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In this study, the |𝑆𝑆| − subgroup structure for |𝑆𝑆| − group obtained by using a given 𝑆 

semigroup is defined and its properties are examined. As in group theory, the relationships of 

the defined |𝑆𝑆| − subgroup structure with |𝑆𝑆| − group is investigated. Some well-known 

theorems in group theory have been adapted to the new subgroup structure and generalizations 

have been obtained. Additionally, their relationships with homomorphisms are examined and 

examples of the obtained results are given. 
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I. INTRODUCTION 

In group theory, groups and their subgroups and the 

relationships between them have a very important place. Over 

time, many different researchers have studied groups and 

their subgroups and found new features. Then, new group and 

subgroup structures were defined and generalizations in 

group theory were reached. |𝑆𝑆| − group structure is one of 

these newly defined group structures. The studies started with 

the definition of the set of source of semiprimeness on the 𝑆, 

where 𝑆 is a semigroup. For detailed information about this 

set, see [3]. 

After defining the source of semiprimeness, new structures 

were defined by using this set. One of these structures is the 

|𝑆𝑆| − group structure. In this study, the |𝑆𝑆| − subgroup 

structure for the |𝑆𝑆| − group obtained by using a given 𝑆 

semigroup is defined, and its properties are examined. The 

obtained theorems are supported with examples and a 

generalization of the subgroup structure is achieved. 

Before going through the definitions and theorems used in the 

study, let's briefly take a look at the results obtained. The 

basis of the study is the |𝑆𝑆| − subgroup structure. First of all, 

the features of this structure are examined. Then, some well-

known results and theorems in group theory are adapted to 

the new subgroup structure. Examples of the features found 

are given and the subject is explained in detail. Finally, the 

relations between the defined transformation 𝑓 and the |𝑆𝑆| − 

subgroup are examined, and the study is completed with a 

general example. 

 

II. PRELIMINARIES 

First, let us give the definitions of special elements and 

semigroup types used in our study.  Definitions are referenced 

by [4] and [5].  Let (𝑆,·) be a semigroup. An identity element 

of a semigroup 𝑆 is an element 1𝑆 ∈ 𝑆 such that  1𝑆 𝑥 =

𝑥1𝑆 = 𝑥 for all 𝑥 ∈ 𝑆. Semigroup that does have an identity 

element is called monoid. Similarly, a zero element of a 

semigroup 𝑆 is an element 0𝑆 ∈ 𝑆 such that  0𝑆 𝑥 = 𝑥0𝑆 = 0𝑆 

for all 𝑥 ∈ 𝑆. In this study, semigroups containing zero were 

studied. An element 𝑥 of a semigroup 𝑆 with identity element 

is called unit element if there exist 𝑦 ∈  𝑆 such that 𝑥𝑦 =

 𝑦𝑥 =  1𝑆. We donate 𝑦 by  𝑥−1. If 𝑥𝑦 =  𝑦𝑥 is satisfied for 

all 𝑥, 𝑦 ∈  𝑆, then the 𝑆 semigroup is called the commutative 

semigroup.  

Let us remember the definition of monoid homomorphism. 

From [4], a monoid homomorphism from a monoid 𝑆 into a 

monoid 𝑇 is a mapping    𝑓 ∶  𝑆 →  𝑇 which preserves 

products: 𝑓 (𝑥𝑦)  =  𝑓 (𝑥) 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ 𝑆 and also 

preserves identity elements: 𝑓(1𝑆 ) = 1𝑇. 

Now, let’s give the definition of semiprime semigroup that 

forms the basis of this paper. According to [1] and [6], the 

ideal 𝐼 is called a semiprime ideal if 𝑥𝑆𝑥 ∈ 𝐼 with 𝑥 ∈ 𝑆 

implies 𝑥 ∈ 𝐼. A semigroup 𝑆 is called semiprime if the zero 

ideal is a semiprime ideal of 𝑆. Thus, the equivalent definition 

can be given as follows: if 𝑥𝑆𝑥 =  0 with 𝑥 ∈ 𝑆 implies 𝑥 =

 0, then 𝑆 is called semiprime semigroup. 

