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The literature in 1968, almost continuous functions were introduced by Signal and Signal
[14]. This paper introduced, a new class of functions called almost spgwa-continuous

functions and faintly spgwa-continuous functions in topological spaces using the concept
of spgwa-open sets. Authors investigated and introduced several basic properties of faintly

Corresponding Author:
T.D. Rayanagoudar

spgmwa-continuous functions and almost spgwa-continuous functions which are weaker
than spgwa-continuous functions.

KEYWORDS: spgma-open sets, spgwa-closed sets, spgwa-continuous functions, faintly spgwa-continuous functions and

almost spgma-continuous functions.
AIMS Classification: 54C08, 54C10

1. INTRODUCTION AND PRELIMINARIES

A crucial area of discussion in general topology is
the concept of continuity. Signal and Signal [14] defined
almost continuous functions as generalizations of
continuity as weaker and stronger types of continuity. In
1978, Popa [7] generalized Signal's notion of virtually
continuity by defining almost quasi continuous functions.

In this paper, a new class of weaker forms of
spgwa-continuous functions, known as almost spgwo-
continuous functions was introduced using spgwa-open
sets. The examination of a new weaker class of functions
known as faintly spgma-continuous, along with various
characterizations is covered in the next section. Finally,
some essential characteristics of almost spgwa-functions
are defined.

Throughout this paper, spaces R and S always means
topological spaces (R, 1) and (S, o) and fi(R, 1) — (S, o)
(simply f: R — S) denotes a function f of a space (R, 1) into
a space (S, o).

Definition1.1[10]: A subset A of a topological space R is
called spgma-closed if spcl(A) € U whenever A< U and
U is wa-open in R.

The complement of a spgma-closed set is called spgwa-open.
Definition 1.2 [11]: A function f is said to be spgwa-
continuous (spgwa- irresolute) if for every open (resp.

spgwa-open) set V in S, (V) is spgwa-open in R.
Definition 2.1. A function f is called almost continuous [14]
(in the sense of Signal) at r R if for every open set V in S
containing f(r), there U € O(R, r) with (U) c cl(int(V)).

If £ is almost continuous at every point of R, then it is called
almost continuous.

2. ALMOST spgoa-CONTINUOUS FUNCTIONS

In this section we introduced almost spgwa-continuous
functions in topological spaces and study some of their
basic properties.

Definition 2.1: A function f: R — S is said to be almost
spgwa-continuous (a.spgwa.C) if for each r € R and
VeO(S, f(r), there exists U espgwa-O(R, r) such that
f(U) cint(cl(V)).

Theorem 2.2: For a function f, the following statements
are equivalent:

(i) fis a.spgma.C.

(i) for every V e RO(S), f (V) espgwa-O(R).

(iii) for every F € RC(S), f *(F) espgwa-C(R).

(iv) If A c R, f(spgma-cl(A)) < cI3(f(A)).

(v) If B < S, spgwa-cl(f1(B)) =f(cl&(B)).

(vi) for every F €8-c(S), f}(F) espgwa-C(R).

(vii) for every V €8-0(S), f (V) espgoa-O(R).

Proof. (i) = (ii) Suppose V € RO(S) and r e f *(V). Then
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f(r) e V.AsV € O(R) and f is a.spgwa.C, so U espgwa-
O(R, r) with f(U) c int(cl(V)) = V. Thus, r € U c
fHfU) < (V) and so, f(V) espgea-O(R).

(ii) = (v) Let B = S. Then f(B) c S. By (iv), f(spgma-
cl(f1(B))) <cl-3(f(fXB))) ccl(3(B)) and so, spgwa-
cl(f 4(B)) < f {(f(spgwa-cl(f*(B)))) = f *(cl-3(B)).

(v) = (vi) Let F e &-C(S), then spgwa-cl(f*(F))
</ HCI3(F)) = ().

So, spgwa-cl(f*(F)) = f%(F) and hence f(F) espgwa-
C(R).

(vi) = (vii) Let V e 3-O(S), then S - V e 35-C(S). By
hypothesis, (S - V) espgwoa-C(R). Since f(S- V)=R
- f3(V), we have R - fY(V) espgwa-C(R). Thus, f (V)
espgwa-O(R).

