International Journal of Mathematics and Computer Research

ISSN: 2320-7167

 \overline{a}

Volume 12 Issue 07 July 2024, Page no. – 4336-4338 Index Copernicus ICV: 57.55, Impact Factor: 8.316 [DOI: 10.47191/ijmcr/v12i7.01](https://doi.org/10.47191/ijmcr/v12i7.01)

A Note on Strongly Large Ideals

Deepali B. Banswal

Department of Mathematics, B.P. Arts, S.M.A. Science & K.K.C. Commerce College, Chalisgaon.

I. INTRODUCTION

Inaam Hadi and Thaar Younis Ghawi[] introduced the concepts of a Strongly Large submodule. B. Ungor, S. Halicioglu, M.A. Kamal and A. Harmanci^[] introduced the concept a Strongly Large Closed submodule and a Strongly Large Complement submodule. A submodule K of an R-Module M is called a strongly large submodule in M, if for any m \in M, $s \in R$ with ms $\neq 0$ there exists an $r \in R$ such that mr \in K and mrs \neq 0. A submodule N of R-module M is called SL-closed if, N has no proper strongly large extensions in M. A Submodule K is called an SLcomplement in M if there exists a submodule L such that K is an SL-Compleent of L in M.

In this paper, I introduced Strongly Large Ideals and studied Closed ideals and Strongly Large Complement Ideal. An Ideal is called an SL-Closed ideal if it has no proper Strongly Large Extension in L. I prove that direct summands of a lattice L are SL-Closed ideals. I give an example for, the intersection of SL-Closed ideals of a lattice L need not be SL-closed. I also show that , direct summands of SL-Complements are SL-Complements.

Throughout in this paper L denotes a lattice with 0 and 1. Id(L) denotes the ideal lattice.

II. STRONGLY LARGE IDEALS

Definition 1 : Strongly large ideals : Let $I \in Id(L)$ is called a Strongly Large Ideal in L, in case for any a,b∈ L with a \wedge b \neq 0 there exists c ∈ L such that $a \wedge c \in I$ and $a \wedge b \wedge c \neq 0$. It is denoted by SL-ideals

Definition 2: Strongly large closed ideal: An ideal $I \in Id(L)$ is called strongly large closed ideal if I has no proper

strongly large extension in L. It is denoted by SL-closed ideal.

Figure 1

In the lattice shown in figure 1, Let I = {0,a,b,c,e}, for e, $g \in$ L such that $e \wedge g = c \neq 0$ there exists $f \in L$ such that $e \wedge f =$ $b \in I$ and $e \wedge g \wedge f = a \neq 0$. Thus I is strongly large ideal in L. Similarly $J = \{0, a, d, g, c\}$ is also strongly large ideal in L. In the lattice shown in figure 2, there does not exists any strongly large ideal in L.

Lemma 1: Let I, $J \in Id(L)$ with $I \subseteq J$. If I is strongly large in J then I Ω J = (0] implies J Ω K = (0] for any ideal K of L.

Proof: Suppose I \in Id(L) is strongly large in J. Let K \in Id(L) be such that I Ω K = (0]. Clearly I Ω K \in Id(J) and I Ω $(J \cap K) = (0)$ and so $(J \cap K) = (0)$.

Lemma 2: Let I, $J \in Id(L)$ with $I \subseteq J$. Then I is strongly large in J and J is strongly large in L then I is strongly large in L.

Proof: Let a, $b \in L$ be such that a $\Delta b \neq 0$. Since J is strongly large in L, there exists $c_2 \in J$ such that a $\wedge c_1 \wedge c_2 \in I$ with a $\Delta b \Delta c_1 \Delta c_2 \neq 0$. Hence I is strongly large in L

Lemma 3: Let L be a lattice. If I_1 is strongly large in J_1 and I₂ is Strongly large in J₂ then I₁ Ω I₂ is strongly large in J₁ Ω $J₂$.

