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In recent lung and prostate cancer-radiotherapy contributions, [101-5], 3D imaging-processing 

Isodosezones [ Casesnoves, 2022 ], delimited by 3D Isodoselines were explained in lung 

cancer and other tumor types, such as prostate or lung. The radiotherapy model applied was 

the classical BED one algorithm. Modern biological-model-based Treatment Planning 

Optimization can get objective improvements by using Isodosezones/lines when selecting the 

optimal dose delivery/schedule for any personalized treatment. Improved programming, from  

[ Casesnoves, May 7th, 2024 ], and engineered software is perfectioned-developed for 

numerical hyperfractionated 3D TPO lung and head-neck cancer imaging-processing with 

upgraded previous database. Mathematical algorithms are explained-detailed. Developed 

programming patters and arrays are briefed. A series of imaging-processing graphics results 

obtained with the 3D Isodosezones Pareto-Multiobjective Optimization programming database 

are shown and explained in detailed. Applications in radiotherapy-oncology medical physics 

are subsequently briefed. 

KEYWORDS: Pareto-Multiobjective Optimization (PMO), Mathematical Methods (MM), Biological Models (BM), 

Radiation Therapy (RT), Initial Tumor Clonogenes Number Population ( N0 ), Effective Tumor Population Clonogenes 

Number ( NEffective ),  Linear Quadratic Model (LQM), Integral Equation (IE), Tumor Control Probability (TCP), Normal 

Tissue Complications Probability (NTCP), Biological Effective model (BED), Tumor Control Cumulative Probability 

(TCCP), Radiation Photon-Dose (RPD), Nonlinear Optimization, Radiotherapy Treatment Planning Optimization (TPO), 
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I. INTRODUCTION AND RESEARCH OBJECTIVES 

Previously, [101,102-5], Nonlinear Graphical and Interior 

Optimization engineering software was improved with 

matrix algebra constraints and designed in programs/patterns 

for BED model. Namely, for hyperfractionated RT in lung 

and head-neck tumors Isodosezones and Isodoselines, [ 

Casesnoves, May 7th, 2024 ]. Thorough hyperfractionated 

radiotherapy TPO findings are presented both in 2D graphics 

and inset dataset. The matrix-algebra constraints and the 

extensive comparison among several parameters selection 

constitutes the innovation of the study. At 3D graphics, 

Isodosezones and Isodoselines ar sharply indicated.  

3D Isodosezones and Isodoselines (Casesnoves imaging-

processing-programming and optimization creation, 2022) 

are obtained from a series of previous papers about 3D 

Isodoselines and 3D Isodosezones that set their definition-

invention [101,102-5]. This new computational radiotherapy 

application was mainly developed for lung and head-neck 

tumors treatment planning optimization (TPO). The study 

continues further with programming details and 3D 

graphical-numerical results inset in images as an 

enhancement stage. A series of 3D imaging-processing charts 

have been proven [101,102-5]. Isodoselines and 

Isodosezones are proven be practical and complementary 

https://doi.org/10.47191/ijmcr/v12i6.12
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useful in individual TPO. The 3D images are acquired with 

functional combinations of BED model parameters [84]. The 

BED function is a several variables one, and a brief 

mathematical analysis reminder is included, related to 

programming precision, smooth and running time [1-21, 28, 

84, 86,88,89,99,101,102-5].    

Therefore, the objectives of the study are to get and 

demonstrate 3D graphical optimization for BED model 

isodosezones and isodoselines. Programming is based in 

Pareto-Multiobjective software dataset from previous 

contributions [ 101, 102-5 ].  Secondly, to demonstrate the 

efficacy of the improved program writing that was developed 

[ 101, 102-5 ] by showing the charts with their numerical 

precise data. It is not an objective of this paper to discuss the 

deliberation between hyper and hypo fractionated dose 

delivery. In other words, hyper/hypo fractionated TPO 

depends on multiple clinical conditions and patient 

personalized treatment, whose discussion is beyond the 

computational optimal TPO task. 

