International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 06 June 2024, Page no. -4324-4328

Index Copernicus ICV: 57.55, Impact Factor: 8.316

DOI: 10.47191/ijmcr/v12i6.11

Weaker Forms on Separation Axioms

M.M. Holliyavar¹, T.D. Rayanagoudar², Sarika M. Patil³

¹R and D Department, Bharathiar University, Coimbatore- 641046, Tamil Nadu, India ^{2,3}Department of Mathematics, Government First Grade College, Rajnagar, Hubli-580032, Karnataka, India

ARTICLE INFO	ABSTRACT
Published Online:	In general topology, the concepts of separation axioms play an important role. The main goal
21 June 2024	of this paper is to present the study of weaker forms of separation axioms called $spg\omega\alpha$ -T ₁ ,
	spgωα-T ₂ , spgωα-regular and spgωα-normal spaces using spgωα-open sets in topological
Corresponding Author:	spaces. Further, the properties spgωα-compact, spgωα-connected and spgωα-Lindelof spaces
T.D. Rayanagoudar	have been defined and studied their basic characterizations in topological spaces.
VEVWODDS , spaces approximate and state spaces continuous functions, spaces Imposible spaces.	

KEYWORDS: spg $\omega\alpha$ -open sets, spg $\omega\alpha$ -closed sets, spg $\omega\alpha$ -continuous functions, spg $\omega\alpha$ -Irresolute functions, spg $\omega\alpha$ -compact spaces, spg $\omega\alpha$ -connected spaces.

1. INTRODUCTION AND PRELIMINARIES:

Njastad [8], in 1984 introduced and defined α -open sets. Following the work on α -open sets, many topologists focused on generalization of topological concepts using semi-open and α -open sets. These sets play an important role in the generalization of continuity in topological spaces. Maheshwari and Prasad [6] introduced s-normal spaces using semi-open sets. Nori and Popa [9], Dorsett [2], Arya [1] and Munshi [7] studied g-regular and g-normal spaces using g-closed sets in topological spaces.

In this paper, author establish the properties of weaker forms of separation axioms called $spg\omega\alpha$ -T₀, $spg\omega\alpha$ -T₁ and $spg\omega\alpha$ -T₂ spaces, $spg\omega\alpha$ -regular and $spg\omega\alpha$ -normal spaces using $spg\omega\alpha$ -closed sets in topology. Also, we defined several properties related to them. Further, authors explained the properties of $spg\omega\alpha$ -compact spaces, $spg\omega\alpha$ -connected spaces, $spg\omega\alpha$ -Lindelöf spaces in topological spaces and several properties related to them.

Definition 2.1. [4] A subset A of a TS R is said to be a semi generalized $\omega \alpha$ -closed (briefly spg $\omega \alpha$ -closed) if cl(A) \subset U whenever A \subset U and U is $\omega \alpha$ -open in R.

The family of all spg $\omega\alpha$ -closed subsets of a space R is denoted by spg $\omega\alpha$ -C(R).

Definition 2.2. [4] The intersection of all $spg\omega\alpha$ -closed sets containing a subset A of R is called $spg\omega\alpha$ -closure of A and is denoted by $spg\omega\alpha$ -cl(A).

A set A is spg $\omega\alpha$ -closed if and only if spg $\omega\alpha$ -cl(A) = A.

Definition 2.3. [4] The union of all spg $\omega\alpha$ -open sets containing a subset A of R is called spg $\omega\alpha$ -interior of A and it is denoted by spg $\omega\alpha$ -int(A).

A set A is called spg $\omega\alpha$ -open if and only if spg $\omega\alpha$ -int(A) = A.

Definition 2.4. A function $f: \mathbb{R} \to \mathbb{S}$ is called a

(i) spg $\omega\alpha$ -continuous [12] if $f^{-1}(V)$ is spg $\omega\alpha$ -closed in R for every closed set V in S.

(ii) spg $\omega \alpha$ -irresolute [12] if $f^{-1}(V)$ is spg $\omega \alpha$ -closed in R for every spg $\omega \alpha$ -closed set V in S.

(iii) spg $\omega\alpha$ -open [12] if f(V) is spg $\omega\alpha$ -open in S for every open set V in R.

2. SPG@A-SEPARATION AXIOMS

The weaker forms of separation axioms are found in this section, such as $spg\omega\alpha$ -T₀, $spg\omega\alpha$ -T₁ and $spg\omega\alpha$ -T₂ spaces and their related concepts.

Definition 2.1: Let (R, τ) be a TS. Then R is said to be a spg $\omega\alpha$ -T₀ if for each r₁, r₂ \in R* with r₁ \neq r₂, there exists a spg $\omega\alpha$ -open set containing one but not the other.

Example 2.2: Consider $R = \{r_1, r_2, r_3\}$ and $\tau = \{R, \phi, \{r_3\}\}$. The R is spg $\omega \alpha$ -T₀.

Theorem 2.3: A space R is $spg\omega\alpha$ - T_0 iff $spg\omega\alpha$ -closures of distinct points are distinct.