Proof: Let a,b \in J₁ Ω J₂ with a \wedge b \neq 0 then there exists c₁ \in J₁ Ω J₂ such that a \wedge c₁ \in I₁ and a \wedge b \wedge c₁ \neq 0. If a \wedge c₁ \in I₂ then prove is over. If $a \wedge c_1$ does not belong to I_2 , Observe that a $∧ c_1 \in J_2$ with a ∧ b ∧ c₁≠ 0. So there exists c₂ ∈ J₂ such that $a \wedge c_1 \wedge c_2 \in I_2$ and $a \wedge b \wedge c_1 \wedge c_2 \neq 0$. Hence $a \wedge c_1 \wedge c_2 \in I_1$ Ω I₂ with a \wedge b \wedge c₁ \wedge c₂ \neq 0. Therefore I₁ Ω I₂ is strongly large in $J_1 \cap J_2$.

Lemma 4: Let I, $J \in Id(L)$ with $I \subseteq J$. Then I is strongly large in L if and only if I is strongly large in J and J is strongly large in L.

Proof: Let I, $J \in Id(L)$ with $I \subseteq J$. Since I is strongly large in J and J is strongly large in L then by Lemma 2, I is Strongly large in L.

Conversely, Suppose that I is Strongly large in L. To show that I is strongly large in J and J is strongly large in L. By Lemma 3, I is strongly large in L implies $I \cap J$ is strongly large in L Ω J implies I is strongly large in J. Now let a,b \in L be such that a \wedge b≠ 0. Since I is strongly large in L there exists c ∈ L such that a \wedge c ∈ I and a \wedge b \wedge c≠0. Since I ⊆ J we have a \wedge c \in J with a \wedge b \wedge c \neq 0. Hence J is strongly large in L. Lemma 5: Direct summands of a lattice L are SL-closed ideals.

Proof: Let I, $J \in Id(L)$ be such that $L = I \oplus J$. Assume that I is strongly large in $K \in Id(L)$. Hence $K \cap J = (0]$ by lemma

1 and so $K = I$. Therefore I has no proper strongly large extension in L.

Remark: The intersection of SL-closed ideals of a lattice L need not be SL-closed.

Theorem 1: Let L be a lattice and $I \in Id(L)$ be an SL-closed ideal in L. If K is strongly large in L then I Ո K is SLclosed.

Proof: Let $J \in Id(L)$ be a strongly large extension of I $\cap K$ in K that is $I \cap K$ is strongly large J in K. To show: $I \cap K$ is SL-closed in K i.e. I Ω K = J. To show I is strongly large I Ω J. Let a,b \in I Ω J be such that a \wedge b \neq 0. Since K is strongly large in L, there exists c ∈ L such that $a \wedge c \in K$ and $a \wedge b \wedge c \neq$ 0. So a \wedge c ∈ I Ω K and hence a \wedge b \wedge c ∈ J with a \wedge b \wedge c ≠ 0. Since I Ω K is strongly large in J, there exists $c_1 \in J$ such that $a \Delta b \Delta c \Delta c_1 \in I \cap K \subseteq I$ and $a \Delta b \Delta c \Delta c_1 \neq 0$. Therefore I is strongly large in I Ω J. Since I is an SL-closed in L, it follows that $I = I \cap J$. Hence $I \cap K = J$ and so $I \cap K$ is an SL-closed in K.

Definition 3: SL-Complement: Let I, $J \in Id(L)$ with I \cap J $=$ (0]. Then J is called SL-complement of I in L if J is an SLclosed in L and $I \oplus J$ is strongly large in L.

An Ideal $I \in Id(L)$ is called SL-complement in L if there exists an ideal $J \in Id(L)$ such that I is an SL-complement of J in L.

Theorem 2: Let I, $J \in Id(L)$ with I Ω J = (0]. Then J is an SL-complement of I in L If and only if J is maximal with respect to being $J \bigoplus I$ strongly large in M.