(vi) = (i) Let r eR and V €0O(S) where f(r) € V. Let us
put W = int(cl(V)) and U = f}(W). As cl(V) is a closed in
S, so W = int(cl(V)) e §-O(S) and from (vii), U = f3(W)
espgwa-O(R). Now, f(r) € V =int(V) c int(cl(V)) = W,
andsor ef (W)= U, f (U)= f(f }(W)) = W =int(cl(V)).
Proposition 2.3: Every a.spgwa.C is w.spgwa.C.

Proof. Let r eR and V €0O(S) with f(r) € V. As f is
a.spgwa.C, there exists U espgwa-O(R) withr € U and f
(V) cint(cl(V)) < cl(V). Hence, f is w.spgwa.C.
Theorem 2.4: For a function f, the following statements
are equivalent:

(i) fis a.spgwa.C,

(ii) for each r €R and V e O(S) containing f(r), there
exists U espgoa-O(R, r) with f(U) cs-cl(V),

(iii) for each r eR and V e RO(S) containing f(r), there
exists U espgoa-O(R, r) with f(U) c V.

(iv) for each r eR and V e 8-O(S) containing f(r), there
exists U e spgwa-O(R, r) with f(U) = V.

Theorem 2.5: For a function f, the following statements
are equivalent:

(i) f is a.spgwo..C,

(ii) fY(int(cl(V))) espgwa-O(R), for every V €O(S).

(iii) for every F e C(S), f(cl(int(F))) espgwa-C(R).
Proof. (i)=(ii): Let V € O(R). We need to show that
fH(int(cl(V))) espgoa-O(R).

Let r ef(int(cl(V))). Then f (r) e int(cl(V)) and
int(cl(V)) which is a regular open in S. As f is a.spgwa.C,
50 U espgma-O(R, r) with f(U) c int(cl(V)), thatisr € U
< f4(int(cl(V))). In consequence, f(int(cl(V))) espgwa-
O(R).

(if)=(iii): Let F € C(S). Then S - F €0O(S). From (ii),
FX(int(cl(S - F)))) espgma-O(R) and £ *(int(cl(S - F))) =
FHInt(S - int(F))) = £7S - cl(int(F))) = R - f(int(cl(F))).
Hence f-1(int(cl(F))) espgwa-C(R).

(iii)=(i): Let F €RC(S). Then, F eC(S). From (iii),
fYcl(int(F))) espgwa-C(R). As F e RC(S), then
FYcl(int(F))) = fY(F). Therefore, f(F) espgwa-C(R).

By Theorem 3.2, f is a.spgwa.C.

Theorem 2.6: Let f be a.spgwa.C and V € O(S). If r
spgwa-cl((f (V) - (f 2(V), then f (r) espgwa-cl(V).
Proof. Let r eR with r € spgoa-cl((f (V) - (f (V).
Suppose f(r) gspgwa-cl(V). Then, H e spgwa-O(S)
containing f(r) where H NV = ¢. So, cl(H) n V = ¢, and
so int(cl(H)) NV = ¢ and int(cl(H)) is a regular open in R.
As f is a.spgwa.C, U espgwa-O(R, r) with f(U) c
int(cl(H)). Hence, f(U) NV = ¢.

However, since r espgoa-cl((f X(V), U n (fY(V) = ¢
holds for every U espgwa-O(R, r), so f(U) NV =, we
have a contradiction. Then it follows that f(r) espgwa-
cl(V).

Definition 2.7: Let R be a space. A filter base A* is said to
be:

(i) spgwa-convergent to a point r in R, if for every U
espgwa-O(R, 1), there exists B € A* with B < U.

(ii) R-convergent [13] to a point r in R if for every U e
RO-(R, ), there exists B € A* such that B < U.
Theorem 2.8: If f is a.spgwa.C, then for each r R and
filter base A* in R is spgwa-converging to r, the filter base
f(A*) is R-convergent to f(r).

Proof. Let r eR and A* be any filter base in R, which is
spgwa-converging to r. By Theorem 2.6, for any V eRO-
(S) containing f(r), there exists U espgma-O(R, r) with
fU)c V.

As A* is spgwa-converging to r, there exists B € A* with
B < U, that is f(B) <V. Hence the filter base f(A*) is R-
convergent to f(r).

Definition 2.9: A net () is said to be spgwa-convergent
to a point r, if for every V espgwa-O(R, r), there exists an
index Ao such that for A > Ao, Nne V.