Finally, let's give the definitions and theorems about the set 

of source of semiprimeness and |𝑆𝑆| − group. Definitions are 

referenced by [2] and [3]. For a semigroup S, 𝑆𝑆 =

{𝑎 ∈ 𝑆|𝑎𝑆𝑎 = 0} is called the source of semiprimeness. If 𝐴 
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is nonzero subset of 𝑆, then 𝑆𝑆(𝐴) = {𝑏 ∈ 𝐴|𝑏𝑆𝑏 = 0} =  𝑆𝑆. 

Using this definition, |𝑆𝑆| − group is defined as follows for 

semigroup S with zero such that 𝑆 ≠  𝑆𝑆: 𝑆 is called 

|𝑆𝑆| −group if 1𝑆  ∈  𝑆 and every element of 𝑆 −  𝑆𝑆 is unit.  

III. RESULTS 

In this section, we will define |𝑆𝑆| −subgroup construction 

for |𝑆𝑆| −groups. As in the group theory, we define a 

subgroup A as a |𝑆𝑆| −subgroup, if 𝐴 is itself a |𝑆𝑆| −group 

under the operation in 𝑆.  

Definition 1 Let 𝑆 be a |𝑆𝑆| −group and 𝐴 be a nonzero 

subsemigroup of 𝑆. A is called a |𝑆𝑆| −subgroup of 𝑆, if 𝐴 is 

itself a |𝑆𝑆| −group under the operation in S. 

The equivalent definition can be given as follows: If 1𝑆 ∈  𝐴 

and every 𝑎 elements of 𝐴 −  𝑆𝑆 is unit in 𝐴, then 𝐴 is a 

|𝑆𝑆| −subgroup of 𝑆. 

First, we will give some basic properties and facts about 

|𝑆𝑆| −subgroups. 

1. Note that even if it exists, the identity element of 

subsemigroups need not be the same as the identity 

of the semigroup. But, as in the subgroups, it is easy 

to see that, the identity element of the 

|𝑆𝑆| −subgroup cannot be different from the identity 

element of the |𝑆𝑆| −group. 

2. Any |𝑆𝑆| −group is its own |𝑆𝑆| −subgroup. 

3. If 𝐴 = {0}  then 𝐴 −  𝑆𝑆 = ∅. 

Now, let us give a theorem that shows the relation between 

|𝑆𝑆| −groups and |𝑆𝑆| −subgroups. 

Lemma 2 Let 𝑆 be a |𝑆𝑆| −group, 𝐴 be a subsemigroup of 𝑆. 

If 𝐴 is a |𝑆𝐴| −group then 𝐴 is a |𝑆𝑆| −subgroup. 

Proof Let 𝐴 be a |𝑆𝐴| −group and 𝑥 ∈  𝐴 −  𝑆𝑆 . From the 

definition of 𝐴 − 𝑆𝑆, we write 𝑥 ∈  𝐴 and 𝑥 ∉ 𝑆𝑆 . Since 

𝑆𝑆(𝐴)  =  𝑆𝑆, we get 𝑥 ∈  𝐴 and 𝑥 ∉ 𝑆𝑆(𝐴). At the same time, 

using 𝑆𝐴 ⊆ 𝑆𝑆(𝐴), we have 𝑥 ∈  𝐴 and 𝑥 ∉ 𝑆𝐴. Then 𝑥 ∈

 𝐴 −  𝑆𝐴, and so 𝑥 is unit element because 𝐴 is a |𝑆𝐴| −group. 

Since every element of 𝐴 −  𝑆𝑆 is unit element, it is 

concluded that 𝐴 is a |𝑆𝑆| −subgroup. 

Lemma 3 Let  𝑆 be a |𝑆𝑆| −group and 𝐴 be a subgroup of 𝑆 −

𝑆𝑆. Then, 𝐴 is a |𝑆𝑆| −subgroup. 

