International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 12 Issue 07 July 2024, Page no. -4363-4367

Index Copernicus ICV: 57.55, Impact Factor: 8.316

DOI: 10.47191/ijmcr/v12i7.06

Almost spgωα -Continuous Functions in Topological Spaces

M. M. Holliyavar¹, T.D. Rayanagoudar² and Sarika M. Patil³

¹R and D Department, Bharathiar University, Coimbatore- 641046, Tamil Nadu, India ^{2,3}Department of Mathematics, Government First Grade College, Rajnagar, Hubli-580 032, Karnataka, India

ARTICLE INFO	ABSTRACT
Published Online:	The literature in 1968, almost continuous functions were introduced by Signal and Signal
27 July 2024	[14]. This paper introduced, a new class of functions called almost spg $\omega\alpha$ -continuous
	functions and faintly spg $\omega\alpha$ -continuous functions in topological spaces using the concept
	of spgωα-open sets. Authors investigated and introduced several basic properties of faintly
Corresponding Author:	spgωα-continuous functions and almost spgωα-continuous functions which are weaker
T.D. Rayanagoudar	than spg $\omega \alpha$ -continuous functions.
KEYWORDS, making one sets analysis along data analysis antimums functions faintly analysis continuous functions and	

KEYWORDS: spg $\omega \alpha$ -open sets, spg $\omega \alpha$ -closed sets, spg $\omega \alpha$ -continuous functions, faintly spg $\omega \alpha$ -continuous functions and almost spg $\omega \alpha$ -continuous functions.

AIMS Classification: 54C08, 54C10

1. INTRODUCTION AND PRELIMINARIES

A crucial area of discussion in general topology is the concept of continuity. Signal and Signal [14] defined almost continuous functions as generalizations of continuity as weaker and stronger types of continuity. In 1978, Popa [7] generalized Signal's notion of virtually continuity by defining almost quasi continuous functions.

In this paper, a new class of weaker forms of spg $\omega\alpha$ -continuous functions, known as almost spg $\omega\alpha$ -continuous functions was introduced using spg $\omega\alpha$ -open sets. The examination of a new weaker class of functions known as faintly spg $\omega\alpha$ -continuous, along with various characterizations is covered in the next section. Finally, some essential characteristics of almost spg $\omega\alpha$ -functions are defined.

Throughout this paper, spaces R and S always means topological spaces (R, τ) and (S, σ) and $f:(R, \tau) \rightarrow (S, \sigma)$ (simply $f: R \rightarrow S$) denotes a function f of a space (R, τ) into a space (S, σ).

Definition1.1[10]: A subset A of a topological space R is called spg ω -closed if spcl(A) \subseteq U whenever A \subseteq U and U is $\omega\alpha$ -open in R.

The complement of a spg $\omega\alpha$ -closed set is called spg $\omega\alpha$ -open. **Definition 1.2 [11]:** A function *f* is said to be spg $\omega\alpha$ - continuous (spg $\omega\alpha$ - irresolute) if for every open (resp.

spg $\omega\alpha$ -open) set V in S, $f^{-1}(V)$ is spg $\omega\alpha$ -open in R.

Definition 2.1. A function *f* is called almost continuous [14] (in the sense of Signal) at $r \in R$ if for every open set V in S containing *f*(r), there $U \in O(R, r)$ with $(U) \subset cl(int(V))$. If *f* is almost continuous at every point of R, then it is called almost continuous.

2. ALMOST spgωα-CONTINUOUS FUNCTIONS

In this section we introduced almost $spg\omega\alpha$ -continuous functions in topological spaces and study some of their basic properties.

Definition 2.1: A function $f: \mathbb{R} \to S$ is said to be almost spg $\omega\alpha$ -continuous (a.spg $\omega\alpha$.C) if for each $r \in \mathbb{R}$ and $V \in O(S, f(r))$, there exists $U \in spg \omega\alpha$ -O(\mathbb{R}, r) such that $f(U) \subseteq int(cl(V))$.

