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In this paper, I introduced Strongly Large Ideals and studied some properties. In this paper, I 

also studied Strongly Large Closed ideals and Strongly Large Complement Ideal. An Ideal is 

called an SL-Closed ideal if it has no proper Strongly Large Extension in L. I prove that direct 

summands of a lattice L are SL-Closed ideals. I give an example for, the intersection of SL-

Closed ideals of a lattice L need not be SL-closed. I also show that , direct summands of SL-

Complements are SL-Complements.  
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I. INTRODUCTION 

Inaam Hadi and Thaar Younis Ghawi[] introduced the 

concepts of a Strongly Large submodule. B. Ungor, S. 

Halicioglu, M.A. Kamal and A. Harmanci[] introduced the 

concept a Strongly Large Closed submodule and a Strongly 

Large Complement submodule. A submodule K of an R-

Module M is called  a strongly large submodule in M, if for 

any m ∈ M, s ∈ R  with ms ≠ 0 there exists an r ∈ R such that 

mr ∈ K and mrs ≠ 0.  A submodule N of R-module M is 

called SL-closed if, N has no proper strongly large 

extensions in M. A Submodule K is called an SL-

complement in M if there exists a submodule L such that K is 

an SL-Compleent of L in M. 

 In this paper, I introduced Strongly Large Ideals and studied  

Closed ideals and Strongly Large Complement Ideal. An 

Ideal is called an SL-Closed ideal if it has no proper Strongly 

Large Extension in L. I prove that direct summands of a 

lattice L are SL-Closed ideals. I give an example for, the 

intersection of SL-Closed ideals of a lattice L need not be 

SL-closed. I also show that , direct summands of SL-

Complements are SL-Complements. 

Throughout in this paper L denotes a lattice with 0 and 1. 

Id(L) denotes the ideal lattice. 

 

II. STRONGLY LARGE IDEALS 

Definition 1 : Strongly large ideals : Let I ∈ Id(L) is called a 

Strongly Large Ideal in L, in case for any a,b∈ L with a˄b ≠ 

0 there exists c ∈ L such that a˄c ∈ I and a˄b˄c ≠ 0. It is 

denoted by SL-ideals 

Definition 2: Strongly large closed ideal: An ideal I ∈ Id(L) 

is called strongly large closed ideal if I has no proper 

strongly large extension in L. It is denoted by SL-closed 

ideal. 

                  
                                          Figure 1 

 

In the lattice shown in figure 1, Let I = {0,a,b,c,e}, for e, g ∈ 

L such that e ˄ g = c ≠ 0  there exists f ∈ L such that e ˄ f = 

b ∈ I and e ˄ g ˄ f = a ≠ 0. Thus I is strongly large ideal in 

L. Similarly J = {0,a,d,g,c} is also strongly large ideal in L.  

In the lattice shown in figure 2, there does not exists any 

strongly large ideal in L.  

 

 

 

https://doi.org/10.47191/ijmcr/v12i7.01


“A Note on Strongly Large Ideals” 

4337                                                                          Deepali B. Banswal, IJMCR Volume 12 Issue 07 July 2024 

 

 

Figure 2 

 

Lemma 1: Let I, J ∈ Id(L) with I ⊆ J. If I is strongly large in 

J then I Ո J = (0] implies J Ո K = (0] for any ideal K of L. 

Proof: Suppose I ∈ Id(L) is strongly large in J. Let    K ∈ 

Id(L) be such that I Ո K = (0]. Clearly I Ո K ∈ Id(J) and I Ո 

(J Ո  K) = (0] and so  (J Ո  K) = (0]. 

Lemma 2:  Let I, J ∈ Id(L) with I ⊆ J. Then I is strongly 

large in J and J is strongly large in L then I is strongly large 

in L. 

Proof: Let a, b ∈ L be such that a˄b≠0. Since J is strongly 

large in L, there exists c2 ∈ J such that          a ˄c1˄c2∈I with 

a ˄b˄c1˄c2 ≠0. Hence I is strongly large in L 

Lemma 3: Let L be a lattice. If I1 is strongly large in J1 and 

I2 is Strongly large in J2 then I1 Ո I2 is strongly large in J1 Ո 

J2. 