Proof If 𝐴 is a subgroup of 𝑆 − 𝑆𝑆, then 1𝑆 ∈ 𝐴 and every 

element of 𝐴 is unit element. In this case, every element of 

𝐴 − 𝑆𝑆 is also unit element. So, 𝐴 is a |𝑆𝑆| −subgroup. 

Now, let us give examples about  |𝑆𝑆| −subgroups. As can be 

seen from the examples, the above conclusions become 

obsolete or work in one direction when some of the 

hypotheses are omitted. 

Example 4 Let the operation table of the semigroup S be 

given below. 

∙ 0 1 𝑎 𝑏 𝑐
0 0 0 0 0 0
1 0 1 𝑎 𝑏 𝑐
𝑎 0 𝑎 0 0 0
𝑏 0 𝑏 0 0 0
𝑐 0 𝑐 0 0 1

 

Now it turns out that 

𝑆𝑆 = {0, 𝑎, 𝑏} 

 

and thus  

𝑆 − 𝑆𝑆 = {1, 𝑐} 

 

If the elements of 𝑆 − 𝑆𝑆 are examined, 𝑐 and 1 are unit 

elements because 𝑐 ·  𝑐 =  1 and 1 ·  1 =  1. So, 𝑆 is a 

|𝑆𝑆| −group. 

Let 𝐴 = {0, 1, 𝑎}. It is clear that 𝐴 is a subsemigroup of 𝑆. 

Since 

𝐴 −  𝑆𝑆  =  {1} 

and 1 is identity element, 𝐴 is a |𝑆𝑆| −subgroup. 

Example 5 Let the operation table of the semigroup 𝑆 be 

given below. 

∙ 0 1 𝑎 𝑏 𝑐
0 0 0 0 0 0
1 0 1 𝑎 𝑏 𝑐
𝑎 0 𝑎 𝑐 1 𝑏
𝑏 0 𝑏 1 𝑐 𝑎
𝑐 0 𝑐 𝑏 𝑎 1

 

It is easy to see that 𝑆𝑆 =  {0} , and thus 

𝑆 − 𝑆𝑆 =  {1, 𝑎, 𝑏, 𝑐}. 

Since every element of 𝑆 − 𝑆𝑆 is unit element, 𝑆 is a 

|𝑆𝑆| −group. 

Let  =  {0, 1, 𝑐} . It is clear that 𝐴 is a subsemigroup of 𝑆. If 

we investigate the elements of 𝐴 − 𝑆𝑆, we see that they are 

unit elements and thus 𝐴 is a |𝑆𝑆| −subgroup. Also, for 𝑆𝐴 =

 {0} we get 

𝐴 − 𝑆𝐴 =  {1, 𝑐}. 

So, 𝐴 is also |𝑆𝐴| −group. 

Example 6 Consider the  |𝑆ℚ| − group  (ℚ,∙) .  ℤ  is a 

subsemigroup of  ℚ.  However, there are non-unit elements 

ℤ − 𝑆ℚ  = ℤ − {0}. So, ℤ is not |𝑆ℚ| −subgroup of ℚ. 

Example 7 Consider the |𝑆ℚ| − group (ℤ25,·). It is easy to see 

that 

𝑆ℤ25
= {0̅, 5̅, 10̅̅̅̅ , 15̅̅̅̅ , 20̅̅̅̅ } 

The set 𝐴 = {0̅, 1̅, 3̅, 5̅, 17̅̅̅̅ } is a subsemigroup of ℤ25. For  

𝑆𝐴 = {0̅, 5̅},   every element of 

𝐴 − 𝑆𝐴 = {1̅, 3̅, 17̅̅̅̅ } 

is unit element. This means that 𝐴 is also a |𝑆𝐴| −group. 

Also, since every element of 

𝐴 − 𝑆ℤ25
= {1̅, 3̅, 17̅̅̅̅ } 

is unit element, 𝐴 is a |𝑆𝐴| −group. 