Theorem 2.2: For a function *f*, the following statements are equivalent:

(i) f is a.spgωα.C.

(ii) for every $V \in RO(S)$, $f^{-1}(V) \in spg\omega\alpha$ -O(R).

(iii) for every $F \in RC(S)$, $f^{-1}(F) \in spg\omega\alpha$ -C(R).

(iv) If $A \subset R$, $f(spg\omega\alpha - cl(A)) \subseteq cl\delta(f(A))$.

(v) If $B \subset S$, spg $\omega \alpha$ -cl $(f^{-1}(B)) \subset f^{-1}(cl\delta(B))$.

(vi) for every $F \in \delta$ -c(S), $f^{-1}(F) \in \operatorname{spg}\omega\alpha$ -C(R).

(vii) for every $V \in \delta$ -O(S), $f^{-1}(V) \in \text{spg}\omega\alpha$ -O(R).

Proof. (i) \Rightarrow (ii) Suppose V \in RO(S) and r $\in f^{-1}(V)$. Then

"Almost spgωα -Continuous Functions in Topological Spaces"

 $f(\mathbf{r}) \in \mathbf{V}$. As $\mathbf{V} \in \mathbf{O}(\mathbf{R})$ and f is a.spg $\omega \alpha$.C, so $\mathbf{U} \in \operatorname{spg} \omega \alpha$ -O(R, r) with $f(\mathbf{U}) \subset \operatorname{int}(\operatorname{cl}(\mathbf{V})) = \mathbf{V}$. Thus, $\mathbf{r} \in \mathbf{U} \subset f^{-1}(f(\mathbf{U})) \subset f^{-1}(\mathbf{V})$ and so, $f^{-1}(\mathbf{V}) \in \operatorname{spg} \omega \alpha$ -O(R).

(ii) \Rightarrow (v) Let B \subset S. Then $f^{-1}(B) \subset$ S. By (iv), $f(\text{spg}\omega\alpha - \text{cl}(f^{-1}(B))) \subset \text{cl} - \delta(f(f^{-1}(B))) \subset \text{cl}(\delta(B))$ and so, $\text{spg}\omega\alpha - \text{cl}(f^{-1}(B)) \subset f^{-1}(f(\text{spg}\omega\alpha - \text{cl}(f^{-1}(B)))) \subset f^{-1}(\text{cl} - \delta(B))$.

(v) \Rightarrow (vi) Let $F \in \delta$ -C(S), then spg $\omega \alpha$ -cl($f^{-1}(F)$) $\subset f^{-1}(cl\delta(F)) = f^{-1}(F)$.

So, spg ωa -cl $(f^{-1}(F)) = f^{-1}(F)$ and hence $f^{-1}(F) \in spg \omega a$ -C(R).

(vi) \Rightarrow (vii) Let $V \in \delta$ -O(S), then S - $V \in \delta$ -C(S). By hypothesis, $f^{-1}(S - V) \in \operatorname{spg}\omega\alpha$ -C(R). Since $f^{-1}(S - V) = R$ - $f^{-1}(V)$, we have R - $f^{-1}(V) \in \operatorname{spg}\omega\alpha$ -C(R). Thus, $f^{-1}(V) \in \operatorname{spg}\omega\alpha$ -O(R).

(vi) \Rightarrow (i) Let $r \in R$ and $V \in O(S)$ where $f(r) \in V$. Let us put W = int(cl(V)) and $U = f^{-1}(W)$. As cl(V) is a closed in S, so $W = int(cl(V)) \in \delta$ -O(S) and from (vii), $U = f^{-1}(W) \in$ $\leq spg\omega\alpha$ -O(R). Now, $f(r) \in V = int(V) \subset int(cl(V)) = W$, and so $r \in f^{-1}(W) = U$, $f(U) = f(f^{-1}(W)) \subset W = int(cl(V))$. **Proposition 2.3:** Every a.spg $\omega\alpha$.C is w.spg $\omega\alpha$.C.