Proof: Let $r_1, r_2 \in \mathbb{R}$, where R is $spg\omega\alpha - T_0$. Then there exists $U \in spg\omega\alpha - O(\mathbb{R})$ with $r_1 \in U$, $r_2 \notin U$, and so $r_1 \notin \mathbb{R} - U$ and $r_2 \in \mathbb{R} - U$, where $\mathbb{R} - U \in spg\omega\alpha - C(\mathbb{R})$. We have, $spg\omega\alpha - cl(\{r_2\})$ is intersection of the $spg\omega\alpha$ -closed sets, which contains r_2 .

Thus, $r_2 \in spg\omega\alpha - cl(\{r_2\})$. As, $r_1 \notin R - U$ and so $r_1 \notin spg\omega\alpha - cl(\{r_1\})$. Thus, $spg\omega\alpha - cl(\{r_1\}) \neq spg\omega\alpha - cl(\{r_2\})$. On the other hand, let $r_1, r_2 \in R$ holds for any pair of different points $spg\omega\alpha - cl(\{r_1\}) \neq spg\omega\alpha - cl(\{r_2\})$. So, there exists at least one point $r \in R$ with $r \in spg\omega\alpha - cl(\{r_1\})$ and $r \notin spg\omega\alpha - cl(\{r_2\})$. Further, we have to prove that $r_1 \notin spg\omega\alpha - cl(\{r_2\})$. Let $r_1 \in spg\omega\alpha - cl(\{r_2\})$. Then, $spg\omega\alpha - cl(\{r_1\}) \subseteq spg\omega\alpha - cl(\{r_2\})$. So, $r \in spg\omega\alpha - cl(\{r_2\})$ which is a wrong. Thus, $r_1 \notin spg\omega\alpha - cl(\{r_2\})$ shows that $r_1 \in R$ $-spg\omega\alpha - cl(\{r_2\})$ with R is $spg\omega\alpha - cl(\{r_2\})$ is $spg\omega\alpha - open set$ containing r_1 but not r_2 . Hence R is $spg\omega\alpha - T_0$.

Theorem 2.4: The property of spg-T₀ space is a hereditary. **Definition 2.5:** A function Ψ : R \rightarrow S is pre-spg $\omega\alpha$ -open, if $\Psi(V)$ is spg $\omega\alpha$ -open in R, for every V \in spg $\omega\alpha$ -O(R).

Theorem 2.6: Let Ψ : $R \rightarrow S$ be bijective, pre spg ωa -open. If R is spg ωa -T₀, then S is spg ωa -T₀.

Proof: Let Ψ be bijective, pre-spg $\omega\alpha$ -open with R is spg $\omega\alpha$ -T₀. Let $s_1, s_2 \in S$ with $s_1 \neq s_2$. Since Ψ is bijective, with $r_1, r_2 \in R$ with $\Psi(r_1) = s_1, \Psi(r_2) = s_2$. So, there exists spg $\omega\alpha$ -open set U such that $r_1 \in U$, $r_2 \notin U$. Thus, $\Psi(U^*)$ is spg ω -open set containing $\Psi(r_1)$ but not $\Psi(r_2)$. So, there exists spg $\omega\alpha$ -open set $\Psi(U) \in S$ such that $s_1 \in \Psi(U), s_2 \notin \Psi(U)$. Thus, S is spg $\omega\alpha$ -T₀.

Theorem 2.7: The properties listed below are equivalent for a space R, where $spg\omega\alpha$ -O(R) is open under arbitrary union:

- (i) R is spg $\omega \alpha$ -T₀,
- (ii) Each singleton set is $spg\omega\alpha$ -closed,
- (iii) Each subset of R is the intersection of all $spg\omega\alpha$ open set containing it,
- (iv) The set $\{s\}$ is the intersection of all $spg\omega\alpha$ -open set containing the point $r_1 \in R$.

Proof: (i) \rightarrow (ii): Let $r \in R$ with R is $spg\omega\alpha$ -T₀. For each $s \in R$ with $s \neq r$, there exists $U \in spg$ -O(R, s) but not r. Thus, $s \in U \subseteq \{r\}^c$. So, $\{r\}^c = \cup \{U : s \in \{r\}^c\}$, that is $\{r\}^c$ is the union of $spg\omega\alpha$ -open sets and so $\{r\}$ is $spg\omega\alpha$ -closed.

(ii) \rightarrow (iii): Let (ii) holds and A \subseteq R. Then for each s \notin A, there exists {s}^c with A \subseteq {s}^c where {s}^c is spg $\omega\alpha$ -open in R. We get, A = \cap {{s}^c: s \in A^c} and so, the set A is the intersection of all spg $\omega\alpha$ -open sets containing A.

(iii) \rightarrow (iv): Proof is obvious.

(iv) \rightarrow (i): Let (4) holds and r, s \in R with r \neq s. According to the assumption, there is a spg $\omega\alpha$ -open set U_r, with r \in U_r, s \notin U_r. Hence the condition of spg $\omega\alpha$ -T₀ space satisfied. Hence, R is spg $\omega\alpha$ -T₀.

Definition 2.8: A space R is said to be $spg\omega\alpha$ -T₁ if for each pair of points r, s in R with $r \neq s$, there exists a $spg\omega\alpha$ -open sets U and V with the condition $r \in U$, $s \notin U$ and $s \in V$, $r \notin V$.

Example 2.9: Let $R = \{r_1, r_2, r_3\}$ and $\tau = \{R, \phi, \{r_1\}, \{r_2, r_3\}\}$. The space R is spg $\omega\alpha$ -T₁.

