regular. Then R is spgwa-regular.

Proof: Let re R and F espgwa-C(R) with re F. As W is pre
spgma-open, Y(F) espgwa-C(S) such that ¥(r) e'P(F). As S
is spgwa-regular, U, V e O(R) such that ¥(r) € U and ¥ (F)
C V, that is re?¥Y(VU), F ¥ (V) with ¥X(U) N ¥ V) =
¢. Thus, for each r€ R and for every Fespgoa-C(R) with re
F, there exist ¥~ (U), ¥ X(V) e O(R) such that re ¥ *(U) and

F ¥ (V) with ¥71(U) N ¥XV) = ¢. Thus, R is spgoa-
regular.

4. SPGoA-NORMAL SPACES

In this section, we introduce the spgwa-normal
spaces in topological spaces and obtained some of their
properties
Definition 4.1: A space R is said to be spgwa-normal if for
any disjoint A, B espgwa-C(R), there exist U, VeO(R) with
AcU,BcVandU NV =¢.
Example 4.2: Consider R = {ry, I, 13, 14} and 1= {R, o, {r1},
{r2}, {r1, r2}, {rz, ra}, {r1, r2, ra}, {r2, rs, ra}}. Then R is spgwoa-
normal.
Example 4.3: Let R={ry, rz, r3} and 1= {R, ¢, {r1}, {r2, r3}}.
Then R is normal but not spgwa-normal.
Theorem 4.4: A space R is normal if and only if there exists
spg-open set A € U < cl(U) < V holds for each closed set A
and an open set V containing A.
Theorem 4.5: Let W: R —S be spgwa.l, bijective, open
mapping and R is spgwa-normal. Then S is spgwa-normal
Proof: Let A, B espgoa-C(S) with A nB = ¢. As V¥ is
spgoa.l, ¥ 1(A), ¥ 1(B) espgwa-C(R). Then there exist U,
V e O(R) with ¥71(A) € U and ¥ (B) € V, as ¥ is open.
As W is bijective, ¥(U), ¥(V) e O(S) such that A € ¥ (U)
and B € ¥(V) with ¥(U) N W(V) = ¢. Hence S is spgwa-
normal.
Theorem 4.6: Let R is spgwa-normal and S is spgwa-closed
subset of R. Then the subspace S is spgwa-normal.
Proof: Let A, B espgwa-C(S) with AnB = ¢. Then A, B €
spgma-C(R). As R is spgwa-normal, there are U, Ve O(R)
suchthat Ac Uand B S V. Asaresult, UNS, VNS are
disjoint open subsets in the subspace Swith A U NS, B <
V N S. Thus, S is spgwa-normal.
5. SPGwA-COMPACTNESS

In this section, we introduce spgma-compact,
countably spgma-compact and spgwa-Lindeléf using spgwa-
open sets in TS and studied their properties.
Definition 5.1: A collection {B*;: i1} of spgwa-open sets in

a TS R is called spgwa-open cover if B* gU B *i .

iel
Definition 5.2: A TS R is called spgwa-compact if every
spgwa-open cover of R has a finite subcover.
Definition 5.3: A subset B* of a TS Ris spgwa-compact
relative to R if for every collection {B*;: iel} of spgwa-open

sets of R with B* ¢ U Bi * there exists a finite subset lo of
iel

I such that B* < U B* .

iel,
Definition 5.4: A subset B* of a TS R is spgoa-compact if
B* is spgma-compact of the subspace of R.
Theorem 5.5: A spgwa-closed subset of spgma-compact
space is spgma-compact relative to R.

4326 |

M.M. Holliyavar !, IJIMCR Volume 12 Issue 06 June 2024



“Weaker Forms on Separation Axioms”

Proof: Let A* espgwa-C(R*). Then (R- A*) espgwa-
O(R™).

Let S = {A*i: iel} be a spgwa-open cover of A* by spgwa-
open subsets. Then S* = S U(R - A*) is a spgma-0pen cover,
thatis R =[u {A*i: iel}] U(R - A%).