Proof. Let $r \in R$ and $V \in O(S)$ with $f(r) \in V$. As f is a.spg $\omega \alpha$.C, there exists $U \in spg \omega \alpha$ -O(R) with $r \in U$ and f(U) \subset int(cl(V)) \subset cl(V). Hence, f is w.spg $\omega \alpha$.C.

Theorem 2.4: For a function f, the following statements are equivalent:

(i) f is a.spg $\omega \alpha$.C,

(ii) for each $r \in R$ and $V \in O(S)$ containing f(r), there exists $U \in spg\omega\alpha$ -O(R, r) with $f(U) \subseteq s-cl(V)$,

(iii) for each $r \in R$ and $V \in RO(S)$ containing f(r), there exists $U \in spg\omega\alpha$ -O(R, r) with $f(U) \subset V$.

(iv) for each $r \in R$ and $V \in \delta$ -O(S) containing f(r), there exists $U \in \text{spg}\omega\alpha$ -O(R, r) with $f(U) \subset V$.

Theorem 2.5: For a function f, the following statements are equivalent:

(i) f is a.spgωα.C,

(ii) $f^{-1}(int(cl(V))) \in spg\omega\alpha$ -O(R), for every $V \in O(S)$.

(iii) for every $F \in C(S)$, $f^{-1}(cl(int(F))) \in spg\omega\alpha - C(R)$.

Proof. (i) \Rightarrow (ii): Let V \in O(R). We need to show that $f^{-1}(int(cl(V))) \in spg\omega\alpha$ -O(R).

Let $r \in f^{-1}(int(cl(V)))$. Then $f(r) \in int(cl(V))$ and int(cl(V)) which is a regular open in S. As f is a.spg $\omega \alpha$.C, so $U \in spg \omega \alpha$ -O(R, r) with $f(U) \subset int(cl(V))$, that is $r \in U$ $\subset f^{-1}(int(cl(V)))$. In consequence, $f^{-1}(int(cl(V))) \in spg \omega \alpha$ -O(R).

(ii) \Rightarrow (iii): Let $F \in C(S)$. Then $S - F \in O(S)$. From (ii), $f^{-1}(int(cl(S - F)))) \in spg\omega\alpha - O(R)$ and $f^{-1}(int(cl(S - F))) = f^{-1}(int(S - int(F))) = f^{-1}(S - cl(int(F))) = R - f^{-1}(int(cl(F)))$. Hence $f^{-1}(int(cl(F))) \in spg\omega\alpha - C(R)$.

(iii) \Rightarrow (i): Let $F \in RC(S)$. Then, $F \in C(S)$. From (iii), $f^{-1}(cl(int(F))) \in spg\omega\alpha - C(R)$. As $F \in RC(S)$, then $f^{-1}(cl(int(F))) = f^{-1}(F)$. Therefore, $f^{-1}(F) \in spg\omega\alpha - C(R)$. By Theorem 3.2, f is a.spg $\omega \alpha$.C.

Theorem 2.6: Let f be a.spg ω a.C and $V \in O(S)$. If $r \in spg \omega a - cl((f^{-1}(V)) - (f^{-1}(V), then f(r) \in spg \omega a - cl(V).$

Proof. Let $r \in R$ with $r \in \operatorname{spg}\omega\alpha\operatorname{-cl}((f^{-1}(V)) - (f^{-1}(V))$. Suppose $f(r) \notin \operatorname{spg}\omega\alpha\operatorname{-cl}(V)$. Then, $H \in \operatorname{spg}\omega\alpha\operatorname{-O}(S)$ containing f(r) where $H \cap V = \phi$. So, $\operatorname{cl}(H) \cap V = \phi$, and so $\operatorname{int}(\operatorname{cl}(H)) \cap V = \phi$ and $\operatorname{int}(\operatorname{cl}(H))$ is a regular open in R. As f is a.spg $\omega\alpha$.C, $U \in \operatorname{spg}\omega\alpha\operatorname{-O}(R, r)$ with $f(U) \subset \operatorname{int}(\operatorname{cl}(H))$. Hence, $f(U) \cap V = \phi$.