Theorem 2.10: Every $spg\omega\alpha$ - T_1 space is $spg\omega\alpha$ - T_0 space.

Remark 2.11: The converse of the above examples does not hold from the following example.

Example 2.12: Let $R=\{r_1, r_2, r_3\}$ and $\tau = \{R, \phi, \{r_1\}\}$. The space R is $spg\omega\alpha$ -T₀ but not $spg\omega\alpha$ -T₁. There is no $spg\omega\alpha$ -open set G with $r_1 \in \{r_1\}$ and $r_2 \notin \{r_1\}$ holds for $r_1 \neq r_2$.

Theorem 2.13: A space R is $spg\omega\alpha$ -T₁iff R has a singleton subset {r} which is $spg\omega\alpha$ -closed in R.

Proof: Let $r \in R$ and let $s \in \{r\}^c$. Then $s \neq r$, by R is spg ωa -T₁. So, there is a spg ωa -open set G such that $s \in G$ but $r \notin G$, that is for each $s \in \{r\}^c$, there exists $G \in spg \omega a$ -O(R) with $s \in G \subseteq \{r\}^c$. Thus, $\cup \{s: s \neq r\} \subseteq \cup \{G: s \neq r\} \subseteq \{r\}^c$. Thus, $\{r\}^c \subseteq \cup \{G: s \neq r\} \subseteq \{r\}^c$, that is $\{r\}^c = \cup \{G: s \neq r\}$. As, G is spg ωa -open, then $\{r\}^c$ is spg ωa -open in R and so, $\{r\}$ is spg ωa -closed in R.

On the other hand, let r, $s \in R$ be $spg\omega\alpha$ -closed with $r \neq s$. Then $\{r\}^c$, $\{s\}^c$ are $spg\omega\alpha$ -open with $s \in \{r\}^c$ but $r \notin \{r\}^c$ and $r \in \{s\}$ but $s \in \{s\}^c$. Then there are $spg\omega\alpha$ -open sets $\{r\}^c$ and $\{s\}^c$ under $r \in \{s\}^c$, $s \in \{s\}^c$ and $s \in \{r\}^c$, $r \notin \{r\}^c$. So, R is $spg\omega\alpha$ -T₁.

Theorem 2.14: Let Ψ : $R \rightarrow S$ be spg $\omega \alpha$.C, injective and S is T₁. Then R is spg $\omega \alpha$ -T₁.

Proof: Let $r_1, r_2 \in R$ with $r_1 \neq r_2$. There exists $s_1, s_2 \in S$ with $s_1 \neq s_2$ such that $\Psi(r_1) = s_1$ and $\Psi(r_2) = s_2$. As S is T_1 , U, V \in spg $\omega\alpha$ -O(S), so that $s_1 \in U$, $s_2 \notin U$ and $s_1 \notin V$, $s_2 \in V$. That is $\Psi(r_1) \in U$, $\Psi(r_2) \notin U$ and $\Psi(r_1) \notin V$, $\Psi(r_2) \in V$. So, $r_1 \in \Psi^{-1}(U)$, $r_2 \notin \Psi^{-1}(U)$, $r_1 \notin \Psi^{-1}(V)$, $r_2 \in \Psi^{-1}(V)$, where $\Psi^{-1}(U)$, $\Psi^{-1}(V)$ \in spg $\omega\alpha$ -O(R) follows from spg $\omega\alpha$.C. Thus, if $r_1, r_2 \in R$ with $r_1 \neq r_2$, there exist $\Psi^{-1}(U)$, $\Psi^{-1}(V) \in$ spg $\omega\alpha$ -O(R) such that $r_1 \in \Psi^{-1}(U)$, $r_2 \notin \Psi^{-1}(U)$ and $r_1 \notin \Psi^{-1}(V)$, $r_2 \in \Psi^{-1}(V)$. So, R is spg $\omega\alpha$ -T₁.

Definition 2.15: Let R be TS. Then R is said to be $spg\omega\alpha$ -T₂ if there are disjoint $spg\omega\alpha$ -open sets U, V with the condition $r \in U$ and $s \in V$ holds for each r, $s \in R$, where $r \neq s$.

Example 2.16: Let $R = \{r_1, r_2, r_3\}$ and $\tau = \{R, \phi, \{r_1\}, \{r_2\}, \{r_1, r_2\}\}$. The space R is $spg\omega\alpha - T_2$.

Remark 2.17: Every $spg\omega\alpha$ -T₂ space is $spg\omega\alpha$ -T₁. The converse of the implication is not true follows from the example.

Example 2.18: From Example 2.16, it is clear that the space R is $spg\omega\alpha$ -T₂ but not $spg\omega\alpha$ -T₁.

Theorem 2.19: The intersection of all spg $\omega\alpha$ -closed neighborhoods of each point of R is a singleton set if and only if the space R is spg $\omega\alpha$ -T₂.

Proof: Let r, $s \in R$ where $r \neq s$. Then U, $V \in spg\omega\alpha$ -O(R) such that $r \in U$, $s \in V$ and $U \cap V = \varphi$, so $r \in U \subseteq R-V$ follows from the definition. Thus, R - V is $spg\omega\alpha$ -closed neighborhood of r excluding s. Hence, s not in the form part of intersection of all $spg\omega\alpha$ -closed neighborhoods of r. As s is an arbitrary, the singleton set $\{r\}$ is the intersection of all $spg\omega\alpha$ -closed neighborhoods of r.