Proof: Let a,b ∈ J1 Ո J2 with a˄b ≠0 then there exists c1 ∈ J1 

Ո J2 such that a ˄ c1 ∈ I1 and a ˄ b ˄ c1≠ 0. If a ˄ c1 ∈ I2 then 

prove is over. If  a ˄ c1 does not belong to I2 , Observe that a 

˄ c1 ∈ J2  with a ˄ b ˄ c1≠ 0. So there exists c2 ∈ J2 such that 

a ˄ c1 ˄ c2 ∈ I2 and a ˄ b ˄ c1 ˄ c2 ≠ 0. Hence a ˄ c1 ˄ c2 ∈ I1 

Ո I2 with a ˄ b ˄ c1 ˄ c2 ≠ 0. Therefore I1 Ո I2 is strongly 

large in J1 Ո J2. 

Lemma 4: Let I, J ∈ Id(L) with I ⊆ J. Then I is strongly 

large in L if and only if I is strongly large in J and J is 

strongly large in L. 

Proof: Let I, J ∈ Id(L) with I ⊆ J. Since I is strongly large in 

J and J is strongly large in L then by Lemma 2, I is Strongly 

large in L. 

Conversely, Suppose that I is Strongly large in L. To show 

that I is strongly large in J and J is strongly large in L. By 

Lemma 3, I is strongly large in L implies I Ո J is strongly 

large in L Ո J implies I is strongly large in J. Now let a,b ∈ 

L be such that a ˄ b≠ 0. Since I is strongly large in L there 

exists c ∈ L such that a˄c ∈ I and a˄b˄c≠0. Since I ⊆ J we 

have a ˄ c ∈ J with a˄b˄c≠0. Hence J is strongly large in L.  

Lemma 5: Direct summands of a lattice L are SL-closed 

ideals.  

Proof: Let I, J ∈ Id(L) be such that L = I ⨁ J. Assume that I 

is strongly large in K ∈ Id(L). Hence K Ո J = (0] by lemma 

1 and so K = I. Therefore I has no proper strongly large 

extension in L. 

Remark: The intersection of SL-closed ideals of a lattice L 

need not be SL-closed. 

Theorem 1: Let L be a lattice and I ∈ Id(L) be an SL-closed 

ideal in L. If K is strongly large in L then I Ո K is SL-

closed. 

Proof: Let J ∈ Id(L) be a strongly large extension of  I Ո K 

in K that is I Ո K is strongly large J in K. To show: I Ո K is 

SL-closed in K i.e. I Ո K = J. To show I is strongly large I Ո 

J. Let a,b ∈ I Ո J be such that a˄b ≠0. Since K is strongly 

large in L, there exists c ∈ L such that a˄c ∈ K and a˄b˄c ≠ 

0. So a˄c ∈ I Ո K and hence  a˄b˄c ∈ J with a˄b˄c ≠ 0. 

Since I Ո K is strongly large in J, there exists c1 ∈ J such 

that  a˄b˄c˄c1 ∈ I Ո K ⊆I and  a˄b˄c˄c1 ≠0. Therefore I is 

strongly large in I Ո J. Since I is an SL-closed in L, it 

follows that I = I Ո J. Hence I Ո K = J and so I Ո K is an 

SL-closed in K.  

Definition 3:  SL-Complement: Let I, J ∈ Id(L) with    I Ո J 

= (0]. Then J is called SL-complement of I in L if J is an SL-

closed in L and I ⨁ J is strongly large in L. 

An Ideal I ∈ Id(L) is called SL-complement in L if there 

exists an ideal J ∈ Id(L) such that I is an SL-complement of 

J in L. 

Theorem 2: Let I, J ∈ Id(L) with I Ո J = (0]. Then J is an 

SL-complement of I in L If and only if J is maximal with 

respect to being J ⨁ I strongly large in M.  

Proof: Let J be an SL-complement of I in L and J ⊆ K ∈ L 

with K ⨁ I strongly large in L. Let P, Q ∈ Id(K) with P Ո Q 

≠(0]. There exists R ∈ Id(L) such that P Ո R ∈ J ⨁ I and P 

Ո Q Ո R ≠(0]. Then P Ո R  ∈ Id(J). Hence J is strongly 

large in K. Since J is SL-closed in L, we have J = K. This 

shows the maximality of J with respect to being J ⨁ I 

strongly large in M. 

Conversely, Let J be maximal with respect to being J ⨁ I 

strongly large in L and K be strongly large extension of J in 

L. Then J Ո K = (0] and hence by Lemma 4, K ⨁ I is 

strongly large in M. By the maximality of J, J = K, 

Therefore J is SL-closed in L and J is an SL-complement of 

I in L   

Theorem 3: Let I, J ∈ Id(L). If J is an SL-complement of I in 

L, then J is a complement of I in L. 