However, since $r \in \operatorname{spg}\omega\alpha\operatorname{-cl}((f^{-1}(V), U \cap (f^{-1}(V) = \phi \text{ holds for every } U \in \operatorname{spg}\omega\alpha\operatorname{-O}(R, r)$, so $f(U) \cap V \neq \phi$, we have a contradiction. Then it follows that $f(r) \in \operatorname{spg}\omega\alpha\operatorname{-cl}(V)$.

Definition 2.7: Let R be a space. A filter base \wedge^* is said to be:

(i) spg ω -convergent to a point r in R, if for every U \in spg ω -O(R, r), there exists B $\in \Lambda^*$ with B \subset U.

(ii) R-convergent [13] to a point r in R if for every $U \in RO-(R, r)$, there exists $B \in \Lambda^*$ such that $B \subset U$.

Theorem 2.8: If *f* is a.spg $\omega \alpha$.C, then for each $r \in \mathbb{R}$ and filter base Λ^* in R is spg $\omega \alpha$ -converging to r, the filter base $f(\Lambda^*)$ is R-convergent to f(r).

Proof. Let $r \in R$ and Λ^* be any filter base in R, which is spg $\omega \alpha$ -converging to r. By Theorem 2.6, for any $V \in RO$ -(S) containing f(r), there exists $U \in spg \omega \alpha$ -O(R, r) with $f(U) \subset V$.

As Λ^* is spg $\omega\alpha$ -converging to r, there exists $B \in \Lambda^*$ with $B \subset U$, that is $f(B) \subset V$. Hence the filter base $f(\Lambda^*)$ is R-convergent to f(r).

Definition 2.9: A net (r_{λ}) is said to be spg $\omega \alpha$ -convergent to a point r, if for every V \in spg $\omega \alpha$ -O(R, r), there exists an index λ_0 such that for $\lambda \ge \lambda_0$, $r_{\lambda} \in V$.

Theorem 2.10: If *f* is a.spg $\omega \alpha$.C, then for each point $r \in \mathbb{R}$ and each net (r_{λ}) which is spg $\omega \alpha$ -convergent to *r*, then the net $f((r_{\lambda}))$ is R-convergent to *f* (*r*).

Proof. The proof is similar to that of Theorem 2.7.

Theorem 2.11: If f is a spg $\omega \alpha$.C injective and S is r-T₁, then R is spg $\omega \alpha$ -T₁.

Proof. Suppose S is r-T₁. For any distinct points r and s in R, $f(r) \neq f(s)$. There exist V, W $\in O(R)$ with $f(r) \in V$, $f(s) \notin V$, $f(r) \notin W$ and $f(s) \in W$. As f is a.spg $\omega \alpha$.C, $f^{-1}(V)$, $f^{-1}(W) \in spg \omega \alpha$ -O(R) with $r \in f^{-1}(V)$, $s \notin f^{-1}(V)$, $r \notin f^{-1}(W)$ and $s \in f^{-1}(W)$, which shows that R is $spg \omega \alpha$ -T₁. **Theorem 2.12:** If f is a.spg $\omega \alpha$.C injective and S is r-T₂, then R is $spg \omega \alpha$ -T₂.

Proof. For any pair of distinct points r and s in R. Then by the injectivity of f, $f(r) \neq f(s)$. There exist disjoint U, V \in RO-(R) such that $f(r) \in U$ and $f(s) \in V$. As f is a.spg $\omega \alpha$.C, $f^{-1}(U) \in$ spg $\omega \alpha$ -O(R, r) and $f^{-1}(V) \in$ spg $\omega \alpha$ -O(R, s). Thus, $f^{-1}(U) \cap f^{-1}(V)=\phi$, as $U \cap V = \phi$. So R is spg $\omega \alpha$ -T₂. **Definition 2.13.:** A function *f* is said to be:

(i) spg $\omega \alpha$ -irresolute [11] if $f^{-1}(V)$ is spg $\omega \alpha$ -open in R for every spg $\omega \alpha$ -open set V of S.