On the other hand, let us consider r is the intersection of all spg $\omega \alpha$ -closed neighborhoods of any point $r \in R$ and y any arbitrary point of R with $r \neq s$. As s does not belong to the

intersection, there exists a spg $\omega\alpha$ -closed neighborhood S of r with s \notin S. So, there exists U \in spg $\omega\alpha$ -O(S) such that s \in U \subseteq S. Consequently, U, R - S \in spg $\omega\alpha$ -O(R) under the condition r \in U and s \in R-S with U \cap (R-S) = ϕ . Hence, R is spg $\omega\alpha$ -T₂.

Theorem 2.20: If Ψ : R \rightarrow S is spg $\omega \alpha$.C, injective with S is T₂, then R is spg $\omega \alpha$ -T₂.

Proof: Consider two distinct points r_1 , $r_2 \in R$. As Ψ is injective, there exists $s_1, s_2 \in S$ with $s_1 = \Psi(r_1)$ and $s_2 = \Psi(r_2)$. There exist U, $V \in O(S)$ with $U \cap V = \phi$ such that $s_1 \in U$, $s_2 \in V$ as S is T₂. So, $r_1 \in \Psi^{-1}(U)$ and $r_2 \in \Psi^{-1}(V) \in \text{spg}\omega \alpha$ -O(R). Consider $\Psi^{-1}(U) \cap \Psi^{-1}(V) = \Psi^{-1}(U \cap V) = \Psi^{-1}(\phi) = \phi$. Thus, for each r_1 , $r_2 \in R$ with $r_1 \neq r_2$, there are $\Psi^{-1}(U)$, $\Psi^{-1}(V) \in \text{spg}\omega \alpha$ -O(R) with $\Psi^{-1}(U) \cap \Psi^{-1}(V) = \phi$ with $r_1 \in \Psi^{-1}(U)$, $r_2 \in \Psi^{-1}(V)$. Thus, R is $\text{spg}\omega \alpha$ -T₂.

3. SPG@A-REGULAR SPACES:

In this section we introduce the $spg\omega\alpha$ -regular spaces in topological spaces and obtained some of their properties.

Definition 3.1: A space R is $spg\omega\alpha$ -regular if there are open sets U, V such that $F \subseteq U$, $r \in V$ with $U \cap V = \phi$ holds for every $F \in spg\omega\alpha$ -C(R) and $r \in F$.

Remark 3.2: Every spg $\omega\alpha$ -regular space is regular but not conversely.

Example 3.3: Consider R= $\{r_1, r_2, r_3\}$ and $\tau = \{R, \phi, \{r_1\}, \{r_2, r_3\}\}$. Then R is regular but not spg $\omega\alpha$ -regular.

Theorem 3.4: Let R be spg $\omega\alpha$ -regular and S is a spg $\omega\alpha$ closed and open subset of R. The subspace S is spg $\omega\alpha$ regular.

Proof: Let F be spg-closed subset of S with $s \in S - F$ and so $F \in spg\omega\alpha$ -C(R). Since R is $spg\omega\alpha$ -regular, there exist U, $V \in O(R)$ with $s \in U$ and $F \subseteq V$ and $U \cap V = \phi$. Thus $U \cap S$ and $V \cap S$ are disjoint open sets in S with $s \in U \cap S$, $F \subseteq V \cap S$. Thus, S is $spg\omega\alpha$ -regular.

Theorem 3.5: Let Ψ : R \rightarrow S is spg $\omega \alpha$.I, bijective, open with R is spg $\omega \alpha$ -regular. Then S is spg $\omega \alpha$ -regular.

Proof: Let $F \in spg\omega\alpha$ -C(S) with $s \in F$. For some point $r \in R$, let $s = \Psi(r)$. Then $\Psi^{-1}(s) \in R$ and $\Psi^{-1}(F) \in spg\omega\alpha$ -C(R) as Ψ is $spg\omega\alpha$.I where $r \in \Psi^{-1}(F)$. There U, $V \in O(R)$ with $r \in U$, $\Psi^{-1}(F) \subseteq V$ with $U \cap V = \phi$. Then, $s = \Psi(r) \in \Psi(U)$ and $F \subseteq$ $\Psi(V)$. Thus, $\Psi(U)$, $\Psi(V) \in O(R)$ such that $s \in \Psi(U)$, $F \subseteq \Psi(V)$ where $\Psi(U) \cap \Psi(V) = \phi$ holds for all $s \in S$. Hence S is $spg\omega\alpha$ -regular.

Theorem 3.6: Let Ψ is pre spg $\omega\alpha$ -open, closed, injective and S is spg $\omega\alpha$ -regular. Then R is spg $\omega\alpha$ -regular.