But, from hypothesis R is spgwa-compact and hence S* is
reducible to a finite subcover, say S* =R U A*1uU A*p U ..U
A*hU (R - A*%), A*ike S*. Since A* N (R - A*) = J, so A*
c A*uU A*pU......U A%, € S. Thus, a spgoa-open cover S
contains a finite subcover and so A* is spgwa-compact
relative to R.

Theorem 5.6: Let W be surjective, spgwa.C. If R is spgwa-
compact, then S is compact.

Proof: Let {A*;: iel} be an open cover. Since V¥ is spgwa.C,
then {¥1(A*): iel} is spgoa-open cover of R which has a
finite subcover say {¥}(A*): i=1.....n}.

Thus R = | Jw H(A*) , that is w(R) = JA*; . As wis

i=1 i=1

n
surjective, that is S* = UA *

i=1
Thus {A*1, A*y, ... A%} is a finite subcover of {A*;: iel}.
So, S is compact.
Theorem 5.7: If a function Wis spgwa.| and B be a subset of
R which is spgma-compact relative to R, then W(B) is spgwa-
compact relative to S.
Proof: Let {A*;: iel} be any collection of spgwa-open sets
inwith ¥(B) = UA*i .

iel
-1
Then B ¢ UW (A*i), where {¥ (A% ie I} is spgwa-
icl
open in R. As B is spgwa-compact, there exists finite
subcollection {A*1, A*, .., A*} such that B <
—_-1
U.: (A *i) .
il
Thus ¥(B) < U A, and so W(B) is spgwa-compact relative
i€l

to S.
Theorem 5.8: Every spgoa-compact space is compact.
Theorem 5.9: ATS R* is spgwa-compact if and only if every
family of spgma-closed sets of R having finite intersection
property has a non-empty intersection.
Proof: Suppose R is spgwa-compact and {A*i: iel} be a
family of spgwa-closed sets with finite intersection property.
We need to prove that m A#*¢.

iel

On the contraryﬂAi *=¢ . Then R—UA*i =R.,

iel iel

that isU(R -A*)=R.

iel

The cover {R — A%j; iel} is a spgma-open cover of R. As R
is spgma-compact, spgwa-open cover {R — A*j; iel} has a
finite subcover, say {R — A*; i=l.....n}, that is R =

n n
[J(R*=A*,), which implies that R = R — [ |A*, , that

i=1 i=1

isSR-R=R - {R—ﬂAi}and so¢=ﬂA*i . This

i=1 i=1

n
contradicts the assumption. Hence ﬂ A% 2.

i=1
Other part, suppose every family of spgwa-closed sets of R
with finite intersection property has a non-empty intersection.
To prove that R is spgma-compact. Suppose R is not a spgwa.-
compact. Then there exists a spgwa-open cover say {Gi: iel}
having no finite subcover. That is for any finite sub family

{Gi: i =1..n} of {G: iel}, we have [ JG; # R which
i=1

implies that R _UGi #R-R, and soﬂ(R —Gi)i 9.

i=1 i=1

Then the family {R — Gi: iel} of spgwa-closed sets has a

finite intersection property. By assumption
n n

ﬂ(R—Gi)¢¢ , that is R — UG*i #¢ and so
i=1 i=1

n
UGi # R . Hence {Gi: ie I} is not a cover of R, which
i=1
contradicts the fact that {Gi: iel} is a cover for R. So, a
spgwa-open cover {Gi: iel} has a finite subcover {Gi: i
=]......n} and so R is spgma-compact.
Definition 5.10: A TS R is said to be countably spgwa-
compact (C.spgwa-compact) if every countable spgwa-open
cover of R has a finite subcover.
Theorem 5.11: If R is a C.spgwa-compact space, then R is
countably compact.
Proof: Let {Ai: iel} be a countable open cover of R by open
setsin R. Then {Ai: iel} is C.spgwa-open cover of R.As R is
C.spgma-compact, the countable spgma-open cover of R has
a finite subcover, say S = {A*;: i=1....n}.Hence R is countably
compact.
Theorem 5.12: Every spgma-compact space is C.spgwma-
compact.
Theorem 5.13: If Yis spgwa.C from a C.spgwa-compact
space R onto S, then S is countably compact.
Proof: Let {A*; :iel} be a countable open cover of S. As ¥
is spgwa.C, then {¥1(A%): iel} is countable spgma-open
cover of R. Since R is C.spgwo-compact, the countable
spgoa-open cover {¥1(A*): iel} of R has a finite subcover
say {¥1(A*): i=1...n}.
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Thus R = Ulﬂ_l(A*i )implies ¥Y(R) = U A* andso S =