Next, we will give properties of intersection and union of 

|𝑆𝑆| −subgroups. Also, we will adapt some subgroup 

theorems to  |𝑆𝑆| −subgroups. Before getting down into 

results, let us mention that the wellknown properties in 

semigroup theory and group theory. For subsemigroups 𝐴 and 

𝐵, the set of intersection is a subsemigroup. However, for the 

union of this subsemigroups to be a subsemigroup, one 

subsemigroup must cover another. On the other hand, when 

the semigroup homomorphism 𝑓 and subsemigroup 𝐴 are 

given, 𝑓(𝐴) is a subsemigroup. Similarly, 𝑓−1(𝐵) is a 

subsemigroup for subsemigroup 𝐵. These properties are 

exactly provided for subgroups too. 
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Lemma 8 Let S be a |𝑆𝑆| −group and 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 are 

|𝑆𝑆| −subgroup of S. Then the following holds true: 

1. ⋂ 𝐴𝑖
𝑛
𝑖=1  is a |𝑆𝑆| −subgroup. 

2. If 𝐴1 ⊆ 𝐴2, then 𝐴1 ∪ 𝐴2 is a |𝑆𝑆| −subgroup. 

1. Since the sets 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 are semigroup, ⋂ 𝐴𝑖
𝑛
𝑖=1  is a 

subsemigroup. Also, we note that 1𝑆 ∈ ⋂ 𝐴𝑖
𝑛
𝑖=1  for 

|𝑆𝑆| −subgroups 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛. Let 𝑥 ∈ (⋂ 𝐴𝑖
𝑛
𝑖=1 ) − 𝑆𝑆. 

Then, we write 

𝑥 ∈ ⋂(𝐴𝑖

𝑛

𝑖=1

− 𝑆𝑆). 

Therefore, we obtain 𝑥 ∈ 𝐴𝑖 − 𝑆𝑆 for every subsemigroup 𝐴𝑖. 

This means that 𝑥 is a unit element. So, ⋂ 𝐴𝑖
𝑛
𝑖=1  is a 

|𝑆𝑆| −subgroup. 

2. Assume that  𝐴1 ⊆ 𝐴2. Since 𝐴1 and  𝐴2 are subsemigroup 

and 𝐴1 ⊆ 𝐴2, 𝐴1 ∪ 𝐴2 is a semigroup and 1𝑆 ∈ 𝐴1 ∪ 𝐴2. Let 

𝑥 ∈ 𝐴1 ∪ 𝐴2 − 𝑆𝑆. From definition of the set  𝐴1 ∪ 𝐴2 −  𝑆𝑆, 

we obtain  𝑥 ∈ 𝐴1 ∪ 𝐴2 and  𝑥 ∉ 𝑆𝑆.  Using  𝐴1 ⊆ 𝐴2 in this 

expression, we get 𝑥 ∈ 𝐴2 −  𝑆𝑆. This means that 𝑥 is unit 

element. So, 𝐴1 ∪ 𝐴2 is a |𝑆𝑆| −subgroup. 

Lemma 9 Let 𝑆 be a |𝑆𝑆| −group, 𝑇 be a |𝑆𝑇| −group and 𝑓 ∶

 𝑆 →  𝑇 be a monoid homomorphism such that (0𝑆) = 0𝑇 . If 

(𝑥) ∈ 𝑆𝑇  , then 𝑥 ∈ 𝑆𝑆 . Conversely, if 𝑓 is surjective and 𝑥 ∈

𝑆𝑆, then 𝑓(𝑥) ∈ 𝑆𝑇. 

Proof If we assume that 𝑥 ∉ 𝑆𝑆, then we obtain 𝑓(𝑥) is a non-

unit element. In the other hand, since 𝑥 is a unit element, there 

exist 𝑦 ∈  𝑆 such that 𝑦 = 1𝑆 . In this equation we get (𝑥𝑦) =

𝑓(1𝑆) = 1𝑇 . Then, 𝑓(𝑥)𝑓(𝑦) = 1𝑇 for homomorphism 𝑓. 