Proof: Let $r \in R$ and $F \in spg\omega\alpha$ -C(R) with $r \in F$. As Ψ is pre spg $\omega\alpha$ -open, $\Psi(F) \in spg\omega\alpha$ -C(S) such that $\Psi(r) \in \Psi(F)$. As S is spg $\omega\alpha$ -regular, U, $V \in O(R)$ such that $\Psi(r) \in U$ and $\Psi(F) \subseteq V$, that is $r \in \Psi^{-1}(U)$, $F \subseteq \Psi^{-1}(V)$ with $\Psi^{-1}(U) \cap \Psi^{-1}(V) = \varphi$. Thus, for each $r \in R$ and for every $F \in spg\omega\alpha$ -C(R) with $r \in F$, there exist $\Psi^{-1}(U)$, $\Psi^{-1}(V) \in O(R)$ such that $r \in \Psi^{-1}(U)$ and

 $F \subseteq \Psi^{-1}(V)$ with $\Psi^{-1}(U) \cap \Psi^{-1}(V) = \varphi$. Thus, R is spg $\omega \alpha$ -regular.

4. SPG@A-NORMAL SPACES

In this section, we introduce the $spg\omega\alpha$ -normal spaces in topological spaces and obtained some of their properties

Definition 4.1: A space R is said to be spg $\omega\alpha$ -normal if for any disjoint A, B \in spg $\omega\alpha$ -C(R), there exist U, V \in O(R) with A \subseteq U, B \subseteq V and U \cap V = ϕ .

Example 4.2: Consider $R = \{r_1, r_2, r_3, r_4\}$ and $\tau = \{R, \varphi, \{r_1\}, \{r_2\}, \{r_1, r_2\}, \{r_2, r_4\}, \{r_1, r_2, r_4\}, \{r_2, r_3, r_4\}\}$. Then R is spg $\omega \alpha$ -normal.

Example 4.3: Let $R = \{r_1, r_2, r_3\}$ and $\tau = \{R, \phi, \{r_1\}, \{r_2, r_3\}\}$. Then R is normal but not spg $\omega \alpha$ -normal.

Theorem 4.4: A space R is normal if and only if there exists spg-open set $A \subseteq U \subseteq cl(U) \subseteq V$ holds for each closed set A and an open set V containing A.

Theorem 4.5: Let Ψ : $R \rightarrow S$ be spg $\omega \alpha$. I, bijective, open mapping and R is spg $\omega \alpha$ -normal. Then S is spg $\omega \alpha$ -normal

Proof: Let A, B \in spg $\omega \alpha$ -C(S) with A \cap B = ϕ . As Ψ is spg $\omega \alpha$.I, $\Psi^{-1}(A)$, $\Psi^{-1}(B) \in$ spg $\omega \alpha$ -C(R). Then there exist U, V \in O(R) with $\Psi^{-1}(A) \subseteq U$ and $\Psi^{-1}(B) \subseteq V$, as Ψ is open. As Ψ is bijective, $\Psi(U)$, $\Psi(V) \in O(S)$ such that A $\subseteq \Psi(U)$ and B $\subseteq \Psi(V)$ with $\Psi(U) \cap \Psi(V) = \phi$. Hence S is spg $\omega \alpha$ -normal.

Theorem 4.6: Let R is $spg\omega\alpha$ -normal and S is $spg\omega\alpha$ -closed subset of R. Then the subspace S is $spg\omega\alpha$ -normal.

Proof: Let A, B \in spg $\omega \alpha$ -C(S) with A \cap B = ϕ . Then A, B \in spg $\omega \alpha$ -C(R). As R is spg $\omega \alpha$ -normal, there are U, V \in O(R) such that A \subseteq U and B \subseteq V. As a result, U \cap S, V \cap S are disjoint open subsets in the subspace S with A \subseteq U \cap S, B \subseteq V \cap S. Thus, S is spg $\omega \alpha$ -normal.

5. SPG@A-COMPACTNESS

In this section, we introduce $spg\omega\alpha$ -compact, countably $spg\omega\alpha$ -compact and $spg\omega\alpha$ -Lindelöf using $spg\omega\alpha$ -open sets in TS and studied their properties.

Definition 5.1: A collection $\{B^*_i:i\!\in\!I\}$ of $spg\omega\alpha\text{-open sets in}$

a **TS R** is called spg $\omega \alpha$ -open cover if $B^* \subseteq \bigcup_{i \in I} B^*_{i}$.

Definition 5.2: A TS R is called $spg\omega\alpha$ -compact if every $spg\omega\alpha$ -open cover of R has a finite subcover.

Definition 5.3: A subset B^* of a TS Ris spg $\omega\alpha$ -compact relative to R if for every collection $\{B^*_i: i \in I\}$ of spg $\omega\alpha$ -open

sets of R with $B^* \! \subseteq \! \bigcup_{i \in I} B_i$ * there exists a finite subset I_0 of

I such that
$$B^* \subseteq \bigcup_{i \in I_0} B^*_i$$
.

Definition 5.4: A subset B^* of a TS R is spg $\omega\alpha$ -compact if B^* is spg $\omega\alpha$ -compact of the subspace of R.

Theorem 5.5: A spg $\omega\alpha$ -closed subset of spg $\omega\alpha$ -compact space is spg $\omega\alpha$ -compact relative to R.

Proof: Let $A^* \in spg\omega\alpha$ -C(R*). Then (R- A*) $\in spg\omega\alpha$ -O(R*).