The radiotherapy Treatment Planning Optimization utility 

and applications for these Isodosezones-Isodoselines 

comprises the optimization of BED main parameter 

magnitudes, namely, number of fractions, total dose, 

treatment total time, TPotential  and others for BED model. 

In this research, it is proven the 3D different selection of 

BED parameters, [ Algorithm 1, 101, 102-5 ].  

Results show 3D Isodosezones and Isodoselines imaging-

processing visuals for lung cancer with a total dose in the 

interval: DTotal ≈  [ 30 , 115 ]  Gy. However, Isodosezones 

within graphs are related to standard  lung cancer dose 

magnitudes, namely  DTotal ≈  [ 70 , 80 ]  Gy, [ 90, 96 ] . 

Numerical values are detailed inset at all imaging-processing 

figures. Tables 1-2 show BED in vivo parameters selection. 

For head-neck3D Isodosezones and Isodoselines, the dataset 

from previous studies is applied. 

Grosso modo, improved software for imaging-processing of 

isodosezones/lines in lung cancer was obtained. Head-neck 

computational refinements are included. Results comprise 

new series of 3D graphics, mathematical method, algorithms, 

and radiotherapy TPO medical physics applications. A 

constrained extension of previous Nonlinear Pareto-

Multiobjective GA optimization database was performed for 

radiotherapy BED models in lung and head-neck tumors 

[87,88, 101, 102-5]. Applications for radiotherapy TPO and 

future improvements in RT are explained in short.  

II. MATHEMATICAL ALGORITHMS AND 

COMPUTATIONAL METHODS 

This section comprises the radiotherapy experimental in 

vivo standard dataset that was implemented for 

programming-software improvements from [101-5]. The 

mathematical algorithms and software methods are also 

developed from [86,88,89,99,101-5]. The basic dataset 

reminder of in vivo is included in Tables 1-2 from [98]. 

From  [ 101, 102-5 ], for necessary understanding, the 

following essential concepts are highlighted: 

Definition 1.- In RT-3D Treatment Planning, a 3D 

Isodoseline is demarcated by a line whose dose-distribution 

parameters can vary for optimal planner choice while 

keeping constant the magnitude of total radiation dose 

delivered [ Casesnoves, 2022] . 

Definition 2.- In RT-3D Treatment Planning, a 3D 

Isodosezone is demarcated by a polygon whose dose-

distribution parameters can vary for optimal planner choice 

while keeping constant the total dose delivery magnitude [ 

Casesnoves, 2022] . 

The mathematical method constitutes an evolution from 

the previous lung and prostate cancer publications   [ 101, 

102-5 ] . The main algorithm formulation for imaging-

processing and developments of improved 3D 

isodosezones/lines charts is based on Tikhonov 

regularization algorithms presented in a number of previous 

studies [Algorithms 1-5 from 86, 88, 89, 98, 99, 101, 102-5] 

and literature records [20-25,68,74,75,80,81,85-94,99,101-

5]. Tables 1-2 presents the numerical-figures parameter 

dataset implemented in software in Matlab ® . Just to 

remark that BED model is a nonlinear several variables 

function, with implications in numerical results analysis. 

The biological effective dose, a nonlinear quadratic 

several variables equation, has an important Tpot parameter 

that was set for in vivo experimental data. Then, the 

simplest Pareto multiobjective optimization and Graphical 

Optimization BED-numbers for lung and head-neck cancer,  

[ 24,88,89,98, 101,102-5 ] (Algorithm 1) reads, 

 

(Algorithm 1) 

where, 

BED : The basic algorithm for Biological Effective Dose 

initially developed by Fowler et Al. [ 22-25, 89-94,98 ]. 
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k : Optimal Number of fractions for hyperfractionated 

TPO. Optimization parameter. [22-25,89-94,98 ]. 

d : Optimal Dose magnitude for every fraction. 