Proof: Let J be an SL-complement of I in L and $J \subseteq K \in L$ with $K \oplus I$ strongly large in L. Let P, $Q \in Id(K)$ with P $\cap Q$ \neq (0]. There exists R \in Id(L) such that P \cap R \in J \oplus I and P Ω Q Ω R \neq (0]. Then P Ω R \in Id(J). Hence J is strongly large in K. Since J is SL-closed in L, we have $J = K$. This shows the maximality of J with respect to being $J \oplus I$ strongly large in M.

Conversely, Let J be maximal with respect to being $J \oplus I$ strongly large in L and K be strongly large extension of J in L. Then J Ω K = (0) and hence by Lemma 4, K \oplus I is strongly large in M. By the maximality of J, $J = K$, Therefore J is SL-closed in L and J is an SL-complement of I in L

Theorem 3: Let I, $J \in Id(L)$. If J is an SL-complement of I in L, then J is a complement of I in L.

Proof: Let $K \in Id(L)$ with $J \subseteq K$ and $I \cap K = (0]$. Since L is a strongly large extension of $J \oplus I$, $K \oplus J$ is a strongly large ideal of L by Lemma 4. So we have J=K from Theorem 2. Hence J is maximal with respect to being $I \cap J = (0)$.

Remark: Complements need not be SL-Complements.

Theorem 4: Let $K \in Id(L)$ be an SL-complement of I \in Id(L) and $K = K_1 \oplus K_2$ then K_1 is an SL-complement of K_2 ⨁ I in L. In particular, direct summands of SL-complements are SL-complements.

Proof: Let P \in Id(L) with $K_1 \subseteq P$ and P $\bigoplus K_2 \bigoplus I$ is strongly large in L. Then $K = K_1 \oplus K_2 \subseteq P \oplus K_2$. Since K is maximal with respect to being $K \oplus I$ strongly large in L, then $K = K_1$

 $\bigoplus K_2 = P \bigoplus K_2$ So $K_1 = P$. Thus by Theorem 2, K₁ is an SLcomplement of $K_2 \oplus I$ in L.

Theorem 5: Let I, $J \in Id(L)$. If I is an SL-complement in J and J is an SL-complement in L then J contains every strongly large extension of I in L.

Proof: Let I be an SL-complement of an ideal I' in J and J be an SL-complement of an ideal J' in L. By Theorem 2, I is maximal in J with respect to $\Gamma \oplus I$ strongly large in J and J is maximal in L with respect to $J' \oplus J$ strongly closed in L. Let $K \in Id(L)$ be a strongly large extension of I in L. Now since $I \subseteq (K \oplus J') \cap J \subseteq J$ and $[(K \oplus J') \cap J] \oplus I'$ is strongly large in J, we have $(K \oplus J') \cap J = I$. We know that $(K \vee J)\cap J' = 0$. It is clear that L is a strongly large extension of $(K \vee J) \oplus J'$. By the maximality of J, we have $K \vee J$ and so $K \subseteq J$.

Theorem 6: Let I, $J \in Id(L)$ with $I \subseteq J$, If $K \in Id(L)$ is an SL-complement of I in L then K Ո J is an SL-complement of I in J.

Proof: Since $K \oplus I$ is strongly large in L by Lemma 3 ($K \oplus I$) I) Ω J = (K Ω J) \bigoplus I is strongly large in J. We show that K Ω J is an SL-closed in J. Let $P \in Id(L)$ be strongly large extension of K Ω J in J. Then $(K \vee P)$ Ω I = $(K \vee P)$ Ω J Ω I $= [(K \cap J) \vee P] \cap I = P \cap I = (0],$ It is clear that $(K \vee P) \oplus I$ is strongly large in L and hence $K = K \vee P$ by the maximality of K. Thus $P = K \cap J$ and therefore K $\cap J$ is an SL-closed ideal of J.