Definition 2.14: A topological space R is said to be almost regular [10] if for any $F \in RC(R)$ and any point $r \in R - F$, there exist disjoint U, $V \in O(R)$ such that $r \in U$ and $F \subset V$.

Theorem 2.15: If f is a w.spg $\omega \alpha$.C and S is almost regular, then f is a.spg $\omega \alpha$.C.

Proof. Let $r \in R$ and $V \in O(S, f(r))$. By almost regularity of S, there exists $spg\omega \alpha \in RO(S)$ with $f(r) \in spg\omega \alpha \subset$ $cl(spg\omega \alpha) \subset int(cl(V))$. As *f* is w.spg $\omega \alpha$.C, there exists $U \in spg\omega \alpha$ -O(R, r) with $f(U) \subset cl(spg\omega \alpha) \subset int(cl(V))$. Thus, *f* is a.spg $\omega \alpha$.C.

Definition 2.16 [10]: A spg $\omega\alpha$ -frontier of a A is denoted by spg $\omega\alpha$ -Fr(A), is defined by spg $\omega\alpha$ -Fr(A) = spg $\omega\alpha$ cl(A) \cap spg $\omega\alpha$ -cl(R - A).

Theorem 2.17: The set of all points $r \in R$ in which a function f is not a.spg $\omega \alpha$.C is identical with the union of spg $\omega \alpha$ -frontier of the inverse images of regular open sets containing f(r).

Proof. Suppose f is not a.spg $\omega \alpha$.C at $r \in \mathbb{R}$. Then there exists $V \in \operatorname{RO}(S)$ containing f(r) such that $U \cap (\mathbb{R} - f^{-1}(V)) \neq \phi$ for every $U \in \operatorname{spg} \omega \alpha - O(\mathbb{R}, r)$. Therefore, $r \in \operatorname{spg} \omega \alpha - \operatorname{cl}(\mathbb{R} - f^{-1}(V)) = \mathbb{R} - \operatorname{spg} \omega \alpha - \operatorname{int}(f^{-1}(V))$ and $r \in f^{-1}(V)$. Thus, $r \in \operatorname{spg} \omega \alpha - \operatorname{Fr}(f^{-1}(U))$.

Conversely, suppose f is a.spg $\omega \alpha$.C at $r \in R$ and $V \in RO(S)$ containing f(r). Then there exists $U \in spg \omega \alpha$ -O(R, r) such that $U \subset f^{-1}(V)$, that is $r \in spg \omega \alpha$ -int($f^{-1}(V)$). Thus, $r \in R$ - $spg \omega \alpha$ -Fr($f^{-1}(V)$).

Theorem 2.18: If f is a.spg $\omega \alpha$.C, f^* is w.spg $\omega \alpha$.C with S is Hausdorff, then the set $\{r \in R: f(r)=f^*(r)\}$ is spg $\omega \alpha$ -closed in R.

Proof. Let $A = \{r \in R: f(r) = f^*(r)\}$ and $r \in R - A$. Then $f(r) \neq f^*(r)$. As S is Hausdorff, there exist V, $W \in O(S)$ with $f(r) \in V$, $f^*(r) \in W$ and $V \cap W = \phi$. Hence $int(cl(V)) \cap cl(W) = \phi$. Since *f* is a.spg ωa .C, there exists U \in spg ωa -O(R, r) with $f(U) \subset int(cl(V))$. As f^* is w.spg ωa .C, there exists H \in spg ωa -O(R) such that $f^*(H) \subset cl(W^*)$. Now put U = spg $\omega a \cap H$, then U \in spg ωa -O(R, r) and $f(U) \cap f^*(U) \subset int(cl(V)) \cap cl(W) = \phi$. Therefore, we obtain $U \cap A = \phi$ and hence A is spg ωa -C(R).

