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The world is facing health crises which have caused a lot of material and human damage. 

Modeling epidemics allows us to have control over the evolution and spread of the disease as 

well as its mode of operation. The susceptible-infected-recovered (SIR) mass action model is 

the basic model in mathematical epidemiology but it does not take into account heterogeneity 

of contacts.. However, the rate of contact between people is heterogeneous; it depends from one 

person to another. In this study we will introduce a compartmentalized model based on the edges 

and which takes into account the heterogeneity of the contacts. However, we will end up with a 

differential equation whose resolution of the system allows us to see the equilibrium points and 

the stability of the disease. We also introduce numerical simulations on different types of graphs 

to see the spread of the disease on the way in which contact rates are distributed. A vaccination 

scenario was approached to see the impact of the vaccine on an infectious disease.   
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I. INTRODUCTION   

In recent years, infection problems have become more and 

more frequent in our daily lives. These epidemic outbreaks 

result in an increase in mortality, sometimes catastrophic. 

This can be illustrated by the appearance of the plague which 

already caused devastation in the middle Ages. Numerous 

studies have been carried out to understand the phenomenon, 

reduce mortality rates or eradicate the disease.  

Generally speaking, epidemiology is the study of the 

relationships between diseases or any other biological 

phenomenon and the different factors that can have an impact 

on its frequency,  her distribution or its evolution. This field 

studies the factors affecting the health of populations and 

seeks to find solutions to mitigate their effects. Thus, better 

control of infectious diseases necessarily requires a better 

understanding of the way in which they spread.  The primary 

tool for predicting the spread of an infectious disease is the 

Susceptible-Infected-Recovered (SIR) mass action model of 

Kermack and McKendrick Kermack and McKendrick 

(1927). The susceptibleinfected-recovered mass action model 

derives largely from its conceptual and mathematical 

simplicity. The principle of mass action implies that an 

individual infectious has the possibility of infecting each 

susceptible individual with equal probability. However, it is 

clear that things do not happen like this in reality. Once 

infectious, an individual can only transmit the viral agent (the 

disease) to a limited number of individuals. Furthermore, it is 

clear that there are individuals who are in contact with a very 

large number of people, while others interact with many 

fewer individuals. It thus appears obvious that the structure 

social status of a population is a determining factor for the 

spread of the disease. It must therefore be incorporated into a 

realistic mathematical model. It is in response to this problem 

that network epidemiology has developed.  

Thus the objective of this dissertation is to model network 

epidemiology. To do this, we explain a recent modeling 

approach: Edge Based Compartiental Model (EBCM). This 

involves modeling all of the potential contacts of individuals 

in a given population such as a network or graph and studying 

the dynamics of the propagation of an epidemic through this 

network. We carry out the mathematical analysis of the 

EBCM model and the numerical simulation through different 

graphs using the Epidemic on Network (EoN) package 

available on python.   

Then we base ourselves on the dynamics of the SIR model in 

random networks. simulation monitoring digital with a 

vaccination scenario.  

https://doi.org/10.47191/ijmcr/v12i7.04


“Epidemiological Modeling on Networks with Vaccination Scenario” 

4355 Abdoulaye Ali Ibrahima1, IJMCR Volume 12 Issue 07 July 2024 
 

II. RESEARCH METHOD   

 Network epidemic modeling with degree heterogeneity is 

generated with a network configuration model (CM) . It 

requires a certain number of hypotheses which allows it to 

describe the dynamics of the spread of the disease.  

— Infection and recovery are assumed to occur at constant 

rates;  

— Heterogeneous contact rates;  

— Reduction in the number of contacts to be infected once 

the individual is infected;  

— The cured individual is definitively immune;  

Variations at the different states of the population ≪S≫, 

≪I≫ and ≪R≫   

The SIR model divides the population into three categories: 

individuals likely to become infected (S), infected individuals 

(I) and individuals who can no longer transmit the disease 

(R). (i.e. immunization which is valid throughout the 

epidemic period).  

We choose a random target u and prohibit the infection of u 

to all its neighbors. We note that S(t) is the probability that a 

random test node u is in a state S. It is also the probability that 

none of u's partners have yet transmitted to u.  

We define θ as the probability that a randomly chosen partner 

has not transmitted to u and if the degree of u is k, then the 

probability that u is still sensitive is θ(t)k. So the fraction of 

susceptible is:  

 

 is the generating function of the probability of the 

distribution of degrees; P(k) the probability of the distribution 

of degrees. 

  
Figure 1 – The flow of susceptible to infected to recovered 

individuals with heterogeneous infection rate on network. 