Let $S = \{A^*_i: i \in I\}$ be a spg $\omega\alpha$ -open cover of A^* by spg $\omega\alpha$ open subsets. Then $S^* = S \cup (R - A^*)$ is a spg $\omega\alpha$ -open cover, that is $R = [\cup \{A^*_i: i \in I\}] \cup (R - A^*)$.

But, from hypothesis R is spg ω -compact and hence S* is reducible to a finite subcover, say S* = R $\cup A^*_{i1} \cup A^*_{i2} \cup ... \cup$ $A^*_{in} \cup (R - A^*), A^*_{ik} \in S^*$. Since A* $\cap (R - A^*) = \emptyset$, so A* $\subseteq A^*_{i1} \cup A^*_{i2} \cup ... \cup A^*_{in} \in S$. Thus, a spg $\omega\alpha$ -open cover S contains a finite subcover and so A* is spg $\omega\alpha$ -compact relative to R.

Theorem 5.6: Let Ψ be surjective, spg $\omega \alpha$.C. If R is spg $\omega \alpha$ -compact, then S is compact.

Proof: Let $\{A^*_i: i \in I\}$ be an open cover. Since Ψ is spg $\omega \alpha$.C, then $\{\Psi^{-1}(A^*_i): i \in I\}$ is spg $\omega \alpha$ -open cover of R which has a finite subcover say $\{\Psi^{-1}(A^*_i): i=1,...,n\}$.

Thus
$$\mathbf{R} = \bigcup_{i=1}^{n} \mathcal{W}^{-1}(\mathbf{A}^{*}_{i})$$
, that is $\Psi(\mathbf{R}) = \bigcup_{i=1}^{n} \mathbf{A}^{*}_{i}$. As Ψ is

surjective, that is $S^* = \bigcup_{i=1}^n A^*_i$.

Thus $\{A^{*}_{1}, A^{*}_{2}, ..., A^{*}_{n}\}$ is a finite subcover of $\{A^{*}_{i}: i \in I\}$. So, S is compact.

Theorem 5.7: If a function Ψ is spg $\omega \alpha$.I and B be a subset of R which is spg $\omega \alpha$ -compact relative to R, then $\Psi(B)$ is spg $\omega \alpha$ -compact relative to S.

Proof: Let $\{A^*_i: i \in I\}$ be any collection of $spg\omega\alpha$ -open sets in with $\Psi(B) = \bigcup_{i \in I} A^*_i$.

Then $B \subseteq \bigcup_{i \in I} \psi^{-1}(A_i^*)$, where $\{\Psi^{-1}(A_i^*: i \in I\}$ is spg $\omega \alpha$ -

open in R. As B is spg ω -compact, there exists finite subcollection {A*₁, A*₂, ..., A*_n} such that B $\subseteq \bigcup_{i \in I_0} \Xi^{-1}(A*_i)$.

Thus $\Psi(\mathbf{B}) \subseteq \bigcup_{i \in I_0} A_i$ and so $\Psi(\mathbf{B})$ is spg $\omega\alpha$ -compact relative

to S.

Theorem 5.8: Every spgωα-compact space is compact.

Theorem 5.9: A TS R* is spg $\omega\alpha$ -compact if and only if every family of spg $\omega\alpha$ -closed sets of R having finite intersection property has a non-empty intersection.

Proof: Suppose R is spg $\omega\alpha$ -compact and $\{A^*_i: i \in I\}$ be a family of spg $\omega\alpha$ -closed sets with finite intersection property. We need to prove that $\bigcap_{i \in I} A_i \neq \phi$.

On the contrary $\bigcap_{i \in I} A_i^{i \neq I} \neq \phi$. Then $\mathbf{R} - \bigcup_{i \in I} A_i^{*} = \mathbf{R}$. that is $\bigcup_{i \in I} (\mathbf{R} - \mathbf{A}_i^{*}) = \mathbf{R}$. The cover $\{R - A^*_i; i \in I\}$ is a spg $\omega\alpha$ -open cover of R. As R is spg $\omega\alpha$ -compact, spg $\omega\alpha$ -open cover $\{R - A^*_i; i \in I\}$ has a finite subcover, say $\{R - A^*_i; i=1,...,n\}$, that is $R = \prod_{i=1}^{n} 1$ (R is instant).

$$\bigcup_{i=1}^{n} (\mathbf{R}^* - \mathbf{A}^*_i), \text{ which implies that } \mathbf{R} = \mathbf{R} - \bigcap_{i=1}^{n} \mathbf{A}^*_i, \text{ that}$$

is $\mathbf{R} - \mathbf{R} = \mathbf{R} - \left[\mathbf{R} - \bigcap_{i=1}^{n} A_i\right] \text{ and so } \phi = \bigcap_{i=1}^{n} A^*_i.$ This
contradicts the assumption. Hence $\bigcap_{i=1}^{n} A^*_i \neq \phi$

contradicts the assumption. Hence $\bigcap_{i=1}^{i} A_{i}^{*} \neq \phi$.