Theorem 2.10: If £ is a.spgwa.C, then for each pointr eR
and each net (r,) which is spgwa-convergent to r, then the
net f((r.)) is R-convergent to f (r).

Proof. The proof is similar to that of Theorem 2.7.
Theorem 2.11: If f is a.spgwa.C injective and S is r-Ty,
then R is spgwa-Ti.

Proof. Suppose S is r-T1. For any distinct points r and s in
R, f(r) = f(s). There exist V, W €O(R) with f(r) € V, f(s)
¢ V, f(r) ¢ Wand f(s) € W. As f is a.spgoa.C, f2(V),
FHW) espgoa-O(R) with r ef V), s ¢f V), r
e fY(W)ands ef (W), which shows that R is spgomo-Ti.
Theorem 2.12: If f is a.spgwa.C injective and S is r-To,
then R is spgwa-To.

Proof. For any pair of distinct points r and s in R. Then by
the injectivity of f, f(r) # f(s). There exist disjoint U, V e
RO-(R) such that f (r) € U and f(s) € V. As f is
a.spgoa.C, f1(U) espgoa-O(R, 1) and (V) espgwa-
O(R, s). Thus, fY(U) n fY(V)=¢,asUNV =¢. SoR is
spgwa-Te.
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Definition 2.13.: A function f is said to be:

(i) spgwo-irresolute [11] if f71(V) is spgwa-open in R for
every spgwo-open set V of S.

Definition 2.14: A topological space R is said to be almost
regular [10] if for any F € RC(R) and any pointr eR - F,
there exist disjoint U, V € O(R) such thatr € U and F
V.

Theorem 2.15: If fisaw.spgwa.C and S is almost regular,
then f is a.spgwa.C.

Proof. Letr € R and V €0(S, f(r)). By almost regularity
of S, there exists spgwa € RO(S) with f(r) € spgoa <
cl(spgwa) < int(cl(V)). As f is w.spgwa.C, there exists
Uespgwa-O(R, r) with f(U) < cl(spgoa) < int(cl(V)).
Thus, f is a.spgwa.C.

Definition 2.16 [10]: A spgwa-frontier of a A is denoted
by spgwa-Fr(A), is defined by spgwa-Fr(A) = spgwa-
cl(A) nspgma-cl(R - A).

Theorem 2.17: The set of all points r R in which a
function f is not a.spgwa.C is identical with the union of
spgwa-frontier of the inverse images of regular open sets
containing f(r).

Proof. Suppose f is not a.spgwo.C at r € R. Then there
exists V e RO(S) containing f(r) such that U n (R -
FHV)) = for every U espgwa-O(R, r). Therefore, r
espgoo-cl(R - fV)) = R - spgwa-int(f*(V)) and r
ef Y(V). Thus, r espgwa-Fr(f1(U)).

Conversely, suppose f is a.spgwa.C atr € R and V €
RO(S) containing f(r). Then there exists U espgwa-O(R,
r) such that U = f1(V), that is r espgoa-int(f *(V)). Thus,
r e R - spgwa-Fr(f1(V)).

Theorem 2.18: If f is a.spgwa.C, f* is w.spgwa.C with S
is Hausdorff, then the set {r € R: f(r)= f*(r)} is spgwa-
closed in R.

Proof. Let A ={r € R: f(r)= f*(r)} andr € R - A. Then
f(@®) # f*(r). As S is Hausdorff, there exist V, W e O(S)
with f(r) e V, f*(r) e Wand V n W = ¢. Hence int(cl(V))
N cl(W) = ¢. Since f is a.spgwa.C, there exists U espgma-
O(R, r) with f(U) c int(cl(V)). As f* is w.spgwa.C, there
exists H espgma-O(R) such that f*(H) < cl(W*). Now put
U =spgwa N H, then U espgwa-O(R, r) and f(U) N f*(U)
cint(cl(V)) n cl(W) = ¢. Therefore, we obtain U N A =@
and hence A is spgwa-C(R).

Theorem 2.19: Suppose the product of two spgwoa-open
sets is spgwa-open. If fi: (Ry, 1) — (S, o) is w.spgwa.C,
f2: (R2, ©) > (S, o) is a.spgwa.C and S is Hausdorff, then
the set {(r1, r2) eR1 X R2: fi(r1)= f2(r2)} is spgwa-closed
in R1 X Rs.