Corollary 1: I, $J \in Id(L)$ with $I \subseteq J$. If I is an SL-complement of J and J is an SL-complement in L then I is an SL-closed in L.

Proof: Clear from Theorem 5.

Theorem 7: Let $I \in Id(L)$ be a SL-complement in L and $J \in$ Id(L) be a SL-complement in L for some ideal in I. Then $I \cap I$ J is an SL-closed ideal of L.

Proof: Let an ideal $K \subseteq I$ with J an SL-complement of K in L. Then by Theorem 6, I Ո J is an SL-complement of K in I. Since I is an SL-complement in L, we have Corollary 1, that I Ո J is an SL-closed ideal of L.

Theorem 8: Let L be a modular lattice. Let I, $J, K \in Id(L)$ be such that $L = I \oplus J$, $K \subseteq I$ and $P \in Id(L)$ an SL-complement of $K \oplus J$ in L. If $P \subseteq I$ then P is an SL-complement of K in L

Proof: Since $P\bigoplus (K\bigoplus J)$ is strongly large in L, By Lemma 3, $[P\bigoplus (K\bigoplus J)]$ Ω I is strongly large in I. By modularity condition we have, $[P\oplus (K\oplus J)] \cap I = [I \cap (K \oplus J)] \oplus P =$ $[K \oplus (I \cap J)] \oplus P = K \oplus P$. So I is a strongly large extension of $K \oplus P$. Since P is SL-closed in L and P is SLclosed in I. Therefore P is an SL-complement of K in I.

Acknowledgement: This work was supported by the Vice-Chancellor Research Motivation Scheme (VCRMS) under grant through K.B.C.N.M. University Fund.

REFERENCES

1. B. Ungor, S. Halicioglu, M.A. Kamal, A. Harmanci, 2013 Strongly large module extension, An.stiint. Univ. Al, I.Cuza Iasi.math. (S.N.)59, No.2, 431-452.

- 2. C˘alug˘areanu G., 2000. Lattice Concepts of Module Theory, Kluwer, Dordrecht.
- 3. D. Valcan and C. Napoca, 2003 Modules with the direct summand sum property, Czechoslovak math.J., 53(128), 277-287.
- 4. Gr¨atzer G., 1971 Lattice theory: First concepts and distributive lattices, W. H. Freeman and company San Francisco.
- 5. Grzeszczuk P. and Puczylowski E. R., 1984 On Goldie and dual Goldie dimension, J. Pure and Appl. Algebra, 31, 47-54.
- 6. I. M-I. Hadi and Th. Y. Ghawi, 2014 Modules with the Closed Sum Property, International Mathematical Forum, Vol. 9, no. 32, 1539-1551.
- 7. M. Alkan,; A. Harmanci, 2002 On summand sum and summand intersection property of modules, Turk. J. math, 26, 131-147.
- 8. Nimbhorkar S. K. and Rupal Shroff, 2015 Generalized extending ideals in modular lattices, J. Indian Math. Soc. ,82(3-4), 127-146.
- 9. Nimbhorkar S. K. and Rupal Shroff, 2017 Goldie extending elements in modular lattices, Math. Bohemica 142 (2) 163-180.
- 10. Nimbhorkar S. K. and Rupal Shroff, 2015 Ojective ideals in modular lattices, Czech. Math. J., 65 (140) 161-178.
- 11. Patrick F. Smith, Adnan Tercan, 1992 Continuous and quasi-continuous modules, Houston Journal of Mathematics, Vol 18, No. 3.
- 12. Sz¯asz G., 1963 Introduction to lattice theory, Academic Press, New York.
- 13. Wisbauer R.,1991 Foundations of Module and Ring Theory, Gordon and Breach Sc. Pub., Reading.
- 14. Zeng Qing-yi and Shi Mei-hua,2006 On closed weak supplemented modules, J. Zhejiang Univ SCIENCE A, 7 (2) 210–215.