Optimization Parameter [ Gy ]. [ 22-25, 89-94 ]. 

α : The basic algorithm constant for Biological Effective 

Dose models. Radiobiological experimental parameter in 

vivo. [ Gy-1 ]. [ 22-25, 89-94 ]. 

β : The basic algorithm constant for Biological Effective 

Dose models in vivo. Radiobiological experimental 

parameter . [ Gy-2 ]. Note that it is very usual to set in 

biological models  [ α / β in Gy]. 

TTreatment  : The overall Treatment Planning 

Optimization radiation-sessions summatory time. This 

parameter varies according to authors’ and 

institutions/hospitals criteria. [ 22-25, 89-94,98 ]. The 

overall TPO time delay for clonogens re-activation. This 

parameter varies according to authors’ experimental 

research. 

TDelay  : This BED parameter changes related to 

different authors’ and institutions/hospitals criteria. [ 22-25, 

89-94,98, 101-7 ].  

TDelay : The TPO time delay for cell clonogens  re-

activation after radiation damage.  

The overall TPO time delay for clonogens re-activation. 

This parameter varies according to authors’ experimental 

research. 

TPotential  : The potential time delay for tumor cell 

duplication. This parameter varies according to authors’ 

experimental-theoretical research. 

DOSE : The dose magnitudes for lung cancer simulation 

algorithm for Biological Effective Dose [ 22-25, 89-94,98 ]. 

The programming patterns and arrays were set for intervals 

of DOSE  ϵ [ 70 , 80 ] Gy. 

A number of necessary, rather mandatory, conditions in 

software design to obtain a convenient imaging-processing 

graphics are: 

-Setting an ordered code for fast running time of images. 

-Avoid excessive arrays and subroutines. 

-Select the optimal subroutine imaging-processing 

commands in the program, and well ordered [1-

20,24,68,74,88,89,98,99, 101,102-5].   

 

 

 

 

 

 

 

 

 

 

 

Table 1. The implemented programming lung tumor 

dataset obtained from literature source references 

[38,43-45,98, 101, 102, 103]. 

 

In the next sections, results and applications are presented. 

The imaging quality of the demonstrating Figures 1-2 was 

intended be good. In Table 1, software implemented dataset 

in vivo for programming with source references [38,43-

45,98,100, 101, 102, 103-5]. 

 

Table 2. Matlab Constrained GA optimization dataset. 

Note the values of constraints matrix in Algorithm 1. In 

this system and other similar ones, the constraints can be 

set as a matrix equation, or as an array of vectors. As in 

Tables 2-3 of [87,88], the simulations were done with 

approximate numerical-experimental data from several 

authors. TPotential in Head and Neck cancer is about 4 

days as average. Simulation dataset from [20-

25,74,75,80,81,85-88] . 
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III. OPTIMIZATION GRAPHICAL RESULTS 

3D Graphical results for 3D Graphical results for lung first 

constrained graphical optimization are shown in Figures 1-2. 

The simple constrained graphical optimization head-neck 

tumors results are presented in Figures 3-5. In general, 

constrained optimization with algorithm 1 shows be 

acceptable with high-precision.  

In this improved-advanced study, 3D Interior-Graphical 

Optimization techniques are implemented in parallel 

refined-programs to verify results from [98, 101, 102] with 

the in vivo dataset from [23,24,97,98,10-5] . Those 3D 

processed imaging-graphs, Figures 1-2, prove definitely the 

results got with 3D IO in [101,102-5]. The pictures of 3D 

Isodosezones-Isodoselines are detailed with cursor-marked 

inset within every 3D graph. The cursor-marks give the 

numerical data for every point at surface. Therefore, the 

radiotherapy planner obtains the optimal combination of 

fractions number (k), and fraction dose (d), and other BED 

parameters for a fixed total BED dose delivery. That is 

considered a proven-consistent, easy, fast-running, and 

simple advance in modern TPO and RT research. 