Theorem 2.19: Suppose the product of two spg ω -open sets is spg ω -open. If $f_1: (\mathbf{R}_1, \tau) \to (\mathbf{S}, \sigma)$ is w.spg $\omega \alpha$.C, $f_2: (\mathbf{R}_2, \tau) \to (\mathbf{S}, \sigma)$ is a.spg $\omega \alpha$.C and S is Hausdorff, then the set { $(\mathbf{r}_1, \mathbf{r}_2) \in \mathbf{R}_1 \ge \mathbf{R}_2 : f_1(\mathbf{r}_1) = f_2(\mathbf{r}_2)$ } is spg $\omega \alpha$ -closed in $\mathbf{R}_1 \ge \mathbf{R}_2$.

Proof. Let $A = \{(r_1, r_2) \in R_1 \ge R_2 : f_1(r_1) = f_2(r_2)\}$. If $(r_1, r_2) \in (R_1 \ge R_2) - A$, then $f_1(r_1) \neq f_2(r_2)$. As S is Hausdorff, there exist disjoint open sets V_1 and V_2 in S with $f_1(r_1) \in V_1$ and $f_2(r_2) \in V_2$ and $cl(V_1) \cap int(cl(V_2)) = \phi$. As f_1 (resp.

 f_2) is w.spg $\omega \alpha$.C (resp. a.spg $\omega \alpha$.C), there exists $U_1 \in \text{spg} \omega \alpha$ -O(R₁, r₁) such that $f_1(U_1) \subset cl(V_1)$ (resp. $U_2 \in \text{spg} \omega \alpha$ -O(R₂, r₂) with $f_2(\text{spg} \omega \alpha - cl(U_1)) \subset int(cl(V_2)))$. Hence, $(r_1, r_2) \in U_1 \ge U_2 \subset R_1 \ge R_2 - A$. Thus, $(R_1 \ge R_2) - A$ is spg $\omega \alpha$ -open and so A is spg $\omega \alpha$ -closed in R₁ $\ge R_2$.

3. Faintly spg@a-Continuous Functions

Definition 3.1: A function $f: \mathbb{R} \to S$ is called faintly spg $\omega\alpha$ -continuous (briefly f.spg $\omega\alpha$.C) at a point $\mathbf{r} \in \mathbb{R}$ if for each $\mathbf{V} \in \theta$ -O(S, $f(\mathbf{r})$), there exists $\mathbf{U} \in \text{spg}\omega\alpha$ -O(\mathbb{R} , \mathbf{r}) such that $f(\mathbf{U}) \subseteq \mathbf{V}$.

If f has the above property at each point of R, then f is said to be f.spg $\omega \alpha$.C.

Theorem 3.2: The following statements are equivalent for a function *f*:

(i) *f* is f.spgωα.C

(ii) for each $V \in \theta$ -O(S), $f^{-1}(V) \in spg\omega\alpha$ -O(R).

(iii) for each $F \in \theta$ -C(S), $f^{-1}(F^*) \in spg\omega\alpha$ -C(R).

(iv) f is spgωα.C.

(v) for every $B \subseteq S$, $spg\omega\alpha$ - $cl(f^{-1}(B)) \subseteq f^{-1}(cl\theta(B))$.

(vi) for every $A \subseteq S$, $f^{-1}(int\theta(A)) \subseteq spg\omega\alpha - int(f^{-1}(A))$.

Proof: (i) \rightarrow (ii) Let *f* be f.spg $\omega \alpha$.C and V $\in \theta$ -O(S) such that $r \in f^{-1}(V)$. Then there exists U \in spg $\omega \alpha$ -O(R, r) with $f(U) \subseteq V$, that is $r \in U \subseteq f^{-1}(V)$. Thus $f^{-1}(V) \in$ spg $\omega \alpha$ -O(R).

(ii) \rightarrow (i) Let $r \in R$ and $V \in \theta$ -O(S, f(r)). From (ii), $f^{-1}(V) \in \text{spg}\omega\alpha$ -O(R, r). Let $U = f^{-1}(V)$, then $f(U) \subseteq V$. Hence f is f.spg $\omega\alpha$.C.