 

Explanation 

The edges connect randomly to other neighbors using 

proportional mixing, so that the probability of selecting a 

neighbor of degree k is , where <k> denotes the mean of k. 

Now the probability that u is always susceptible is θ(t). Thus

  
is the probability generating function of the degree 

distribution. 

We will have: 

  
R˙ = λI  

I = 1 - S – R  

To calculate the probability that a random individual is 

sensitive, we choose a random test node uniformly from the 

population (i.e. a node chosen randomly and which is behaves 

like any other node). We alter u so that if it is infected, it does 

not transmit to its neighbors. This helps us assume that the 

status of its neighbors is independent, but does not affect the 

probability that it is susceptible. We define θ the probability 

that a random neighbor v of u has not transmitted an infection 

to u, and we decompose θ into three parties: the probability 

that a partner v is susceptible at time t, ϕS; the probability that 

v either infected at time t but did not transmit the infection to 

u, ϕI; the probability that v is recovered at time t but has not 

transmitted the infection to u, ϕR. Then θ = ϕS + ϕI + ϕR.  

 

 
Figure 2– Graph representing variations at the network 

level 

 

Compartment 1 − θ is the probability that it transmitted. The 

rate that an infected partner transmits to u is β; therefore the 

flux ϕ towards 1 − θ is βϕI. We conclude θ˙ = −βϕI. To find 

ϕI, we will use ϕI = θ − ϕS − ϕR and calculate ϕS and ϕR.  

The rate at which an infected partner recovers is λ. Thus the 

flow ϕI towards ϕR is λϕI. This is proportional to the flow in 

1 − θ with the proportionality constant  . Since ϕR and 1 - θ 

start approximately with 0, we have ϕR  

.  To find ϕS, recall  

 that a partner v has a degree k with probability    

 (k) =           where < k >  designates the mean of k.  

Given that v is susceptible with probability         (we 

prohibit transmission from u; therefore k − 1 nodes can infect 

v). A weighted average gives:  
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In this section, we will perform a numerical simulation to 

analyze the evolution of an infectious disease on graphs with 

different forms of degree distribution.  

Model of graphs used  

In this section, we will perform a numerical simulation to 

analyze the evolution of an infectious disease on graphs with 

different forms of degree distribution.  

Graph with Poisson distribution  

The graph with Poisson distribution has N nodes whose 

connection between the nodes is made with a probability 

P(k). The Poisson distribution is a distribution that rotates 

around its mean. However, the graphs with this distribution 

are relatively homogeneous with quite similar degrees.  

 
Figure 3 – Graph with a Poisson distribution 

 

Scale free model  

These graphs are characterized by a distribution of degree 

p(k) which follows a power law, that is to say graphs with a 

wide range of different degrees which detect slowly. The 

scale-free network is today the type of network most 

frequently found in studies carried out on real-world 

networks. They have the characteristic of providing a good 

modeling of social networks. The arabasi.albert.graph 

function on python allows you to automatically generate 

graphs of this type.  

 
Figure 4 – Scalef ree type graph 

  

  

  

  

  

  

  

Graph with exponential distribution  

This type of graph can have N nodes with a distribution p(k) 

which follows an exponential law. The distribution of the 

exponential law models the lifespan of a phenomenon. The 

scipy-random-exponential function on python allows you to 

generate this distribution of degrees p(k)  

 
Figure 5 – Graph with an exponential distribution 

  

III. RESULTS ANALYSIS  

  
Figure 6 – Number of susceptible, infected and 

immunized individuals in a population following a fish 

distribution in degree 

 

The figure shows us the SIR dynamics on a graph with a 

Poisson law degree distribution. The infected curve reaches 

its maximum in less than 10 days with 7,900 infected out of 

10,000. The immune curve increases progressively and the 

susceptible people gradually decrease until reaching its 

minimum. (0).  

 
Figure 7 – Number of susceptible, infected and immune 

individuals in a population following a power 

distribution in degree 
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This graph represents the evolution of the SIR infectious 

dynamics on the network with a scalefree type graph. With a 

rate of 0.01 infected at the start, the population of infected 

reaches a maximum of 8100 infected per 1000 people after 4 

days where the susceptible population tends towards 0. The 

number of recovered grows as a function of time.  

  
Figure 8 – Number of susceptible, infected and 

immunized individuals in a population following an 

exponential distribution 

 

This graph represents the distribution of the population as a 

function of time (over 20 days) following an exponential 

distribution of degrees, i.e. the allocation of partners (or 

neighbor, or person in contact). Thus with a rate of 0.01 

infected people at the start and an infection rate of 0.0964, the 

infected people reach a number of 6000 out of 10000 in 7 

days and begin to decrease gradually.  