 

 
Figure 1.-3D Isodosezone for two variables. Namely, the 

choice is number of fractions dose and total treatment 

dose in lung TPO. Namely, marked inset, [70,75] Gy 

isodosezone (green boundaries). Marked inset, [70,75] 

Gy isodosezone delimited by isodoselines. In literature, 

TPotential is usually set as 28-30 days for early stage lung 

cancer. Precision can be checked setting in Algorithm (1) 

at every extreme values of any long Isodosezone. Inset 

(red), and Isodoseline constrained to 40 fractions and for 

an interval of [65,85] Gy . The 3D Isodosezone 

fundamentals for IO calculations, [101,102-5], are 

implemented into this 3D surfactal isodosezone. 

Imaging-pattern numerical-intervals for plotting were 

obtained from PMO but with with in vivo lung tumor 

BED model parameters.  

 

 
Figure 2. 3D Isodosezone for two variables, at XY plane, 

number of fractions and dose per fraction, the choice. 

Namely, Number of fractions and dose per fraction in 

lung TPO. Marked inset, [70,80] Gy isodosezone 

delimited by isodoselines. The precision can be checked 

calculating the product between fraction dose and 

number of fractions at each extreme of the long 

isodoselines. For instance, at lower isodoseline (yellow), 

34 x 1.7 is approximately equal to 41 x 1.4 (taking one 

digit is exactly equal). The Isodosezone fundamentals 

from IO calculations, [101-5], are implemented into this 

3D surface. The software-programming pattern intervals 

for plotting were taken from previous pareto 

multiobjective optimization developments but with in 

vivo lung tumor BED parameters. Each and every BED 

total dose is set along 3D Isodoszone, while ( k ) and ( d ), 

and other BED model parameters change along the 

isodoselines-isodosezones surfactal length when cursor is 

moved over the surface. Enhanced in Appendix. 

 

HEAD AND NECK ISODOSEZONES-ISODOSELINES 

RESULTS 

The following section includes the 3DImage-Processing 

graphical optimization charts, Figures 3-5. Precision is high. 

One Isodoseline is demonstrated in Figure 5.  

Figure 3. Head-Neck tumor TPO with Isodosezones-

Isodoselines for approximate interval (d ϵ [45 , 55] Gy). 

Precision is high. 
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Figure 4. Head-Neck tumor TPO with Isodosezones-

Isodoselines for approximate interval (d ϵ [45 , 60] Gy). 

Precision is high. Note that the model has a negative 

factor that changes the product (d fraction dose) x (k 

number of fractions).  

  

 
Figure 5. Head-Neck tumor TPO with Isodosezones-

Isodoselines for approximate interval (d ϵ [45 , 60] Gy). 

Precision is high. Note that the model has a negative 

factor that changes the product (d fraction dose) x (k 

number of fractions). One Isodoseline is proven inset. 

 

IV. NUMERICAL RESULTS 

Constrained optimization numerical data can be obtained 

from 3D graphics, Figures 1-5, and Appendix Figures 1-2. 

From there, Isodosezones and Isodoselines emerging data 

for TPO can be guessed. Precision is high, specially for lung 

3D Graphical Optimization. 

 

V. RADIOTHERAPY TREATMENT PLANNING 

OPTIMIZATION APPLICATIONS 

Tables 3-4 show a resume of radiotherapy applications in 

head and neck tumors. Medical physics principal 

applications for radiotherapy TPO are explained briefly. 

Table 4, improved and completed from [101, 102-5], 

presents some radiotherapy applications for RT-TPO based 

on this study, and in general for biological models. 

Radiotherapy medical physics principal applications for 

personalized TPO are detailed briefly. Note that the 

applications are multifunctional. 

 

 

 

 

 

Table 3 . Developed from previous publications, 

[23,24,97,98,101, 102-5], brief of  radiotherapy and 

radioprotection applications derived from imaging 

results. 

 
 

Table 4 . Some radiotherapy and radioprotection for RT 

lung and head-neck cancer TPO Medical Physics study 

applications derived from results. 