(ii) \rightarrow (iii) Let V $\in \Theta$ -C(S), then S-V $\in \Theta$ -O(R). From (ii), $f^{-1}(S-V) = R - f^{-1}(V) \in \operatorname{spg}\omega\alpha$ -O(R) and hence $f^{-1}(V) \in \operatorname{spg}\omega\alpha$ -C(R).

(iii) \rightarrow (ii) Let V $\in \theta$ -O(S), then S-V $\in \theta$ -C(S). From (iii), $f^{-1}(S-V) = R - f^{-1}(V) \in \operatorname{spg}\omega\alpha$ -C(S) and hence $f^{-1}(V) \in \operatorname{spg}\omega\alpha$ -O(R).

From the definition 3.1, we can prove the other equivalent properties.

Remark 3.3: Every spg@a.C is f.spg@a.C.

Example 3.4: Let $R = \{r_1, r_2, r_3\}$ and $\tau = \{R, \Phi, \{r_1\}, \{r_2, r_3\}\}$ and $\sigma = \{S, \phi, \{r_1\}, \{r_2\}, \{r_1, r_2\}, \{r_2, r_3\}\}$. Then the identity function *f* is f.spg $\omega a.C$ but not spg $\omega a.C$.

Definition 3.5: A function *f* is said to be weakly spg ωa continuous (briefly w.spg ωa .C) if for each point $r \in R$ and for each $V \in O(S, f(r))$, there exists $U \in spg \omega a - O(R, r)$ such that $f(U) \subset cl(V)$.

Theorem 3.6: Every weakly continuous function is f.spgωα.C.

Proof: Let $r \in R$ and $V \in \theta$ -O(S, f(r)). Then there exists $W \in O(S)$ such that $f(r) \in W \subset V$, that is $f(r) \in W \subset cl(W) \subset V$. By w.spg $\omega \alpha$.C, there exists $U \in spg \omega \alpha$ -O(R) such that $f(U) \subset cl(W)$, that is $f(U) \subset cl(W) \subset V$. Thus, for each $V \in \theta$ -O(S, f(r)), there exists $U \in spg \omega \alpha$ -O(R, r) such that $f(U) \subset V$. Hence f is f.spg $\omega \alpha$.C.

Theorem 3.7: Let f be f.spg $\omega \alpha$.C and S is regular space. Then f is spg $\omega \alpha$.C.

Proof: Let $V \in O(S)$. As S is regular, $V \in \theta$ -O(S). Since f is f.spg $\omega \alpha$.C and from theorem 3.6, $f^{-1}(V) \in \text{spg}\omega \alpha$ -O(R). Therefore for every $V \in O(S)$, $f^{-1}(V) \in \text{spg}\omega \alpha$ -O(R). Thus f is spg $\omega \alpha$.C.

Theorem 3.8: Every f.spg $\omega \alpha$.C functions is s.spg $\omega \alpha$.C. Proof: Let $r \in R$ and V be clopen set in S containing f(r).

Then, $V \in \theta$ -O(S). Since *f* is f.spg $\omega \alpha$.C, there exists U \in spg $\omega \alpha$ -O(R, r) such that $f(U) \subset V$. Thus, for every V $\in \theta$ -O(S), $f(U) \subset V$. Therefore *f* is s.spg $\omega \alpha$.C.

Definition 3.9: Let R be TS. Since the intersection of two clopen sets of R is clopen, the clopen sets of R may be use as a base for a topology for R. This topology is called the ultra-regularization of τ and is denoted by τ u.

A topological space R is said to be ultra-regular if $\tau = \tau u$. **Theorem 3.10:** The following statements are equivalent for a function $f: R \rightarrow S$, if S is ultra-regular space:

(i) *f* is spgωα.C

(ii) f is f.spg $\omega \alpha$.C

(iii) f is s.spg $\omega \alpha$.C.

Proof: It follows from the theorem 3.2, 3.8 and definition 3.9.