Proof. Let A ={(r1, r2) eR1 X Rz : f1(r1) = fa(r2)}. If (r1, r2)
€ (R1 X Ry) — A, then fi(r1) # f2 (r2). As S is Hausdorff,
there exist disjoint open sets V1 and V> in S with fi(r1) e
Viand f> (r2) € Vo and cl(Vi)nint(cl(V2)) = ¢. As f1 (resp.

f2) is w.spgwa.C (resp. a.spgwa.C), there exists
Uiespgwa-O(R1, r1) such that fi(Uy) < cl(Vi) (resp.
Uzespgma-O(Rz, r2) with fa(spgwa-cl(U1)) < int(cl(V2))).
Hence, (rl, I’z) e U xU,cR1 xRy—A. ThUS, (R;L X Rz) —
A is spgwa-open and so A is spgwa-closed in Ry X Ra.

3. Faintly spgwa-Continuous Functions

Definition 3.1: A function f: R — S is called faintly
spgwa-continuous (briefly f.spgwa.C) at a point r € R if
for each V € 6-0(S, f(r)), there exists U espgwa-O(R, r)
such that f(U) < V.

If f has the above property at each point of R, then f is said
to be f.spgmwa.C.

Theorem 3.2: The following statements are equivalent for
a function f:

(i) fis f.spgwa.C

(i) for each V € 0-O(S), f Y(V) espgwa-O(R).

(iii) for each F € 6-C(S), f X(F*) espgwa-C(R).

(iv) fis spgwa.C.

(v) for every B 'S, spgwa-cl(f2(B)) < f(clo(B)).

(vi) for every A < S, fY(int8(A)) < spgoa-int(f1(A)).
Proof: (i) — (ii) Let f be f.spgwa.C and V €6-O(S) such
that r € f1(V). Then there exists U espgma-O(R, r) with
f(U) cV, thatist € U < f4V). Thus f (V) espgma-
O(R).

(ii) — (i) Letr € Rand V €0-0(S, f(r)). From (ii), f (V)
espgwa-O(R, r). Let U = f1(V), then f(U) < V. Hence f
is f.spgmwa.C.

(if) — (iii) Let V €0-C(S), then S-V €6-O(R). From (ii),
fYS-V) = R - fYV) espgoa-O(R) and hence f (V)
espgma-C(R).

(iii) — (ii) Let V €0-0O(S), then S-V €0-C(S). From (iii),
fYS-V) =R - fYV) espgwa-C(S) and hence f(V)
espgma-O(R).

From the definition 3.1, we can prove the other equivalent
properties.

Remark 3.3: Every spgwoa.C is f.spgwa.C.

Example 3.4: Let R = {r1, rp, rs} and t = {R, @, {r1}, {r2,
rs}} and o = {S, o, {r1}, {r2}, {r1, r2}, {r2, rs}}. Then the
identity function f is f.spgwa.C but not spgwa.C.
Definition 3.5: A function f is said to be weakly spgwo-
continuous (briefly w.spgwa.C) if for each pointr € R and
for each V €O(S, f(r)), there exists U espgwa-O(R, r)
such that f (U) < cl(V).

Theorem 3.6: Every weakly continuous function is
f.spgwa.C.

Proof: Letr € R and V € 6-O(S, f(r)). Then there exists
W e O(S) such that f(r) e W c V, thatis f(r) e W c cl(W)
c V. By w.spgwa.C, there exists U espgma-O(R) such
that f(U) < cl(W), thatis f(U) < cl(W) < V. Thus, for each
V e 6-0O(S, f(r)), there exists U espgma-O(R, r) such that
f(U) c V. Hence f is f.spgwa.C. -
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Theorem 3.7: Let f be f.spgwa.C and S is regular space.
Then f is spgwa.C.

Proof: Let V e O(S). As Sis regular, V € 6-O(S). Since f
is f.spgwa.C and from theorem 3.6, (V) espgoa-O(R).
Therefore for every V e O(S), f (V) espgwa-O(R). Thus
fis spgwa.C.