Similarly, using same process on equation 𝑦𝑥 = 1𝑆, we get 

𝑓(𝑦)𝑓(𝑥) = 1𝑇 . This means that 𝑓(𝑥) is a unit element. So, 

we get 𝑓(𝑥) ∉ 𝑆𝑇. 

Conversely, if ∈ 𝑆𝑆 , then 𝑥𝑎𝑥 = 0𝑆  for all 𝑎 ∈ 𝑆. Using this 

equation, we obtain 𝑓(𝑥𝑎𝑥) = 𝑓(0𝑆). Since 𝑓 is surjective, 

we write (𝑥)𝑇𝑓(𝑥) = 0𝑇 . This means that 𝑓(𝑥) ∈ 𝑆𝑇 . 

Theorem 10 Let 𝑆 be a |𝑆𝑆| −group, 𝑇 be a |𝑆𝑇| −group and 

𝑓 ∶  𝑆 →  𝑇 be a monoid homomorphism such that 𝑓(0𝑆) =

0𝑇. Then the following holds true: 

1. If 𝑓 is surjective and 𝐴 is a |𝑆𝑆| −subgroup, then 

𝑓(𝐴) is a |𝑆𝑇| −subgroup. 

2. If 𝐵 is a |𝑆𝑇| −subgroup, then 𝑓−1(𝐵) is a 

|𝑆𝑆| −subgroup. 

Proof 1. Since 𝐴 is a subsemigroup of semigroup 𝑆, 𝑓(𝐴) is a 

subsemigroup of semigroup 𝑇 . Also, 1𝑇 = 𝑓(1𝑆) ∈ 𝑓(𝐴) is 

provided for 1𝑆 ∈ 𝐴. Let 𝑦 ∈ 𝑓(𝐴) − 𝑆𝑇 . Then, there exist 

𝑥 ∈  𝐴 such that 𝑦 = 𝑓(𝑥) ∉ 𝑆𝑇 . From Lemma 9, we get 𝑥 ∉

𝑆𝑆. In this case, since 𝐴 is a |𝑆𝑆| −subgroup,  𝑥 is unit in 𝐴. 

Thus, there exist 𝑧 ∈  𝐴 such that 𝑥𝑧 = 1𝑆, and so𝑓(𝑥)−1 =

𝑓(𝑥−1) = 𝑓(𝑧) ∈ 𝑓(𝐴) is provided for 𝑧 ∈ 𝐴. This means 

that 𝑦 = 𝑓(𝑥) is unit in 𝑓(𝐴). So, 𝑓(𝐴) is a |𝑆𝑇| −subgroup. 

2. Since 𝐵 is a subsemigroup of semigroup 𝑇, 𝑓−1(𝐵) is a 

subsemigroup of semigroup 𝑆. Also, element 1𝑆 is in the 

𝑓−1(𝐵) since f (1𝑆)  =  1𝑆 ∈ 𝐵. Let  ∈ 𝑓−1(𝐵) − 𝑆𝑆. From 

definition of the set 𝑓−1(𝐵) − 𝑆𝑆, we write 𝑥 ∈  𝑓−1(𝐵) and 

𝑥 ∉ 𝑆𝑆. Also, from Lemma 9, we get 𝑓(𝑥) ∉ 𝑆𝑇. Thus, 𝑓(𝑥) 

and 𝑥 is unit in 𝑆. This means that there exist 𝑦 ∈ 𝑆 such that  

𝑥𝑦 =  𝑦𝑥 =  1𝑆  and  𝑓 (𝑥) 𝑓 (𝑦)  =  𝑓 (𝑦) 𝑓 (𝑥)  = 1𝑇 . 

Also, since 𝐵 is a |𝑆𝑇| −subgroup, 𝑓(𝑥) is unit in 𝐵. Then, 

𝑓 (𝑦)  ∈  𝐵. From this expression, we get  𝑦 ∈ 𝑓−1(𝐵)  and  

𝑓(𝑦) ∉ 𝑆𝑇. From Lemma 9, we write 𝑦 ∈ 𝑓−1(𝐵) and 𝑦 ∉ 𝑆𝑆.  