i=1 i=1

n
U A*..Hence {A*1, A®,, ..., A%} is a finite subcover for S,
i=1
so S is countably compact.
Theorem 5.14: The image of a countably spgma-compact
space under spgwa.l is C.spgma-compact.
Proof: Let Whe a spgwa.l from a C.spgma-compact space R
onto S and {A*; : iel} be a countable spgwa-open cover of
S. Then {¥(A*): iel} is a countable spgma-open cover of
R. Since R is C.spgwa-compact, the countable spgwa-open
cover {¥1(A*%): iel} of R has a finite subcover say {¥"

YA*): i =1.n}. Thus R = Ut//‘l(A*i), that is¥(R) =
i=1

n n
U A* andsoS= U A *.50, S is C.spgoa-compact.

i=1 i=1
Definition 5.15: A TS R is spgwa-Lindeldf (spgoa.L) if
every spgwa-open cover of R has a countable subcover.
Theorem 5.16: Every spgwa.L space is Lindelof.
Proof: Let R be spgwa.L. Let {A*;: iel} be an open cover of
R and so {A*;: iel} is spgwa-open cover of R is spgma-open
inR. As R is spgwa.L, the spgwa-open cover {A*i:iel} of R
has countable subcover. Hence R is Lindel6f.
Theorem 5.17: Every spgma-compact space is spgwa.L.
Proof: Let R be spgwa-compact and {A*;: iel} be spgwa-
open cover of R. Then {A*;: iel} has a finite subcover say
{A*: i=1..n}. Since every finite subcover is always a
countable subcover and so {A*: i=1.....n} is a countable
subcover for R. Hence R is spgwo.L.
Theorem 5.18: If ¥ is spgwa.C from a spgwa.L space R onto
S, then S is Lindel6f.
Proof: Let {A*;: i1} be an open cover of S. As¥ is spgwa.C,
{¥Y(A*): iel} is spgwo-open cover of R. Since R is
spgwa.L, the spgma-open cover {¥1(A*):iel} has a
countable subcover say S = {¥! (An ): neN}. Therefore R =

l//_l(A*i ),that is¥(R)=S= A*i ,where { A*.
U ! n in

neN neN

: neN} is a countable subcover for S and so S is Lindel6f.
Theorem 5.19: The image of spgwo.L under spgwo.l is
spgwa.L.

Proof: Let Whe a spgwa.I form spgma.L space R onto S. Let
{A*: iel} be a spgwa-open cover of S. Then {¥1(A*):iel}
is spgwa-open cover of R as ¥ is spgwa.l. Since R is
spgoa.L, the spgwa-open cover {¥1(A*): iel} of R has a
countable subcover say {¥*! (Aln) : neN}. Thus R =

{ Al :neN} is a countable subfamily of {Ai: iel}. Hence S

is Lindelof.

Theorem 5.20: If R is spgwa.L and countable spgma-
compact, then R is spgwa-compact.

Proof: Suppose R is countable spgwa-compact and spgwa.L
and {Ai: iel} be a spgwa-open cover of R. As R is spgoa.L,

{Ai: iel} has a countable subcover say { A : neN}.
Therefore {Ain : neN} is a countable subcover of R and {
A :neN}is asubfamily of {Ai:iel} and so { A :neN}

is a countably spgma-open cover of R. Since R is C.spgwa.-
compact, { A1n : neN} has a finite subcover say { Ain ‘neN}

c{Aiiel}and so { A :neN} is a finite subcover of {A;

:iel} for R. Hence R is spgma-compact.
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