Other part, suppose every family of spg $\omega\alpha$ -closed sets of R with finite intersection property has a non-empty intersection. To prove that R is spg $\omega\alpha$ -compact. Suppose R is not a spg $\omega\alpha$ -compact. Then there exists a spg $\omega\alpha$ -open cover say $\{G_i: i \in I\}$ having no finite subcover. That is for any finite sub family

$$\{G_i: i = 1...n\}$$
 of $\{G_i: i \in I\}$, we have $\bigcup_{i=1}^n G_i \neq R$ which

implies that $\mathbf{R} - \bigcup_{i=1}^{n} G_i \neq \mathbf{R} - \mathbf{R}$, and so $\bigcap_{i=1}^{n} (\mathbf{R} - G_i) \neq \phi$.

$$\bigcap_{i=1}^{n} (\mathbf{R} - G_i) \neq \phi \text{, that is } \mathbf{R} - \bigcup_{i=1}^{n} G^*_i \neq \phi \text{ and so}$$

 $\bigcup_{i=1} G_i \neq R$. Hence {G_i: $i \in I$ } is not a cover of R, which

contradicts the fact that $\{G_i: i \in I\}$ is a cover for R. So, a spg $\omega\alpha$ -open cover $\{G_i: i \in I\}$ has a finite subcover $\{G_i: i = 1, ..., n\}$ and so R is spg $\omega\alpha$ -compact.

Definition 5.10: A TS R is said to be countably $spg\omega\alpha$ compact (C.spg $\omega\alpha$ -compact) if every countable $spg\omega\alpha$ -open cover of R has a finite subcover.

Theorem 5.11: If R is a $C.spg\omega\alpha$ -compact space, then R is countably compact.

Proof: Let $\{A_i: i \in I\}$ be a countable open cover of R by open sets in R. Then $\{A_i: i \in I\}$ is C.spg $\omega\alpha$ -open cover of R.As R is C.spg $\omega\alpha$ -compact, the countable spg $\omega\alpha$ -open cover of R has a finite subcover, say $S = \{A^*_i: i=1...,n\}$.Hence R is countably compact.

Theorem 5.12: Every spg $\omega\alpha$ -compact space is C.spg $\omega\alpha$ -compact.

Theorem 5.13: If Ψ is spg $\omega \alpha$.C from a C.spg $\omega \alpha$ -compact space R onto S, then S is countably compact.

Proof: Let $\{A^*_i : i \in I\}$ be a countable open cover of S. As Ψ is spg $\omega \alpha$.C, then $\{\Psi^{-1}(A^*_i): i \in I\}$ is countable spg $\omega \alpha$ -open cover of R. Since R is C.spg $\omega \alpha$ -compact, the countable spg $\omega \alpha$ -open cover $\{\Psi^{-1}(A^*_i): i \in I\}$ of R has a finite subcover say $\{\Psi^{-1}(A^*_i): i=1...n\}$.

Thus
$$\mathbf{R} = \bigcup_{i=1}^{n} \psi^{-1} (\mathbf{A}_{i}^{*})$$
 implies $\Psi(\mathbf{R}) = \bigcup_{i=1}^{n} A_{i}^{*}$ and so $\mathbf{S} = \bigcup_{i=1}^{n} A_{i}^{*}$. Hence $\{\mathbf{A}_{1}^{*}, \mathbf{A}_{2}^{*}, ..., \mathbf{A}_{n}^{*}\}$ is a finite subcover for \mathbf{S} ,

so S is countably compact.

Theorem 5.14: The image of a countably $spg\omega\alpha$ -compact space under $spg\omega\alpha$.I is C. $spg\omega\alpha$ -compact.

Proof: Let Ψ be a spg $\omega \alpha$. I from a C.spg $\omega \alpha$ -compact space R onto S and $\{A^{*_i} : i \in I\}$ be a countable spg $\omega \alpha$ -open cover of S. Then $\{\Psi^{-1}(A^{*_i}): i \in I\}$ is a countable spg $\omega \alpha$ -open cover of R. Since R is C.spg $\omega \alpha$ -compact, the countable spg $\omega \alpha$ -open cover ($\Psi^{-1}(A^{*_i}): i \in I$) of R has a finite subcover say $\{\Psi^{-1}(A^{*_i}): i \in I\}$

¹(A*_i): i =1...n}. Thus R =
$$\bigcup_{i=1}^{n} \psi^{-1}(A*_{i})$$
, that is $\Psi(R)$ =

$$\bigcup_{i=1}^{n} A_{i}^{*} \text{ and so } S = \bigcup_{i=1}^{n} A_{i}^{*} \cdot So, S \text{ is } C.spg\omega\alpha\text{-compact.}$$

Definition 5.15: A TS R is $spg\omega\alpha$ -Lindelöf ($spg\omega\alpha$.L) if every $spg\omega\alpha$ -open cover of R has a countable subcover.

Theorem 5.16: Every spgma.L space is Lindelöf.

Proof: Let R be spg $\omega \alpha$.L. Let $\{A^*_i: i \in I\}$ be an open cover of R and so $\{A^*_i: i \in I\}$ is spg $\omega \alpha$ -open cover of R is spg $\omega \alpha$ -open in R. As R is spg $\omega \alpha$.L, the spg $\omega \alpha$ -open cover $\{A^*_i: i \in I\}$ of R has countable subcover. Hence R is Lindelöf.

Theorem 5.17: Every spgωα-compact space is spgωα.L.

Proof: Let R be spg $\omega\alpha$ -compact and $\{A^*_i: i \in I\}$ be spg $\omega\alpha$ open cover of R. Then $\{A^*_i: i \in I\}$ has a finite subcover say $\{A^*_i: i=1...n\}$. Since every finite subcover is always a countable subcover and so $\{A^*_i: i=1....n\}$ is a countable subcover for R. Hence R is spg $\omega\alpha$.L.