In summary, we see that the disease evolves more quickly 

than with the scale free type distribution which reaches its 

maximum with 8100 infected in 4 days, then comes that of 

the distribution of poison  which is quite similar due to the 

fact that the distribution of poison is centered around its 

average with 7900 infected in 9 days. The results with the 

simulation of the distribution graph of the exponential law are 

characterized by a weak evolution of the disease with a 

maximum number of infected 6000 infected in 7 days.  

Vaccination scenario 1 Principle of vaccination  

Vaccination is protection against infectious disease. It 

consists of injecting an infectious agent (virus or bacteria) 

into the body, in a harmless form (without effect) but 

stimulating the body's immune response. The immune system 

1 has a form of memory, subsequent exposure to the 

infectious agent 2 will trigger a rapid and therefore more 

effective response. The agent is recognized by one or more 

specific molecules 3 and constitutes the antigen 4. The 

immune system responds by the production of antibodies 5 

specially directed against it and manufactured by memory 

cells. A vaccine is therefore specific to a disease.  

2 Approach used  

We consider a SIR model with vaccination where the states 

are susceptible (Sus), infected (Inf), recovered (Rec) and 

vaccinated (Vac). We use Gillespie simple contagion which 

is in the EoN package to carry out the simulation.  

In this model, susceptible people are vaccinated at a rate that 

is independent of state of the disease. Thus, the spontaneous 

transitions are 'Suc' to 'Vac' with a rate of 0.01 and 'Inf' to 

'Rec' with a rate of 1.0. The induced transitions are (’Inf’, 

‘Sus’) to (’Inf’, ‘Inf’) with a rate of 2.0.  

3 Analysis and interpretation of results  

We have a representation of the initial state of the disease on 

an SIR model with vaccination which corresponds to the start 

of the infection at the level of figure 3.9. The vaccination rate 

of susceptible people is equal to 0.01. At t = 0 the infected 

proportion is minimal unlike susceptible-vaccinated people 

who are at maximum. This is because the disease has not yet 

spread.   

 The immune system corresponds to the body’s defense 

system  

1. illness  

2. A molecule is a set of elements linked to each other through 

chemical bonds  

3. An antigen substance that can generate antibodies  

4. An antibody is a substance produced by the immune system 

in an organism to detect and neutralize pathogens 

specifically  

  
Figure.9 – SIR simulation on network with vaccination 

at t=0 at the start of the infection 

  
Figure 10 – SIR simulation on network with vaccination 

after 5 days 
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Figure 11 – SIR simulation on network with vaccination 

after 30 days 

 

The two figures illustrate the spread of a disease using the SIR 

model with vaccination. On day 14, there is a peak with 450 

infected individuals out of a population of 10,000. However, 

the number of infected individuals starts to decrease 

exponentially as they recover. After 30 days, the disease is 

nearly eradicated, with the number of infected individuals 

approaching zero. These figures demonstrate that the vaccine 

does not prevent infection but significantly slows down the 

spread of the disease. Furthermore, the vaccination plays a 

crucial role in ultimately neutralizing the disease, as the 

number of infected individuals tends towards zero after 30 

days. Overall, the figures highlight the gradual increase and 

subsequent decline in the number of infected individuals, 

showcasing the effectiveness of the vaccine in curbing the 

spread of the disease. 

 

IV. CONCLUSION  

 Network epidemiology modeling consists of modeling all 

possible contacts of individuals in a population and studying 

the spread of the disease through this network. So, in the 

resolution of our differential equations, we prove that the 

dynamics of the model is completely deterministic by a 

critical value R0. We find two points of balance  θ0 = 1 and 

θ1 = α  with α between 0 and c such that c < 1. When R0 > 1, 

we have stability at the equilibrium point θ1 = α, while 

equilibrium at point θ0 = 1 is unstable. Then when R0 < 1, we 

have a stability of the equilibrium point θ0= 1.days.  

The simulation results on the different types of graphs used 

show that the evolution of the disease differs depending on 

the type of distribution used. Thus we could see that the 

disease progresses more quickly than with a power 

distribution which corresponds to the scale free type graph 

compared to the other graphs. For the exponential 

distribution, we have a low evolution of the disease. It is in 

this model that the lowest number of infected individuals was 

recorded.  

Vaccination therefore plays a very important role in the 

spread of infectious disease. It helps reduce the number of 

people affected by this disease. It also makes it possible to 

neutralize (i.e. the number of infected people equal to zero) 

illness at some point.  
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