So, we get  𝑦 ∈ 𝑓−1(𝐵) − 𝑆𝑆.  Since every element in 

𝑓−1(𝐵) − 𝑆𝑆 is unit, we obtain that 𝑓−1(𝐵) is a 

|𝑆𝑆| −subgroup. 

Finally, let us give a general example of the results obtained 

in the paper. 

Example 11 Consider the semigroup 

𝑀 = {[
𝑎 0 0
𝑏 𝑎 0
0 0 𝑎

] |𝑎, 𝑏 ∈ ℝ}. 

M is a semigroup with identity element and zero element by 

multiplication operation in matrices. For this semigroup, it is 

not hard to see that 

𝑆𝑀 = {[
0 0 0
𝑏 0 0
0 0 0

] |𝑏 ∈ ℝ}, 

and thus 

𝑀 − 𝑆𝑀 = {[
𝑎 0 0
𝑏 𝑎 0
0 0 𝑎

] |𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0}. 

Since every element of 𝑀 − 𝑆𝑀 is unit element, M is a 

|𝑆𝑀| −group. 

Let define the subsemigroup A of semigroup M. 

 

𝐴 = {[
𝑎 0 0
0 𝑎 0
0 0 𝑎

] |𝑎 ∈ ℝ} 

It is easy to see that 

𝐴 − 𝑆𝑀 = {[
𝑎 0 0
𝑏 𝑎 0
0 0 𝑎

] |𝑎 ∈ ℚ, 𝑎 ≠ 0}, 

and so every element of 𝐴 − 𝑆𝑀 is unit element. Also, it is 

obvious that 1𝑀 ∈ 𝐴. So, A is a |𝑆𝑀| −subgroup. 

On the other hand, (ℝ,∙) is a semigroup with identity element 

and zero element. For 𝑆ℝ = {0}, we get ℝ − 𝑆ℝ = ℝ − {0}. 

Since every element of this set is unit element, ℝ is a 

|𝑆ℝ| −group. Also, it is clear that ℚ is a |𝑆ℝ| −subgroup. 

Now, we define the mapping 𝑓: 𝑀 ⟶ ℝ such that 

𝑓 ([
𝑎 0 0
𝑏 𝑎 0
0 0 𝑎

]) = 𝑎. 

For all 𝐴, 𝐵 ∈ 𝑀, the equation 𝑓(𝐴𝐵) = 𝑓(𝐴)𝑓(𝐵) is 

provided. Also, since 

𝑓(1𝑀) = 𝑓 ([
1 0 0
0 1 0
0 0 1

]) = 1 = 1𝑅 , 

𝑓 is a monoid homomorphism. 

First, let us investigate the set 𝑓(𝐴) for |𝑆𝑀| −subgroup A. 

Note that 𝑓(𝑀) = ℝ, and so f is surjective. Using 𝐴 is a 

|𝑆𝑀| −subgroup and Theorem 10, we get 𝑓(𝐴) is a 

|𝑆ℝ| −subgroup. Indeed, it is clear that for |𝑆𝑀| −subgroup 

A, 𝑓(𝐴) = ℚ is a |𝑆ℝ| −subgroup. 

Next, we will investigate 𝑓−1(ℚ) for |𝑆ℝ| −subgroup ℚ. 
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Using ℚ is a |𝑆ℝ| −subgroup and Theorem 10, ve get 𝑓−1(ℚ) 

is a |𝑆𝑀| −subgroup. Indeed, every element of 

 

𝑓−1(ℚ) − 𝑆𝑀 = {[
𝑎 0 0
𝑏 𝑎 0
0 0 𝑎

] |𝑎 ∈ ℚ, 𝑏 ∈ ℝ, 𝑎 ≠ 0} 

Is unit in 𝑓−1(ℚ). 
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