Theorem 5.18: If Ψ is spg $\omega \alpha$. C from a spg $\omega \alpha$. L space R onto S, then S is Lindelöf.

Proof: Let {A*_i: i ∈ I} be an open cover of S. As Ψ is spg $\omega \alpha$.C, { $\Psi^{-1}(A^{*}_{i})$: i ∈ I} is spg $\omega \alpha$ -open cover of R. Since R is spg $\omega \alpha$.L, the spg $\omega \alpha$ -open cover { $\Psi^{-1}(A^{*}_{i})$: i ∈ I} has a countable subcover say S = { $\Psi^{-1}(A_{i_n})$: n ∈ N}. Therefore R =

$$\bigcup_{n \in \mathbb{N}} \Psi^{-1}(A_{i_n}^*), \text{ that is } \Psi(\mathbf{R}) = \mathbf{S} = \bigcup_{n \in \mathbb{N}} A_{i_n}^*, \text{ where } \{A_{i_n}^*\}$$

: $n \in N$ } is a countable subcover for S and so S is Lindelöf.

Theorem 5.19: The image of $spg\omega\alpha.L$ under $spg\omega\alpha.I$ is $spg\omega\alpha.L$.

Proof: Let Ψ be a spg $\omega \alpha$.I form spg $\omega \alpha$.L space R onto S. Let $\{A^*: i \in I\}$ be a spg $\omega \alpha$ -open cover of S. Then $\{\Psi^{-1}(A^*): i \in I\}$ is spg $\omega \alpha$ -open cover of R as Ψ is spg $\omega \alpha$.I. Since R is spg $\omega \alpha$.L, the spg $\omega \alpha$ -open cover $\{\Psi^{-1}(A^*): i \in I\}$ of R has a countable subcover say $\{\Psi^{-1}(A_{i_n}): n \in \mathbb{N}\}$. Thus R =

$$\bigcup_{n \in N} \psi^{-1} \left(A_{i_n}^* \right) \text{ which implies } \Psi(\mathbf{R}) = \mathbf{S} = \bigcup_{n \in N} A_{i_n} \text{ , that is}$$

{ A_{i_n} : n \in N} is a countable subfamily of {A_i: i \in I}. Hence S is Lindelöf.

Theorem 5.20: If R is $spg\omega\alpha$.L and countable $spg\omega\alpha$ -compact, then R is $spg\omega\alpha$ -compact.

Proof: Suppose R is countable spgo α -compact and spgo α .L and {A_i: i∈I} be a spg $\omega\alpha$ -open cover of R. As R is spg $\omega\alpha$.L, {A_i: i∈I} has a countable subcover say { A_{i_n} : n∈N}. Therefore { A_{i_n} : n∈N} is a countable subcover of R and { A_{i_n} : n∈N} is a subfamily of {A_i: i∈I} and so { A_{i_n} : n∈N} is a countably spg $\omega\alpha$ -open cover of R. Since R is C.spg $\omega\alpha$.compact, { A_{i_n} : n∈N} has a finite subcover say { A_{i_n} : n∈N} \subseteq {A_i : i∈I} and so { A_{i_n} : n∈N} is a finite subcover of {A_i :i∈I} for R. Hence R is spg $\omega\alpha$ -compact.

REFERENCES

- S. P. Arya and T. M. Nour, Characterizations of Snormal Spaces, Indian Jl. Pure Appl. Math., 21(8), 717-719, 1990.
- C. Dorsett, Semi-normal Spaces, Kyungpook Math. Jl., 25, 173-180, 1985.
- 3. R. Devi, Studies on Generalizations of Closed Maps and Homeomorphism in Topological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, 1994.
- M. M. Holliyavar, T. D. Rayanagoudar and Sarika M. Patil, On semi-pre generalized ωα-Closed Sets in Topological Spaces, Global Jl. of Pure and Appl. Maths., Vol. 13 (10), (2017), 7627-7635.
- N. Levine, Semi-open Sets and Semi Continuity in Topological Spaces, Amer. Math. Monthly, 70, 36-41, 1963.
- S. N. Maheshwari and R. Prasad, On S-normal Spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie., 22, 27-29, 1978.
- B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12, 140-144, 1996.
- O. Njastad, On Some Classes of Nearly Open Sets, Pacific Jl. Math., 15, 961-970, 1965.
- T. Noiri and V. Popa, On G-regular Spaces and Some Functions, Mem. Fac. Sci. Kochi Univ., 20, 67-74, 1999.
- P. G. Patil and T.D. Rayanagoudar, Generalizations of New Closed Sets in Topological Spaces, International Journal of Advances in Science and Technology, Vol. 5, No. 2, 68–78, (2007).
- P. G. Patil, ωα-Compactness and ωα-Connectedness in Topological Spaces, Thai Jl. of Mathematics, Vol.12, No.2, (2014), 499-507.
- Sarika M. Patil, T. D. Rayanagoudar and M. M. Holliyavar, spgωα-Continuous Functions in Topological Spaces, IOSR Jl. of Mathematics, Vol.19, Issue 03, ser. 02, (2023), 55-57.