 
 

VI. DISCUSSION AND COMPUTATIONAL-

MEDICAL PHYSICS CONCLUSIONS 

First remark is the precision-achieved improvements in 

software-engineering from first publications-series till the 

recent ones, [101-5]. The purpose-objectives of the study 

were to develop precise 3D imaging-processing charts for 

isodosezones/lines. Complementary, the mathematical part 

comprised algorithm and programming specific 

characteristics and conditions. In addition, to put forward a 

brief of radiotherapy medical physics applications. In other 

words, explicitly the objective of the study was to apply 

further constrained GA Optimization for Head and Neck 

hyperfractionated RT treatment with BED model. Secondly 

to compare/review to simple constrained results [87,88].  

Radiotherapy Treatment planning Optimization, and 

oncology-medical physics applications are diverse. 

Isodosezones processed-graphics, Figures 1-5, can give 

perfected and sharpened graphical-evidence and 

demonstrate the results from [98,101,102,103-5] in lung and 

head-neck cancer, specifically for tumors hyperfractionated 

RT treatment with BED-Polynomial model. 

The programming method has the inconvenient that the 

3D surfaces are specific for each and every model and 

cancer type. However, to change formulas and/or parameters 

in software is not complicated. Running time for 3D 

surfactal Isodoselines is acceptable. 
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Software and programming was based on previous 

contributions [87,88]. The Matlab function handle have to 

be carefully programmed to get acceptable results. In plain 

language, handle functions got to get built with same 

precision than the classical FORTRAN subroutines. As a 

rule for the strict FORTRAN language, the programming 

design with FORTRAN requires more time and accuracy. 

Imaging-numerical results can be considered accurate-

acceptable and subject to future further refinements. The 3D 

image quality is clear and sharp. The programming 

software, therefore, is proven be functional and fast-running. 

The average time for graphs display is about 4-5 seconds, 

and the setting of Isodoselines-zones inset is usually about 

10-20 minutes, depending on the image difficulties. Thanks 

to the explained conditions, and order to design the codes. 

An improvement related to previous studies  

[98,101,102,103-5] is the development of a parameters 

selection variety within the BED model implemented data 

and 3D visual graphics. The mathematical analysis for the 

model variables was justified. 

In summary, a further research for 3D imaging-procesing 

isodosezones/lines in lung and prostate tumors were 

presented. Mathematical algorithms and software were 

detailed. Radiation-oncology medical physics usages are 

briefly included.  
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APPENDIX  

Figure 1 ( Reminder of previous publications, 104-5 ) .-Head-neck tumors, a review of PMO Optimization concepts-results 

from constrained optimization Multifunctional GA 2D graph (100 generations). This is the most important graph given by 

software when PMO is performed to check the optimization accuracy. The fundamentals of Nonlinear PMO calculations 

are usually based on 2D PMO functions charts. In this study both f 1 and f 2 show low residuals. Therefore, results are 

acceptable in first optimization for function 1 and function 2. 

 

        
Figure 2, (enhanced).- 3D Isodosezones for two variables, at XY plane, number of fractions and dose per fraction, the 

choice. Namely, Number of fractions and dose per fraction in lung TPO. Marked inset, [70,80] Gy isodosezone delimited 

by isodoselines. The precision can be checked calculating the product between fraction dose and number of fractions at 

each extreme of the long isodoselines. For instance, at lower isodoseline (yellow), 34 x 1.7 is approximately equal to 41 x 1.4 

(taking one digit is exactly equal). The Isodosezone fundamentals from IO calculations, [101,102], are implemented into 

this 3D surface. Pattern intervals for plotting were taken from PMO but with in vivo lung tumor parameters. Each BED 

total dose is fixed along 3D Isodozone, while ( k ) and ( d ) parameters vary when cursor is moved over this Isodosezone. 

This software numerical method was also developed in F # and Fortran. 

 