Proof: Let K∈ Id(L) with J ⊆ K and I Ո K = (0]. Since L is a 

strongly large extension of J ⨁ I, K ⨁ J is a strongly large 

ideal of L by Lemma 4. So we have J=K from Theorem 2. 

Hence J is maximal with respect to being  I Ո J =(0]. 

Remark: Complements need not be SL-Complements. 

Theorem 4: Let K ∈ Id(L) be an SL-complement of I ∈ 

Id(L) and K = K1 ⨁ K2 then K1 is an SL-complement of K2 

⨁ I in L. In particular, direct summands of SL-complements 

are SL-complements. 

Proof: Let P ∈ Id(L) with K1 ⊆ P and P ⨁ K2 ⨁ I is strongly 

large in L. Then K = K1 ⨁ K2 ⊆ P ⨁ K2. Since K is maximal 

with respect to being K ⨁ I strongly large in L, then K = K1 
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⨁ K2 = P ⨁ K2. So K1= P. Thus by Theorem 2, K1is an SL-

complement of K2 ⨁ I in L. 

Theorem 5: Let I, J ∈ Id(L). If I is an SL-complement in J 

and J is an SL-complement in L then J contains every 

strongly large extension of I in L. 

Proof: Let I be an SL-complement of an ideal I’ in J and J be 

an SL-complement of an ideal J’ in L. By Theorem 2, I is 

maximal in J with respect to I’ ⨁ I strongly large in J and J 

is maximal in L with respect to J’ ⨁ J strongly closed in L. 

Let K ∈ Id(L) be a strongly large extension of I in L. Now 

since I ⊆(K ⨁ J’) Ո J ⊆ J and [(K ⨁ J’) Ո J] ⨁ I’ is 

strongly large in J, we have (K ⨁ J’) Ո J = I. We know that 

(K ˅ J)Ո J’ = 0. It is clear that L is a strongly large 

extension of (K ˅ J) ⨁ J’. By the maximality of J, we have 

K ˅ J and so K ⊆ J. 

Theorem 6: Let I, J ∈ Id(L) with I ⊆ J, If K ∈ Id(L) is an 

SL-complement of I in L then K Ո J is an SL-complement 

of I in J.  

Proof: Since K ⨁ I is strongly large in L by Lemma 3 (K ⨁ 

I) Ո J = (K Ո J) ⨁ I is strongly large in J. We show that K Ո 

J is an SL-closed in J. Let P ∈ Id(L) be strongly large 

extension of K Ո J in J. Then (K ˅ P) Ո I = (K ˅ P) Ո J Ո I 

= [(K Ո J) ˅ P ] Ո I = P Ո I = (0], It is clear that (K ˅ P) ⨁ I 

is strongly large in L and hence K = K ˅ P by the 

maximality of K. Thus P = K Ո J and therefore K Ո J is an 

SL-closed ideal of J. 

Corollary 1: I, J ∈ Id(L) with I ⊆J. If I is an SL-complement 

of J and J is an SL-complement in L then I is an SL-closed 

in L. 

Proof: Clear from Theorem 5. 

Theorem 7: Let I ∈ Id(L) be a SL-complement in L and J ∈ 

Id(L) be a SL-complement in L for some ideal in I. Then I Ո 

J is an SL-closed ideal of L. 

Proof: Let an ideal K ⊆ I with J an SL-complement of K in 

L. Then by Theorem 6, I Ո J is an SL-complement of K in I. 

Since I is an SL-complement in L, we have Corollary 1, that 

I Ո J is an SL-closed ideal of L.  

Theorem 8: Let L be a modular lattice. Let I, J, K ∈ Id(L) be 

such that L = I ⨁ J, K ⊆ I and P ∈ Id(L) an SL-complement 

of K ⨁ J in L. If P ⊆ I then P is an SL-complement of K in 

L. 

Proof: Since P⨁(K⨁J) is strongly large in L, By Lemma 3, 

[P⨁(K⨁J)] Ո I is strongly large in I. By modularity 

condition we have, [P⨁(K⨁J)] Ո I = [I Ո (K ⨁ J )] ⨁ P = 

[K ⨁ (I Ո J)] ⨁ P = K ⨁ P. So I is a strongly large 

extension of K ⨁ P. Since P is SL-closed in L and P is SL-

closed in I. Therefore P is an SL-complement of K in I. 
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