Theorem 3.8: Every f.spgwa.C functions is s.spgwa.C.
Proof: Letr € R and V be clopen set in S containing f(r).
Then, V e 0-O(S). Since f is f.spgwa.C, there exists U
espgwo-O(R, r) such that f(U) < V. Thus, for every V e
0-0(S), f(U) < V. Therefore f is s.spgwa.C.

Definition 3.9: Let R be TS. Since the intersection of two
clopen sets of R is clopen, the clopen sets of R may be use
as a base for a topology for R. This topology is called the
ultra-regularization of T and is denoted by tu.

A topological space R is said to be ultra-regular if t = tu.
Theorem 3.10: The following statements are equivalent
for a function f: R — S, if S is ultra-regular space:

(i) fis spgwa.C

(ii) f is f.spgwa.C

(iii) f is s.spgwo..C.

Proof: It follows from the theorem 3.2, 3.8 and definition
3.9.

Definition 3.11: A spgwa-frontier of a subset A of a space
R is defined as

spgwa-Fr(A) = spgwa-cl(A) nspgwa-cl(R-A).

Theorem 3.12: The set of all points r € R in which a
function f is not f.spgwa.C is the union of spgwa-frontier
of the inverse images of 6-open set containing E (r).
Proof: Suppose f is not f.spgwa.C at each point r € R.
Then there exists V €6-0(S, f(r)) such that f(U) is not
contained in V and hence r €6-cl(R — f1(V)).

On the other hand, let r e f (V) < spgwa-cl(f1(V)) and
hence r espgoa-cl(f1(V)). Therefore, we can observe that
r espgoa-fr(f1(V)).

Conversely, assume that f is f.spgma.C at each pointr e
Rand V €6-0(S, f(r)). Then, there exists U espgwa-O(R,
r) such that U < f (V). Hence r espgwa-int(f 1(V)).
Therefore r ¢ spgoa-fr(f1(V)).

Theorem 3.13: Let f be a function and f: (R, t) > (R xS,
T x o) the graph of f defined by spgwa(x) = (r, f(r)) for
every r € R. If fis f.spgwa.C then f is f.spgwa.C.

Proof: Let U €6-0(S), then R x U €6-O(R x S). It follows
that £2(U) = (/) %(R x U) espgwa-O(R, r). Hence f is
f.spgwoa.C.

Theorem 3.14: Faintly spgwma-continuous image of a
spgwa-connected space is connected.

Proof: Assume that S is not connected. Then there exist
two non-empty open sets V1 and V2 such that Vin V2 = ¢
and ViU V2 = S. Hence f (V1) m f1(V2) =@ and f (V1)
U fY(V2) =R. As f is surjective, f1(V1), f1(V2) are non-

empty subsets of R. Then Vi, V2€6-O(R), since Vi and V2
are both open and closed. As f is f.spgwa.C, f(Va),
V2 espgwa-O(R) and hence R is not spgwo-
connected which is contradiction to the assumption.
Hence S is connected.

Theorem 3.15: If f is f.spgwa.C surjective and R is
spgwa-compact then S is 6-compact.

Proof: Let f be f.spgwa.C surjective. Let {G, : a € A} be
any 0-open cover of S. Since f is f.spgwa.C, f(G,) is
spgwa-open cover of R. Then there exists a finite subcover
{fUG):i=1223 ..}inR, thatis{Gi:i=1,2,3.}isa
subfamily which covers the space S. Thus S is 6-compact.
Theorem 3.16: Let f be f.spgwa.C, injective function. If
(i) Sis 6-T1 then R is spgwa-T1

(ii) S is ©-T2 then R is spgwa-T»

Proof: (i) Let S be 6-T1. Then for any ri, r; € R with rin
r, = @, there exists Vi, V2€0-0(S) such that f(r1) e Vi,
f(r2) ¢ Viand f(r1) ¢Vi, f(r2) € Va. Then f1(Va), £ 1(V2)
espgwa-O(R) as f is f.spgwa.C such that rief 1(Vi),
ref (V) andrz g f1(Va), rz € f1(V2), implies that R is
spgwa-Ti.

(ii) Let S be 6-T,. Then for any r, rze R, there exist Vi,
V2 € 0-O(S) such that f(r1) € Vi and f(r2) € Va. Then
FYV1), fYV2) espgoa-O(R) containing r; and r;
respectively such that £ (V1) N f1(V2) = ¢ as Vin V2 =
¢. Thus R is spgoa-To.
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