Definition 3.11: A spg $\omega \alpha$ -frontier of a subset A of a space R is defined as

 $spg\omega \alpha$ - $Fr(A) = spg\omega \alpha$ - $cl(A) \cap spg\omega \alpha$ -cl(R-A).

Theorem 3.12: The set of all points $r \in R$ in which a function *f* is not f.spg $\omega \alpha$.C is the union of spg $\omega \alpha$ -frontier of the inverse images of θ -open set containing Ξ (r).

Proof: Suppose f is not $f.\text{spg}\omega\alpha.\text{C}$ at each point $r \in \text{R}$. Then there exists $V \in \theta$ -O(S, f(r)) such that f(U) is not contained in V and hence $r \in \theta$ -cl($\mathbb{R} - f^{-1}(V)$).

On the other hand, let $r \in f^{-1}(V) \subset \operatorname{spg}\omega\alpha \operatorname{-cl}(f^{-1}(V))$ and hence $r \in \operatorname{spg}\omega\alpha \operatorname{-cl}(f^{-1}(V))$. Therefore, we can observe that $r \in \operatorname{spg}\omega\alpha \operatorname{-fr}(f^{-1}(V))$.

Conversely, assume that f is f.spg $\omega \alpha$.C at each point $r \in R$ and $V \in \theta$ -O(S, f(r)). Then, there exists $U \in \text{spg}\omega \alpha$ -O(R, r) such that $U \subset f^{-1}(V)$. Hence $r \in \text{spg}\omega \alpha$ -int($f^{-1}(V)$). Therefore $r \notin \text{spg}\omega \alpha$ -fr($f^{-1}(V)$).

Theorem 3.13: Let *f* be a function and $f: (\mathbf{R}, \tau) \rightarrow (\mathbf{R} \times \mathbf{S}, \tau \times \sigma)$ the graph of *f* defined by $\operatorname{spg}\omega\alpha(\mathbf{x}) = (\mathbf{r}, f(\mathbf{r}))$ for every $\mathbf{r} \in \mathbf{R}$. If *f* is f.spg $\omega\alpha$.C then *f* is f.spg $\omega\alpha$.C.

Proof: Let $U \in \theta$ -O(S), then R x $U \in \theta$ -O(R x S). It follows that $f^{-1}(U) = (f)^{-1}(R \times U) \in \text{spg}\omega\alpha$ -O(R, r). Hence *f* is f.spg $\omega\alpha$.C.

Theorem 3.14: Faintly $spg\omega\alpha$ -continuous image of a $spg\omega\alpha$ -connected space is connected.

Proof: Assume that S is not connected. Then there exist two non-empty open sets V_1 and V_2 such that $V_1 \cap V_2 = \varphi$ and $V_1 \cup V_2 = S$. Hence $f^{-1}(V_1) \cap f^{-1}(V_2) = \varphi$ and $f^{-1}(V_1)$ $\cup f^{-1}(V_2) = R$. As *f* is surjective, $f^{-1}(V_1)$, $f^{-1}(V_2)$ are nonempty subsets of R. Then V₁, V₂ $\in \theta$ -O(R), since V₁ and V₂ are both open and closed. As *f* is f.spg $\omega \alpha$.C, $f^{-1}(V_1)$, $f^{-1}(V_2) \in \text{spg}\omega \alpha$ -O(R) and hence R is not spg $\omega \alpha$ connected which is contradiction to the assumption. Hence S is connected.

Theorem 3.15: If f is f.spg $\omega \alpha$.C surjective and R is spg $\omega \alpha$ -compact then S is θ -compact.

Proof: Let f be f.spg ωa .C surjective. Let $\{G_{\alpha} : \alpha \in \lambda\}$ be any θ -open cover of S. Since f is f.spg ωa .C, $f^{-1}(G_{\alpha})$ is spg ωa -open cover of R. Then there exists a finite subcover $\{f^{-1}(G_i) : i = 1, 2, 3, ...\}$ in R, that is $\{G_i : i = 1, 2, 3..\}$ is a subfamily which covers the space S. Thus S is θ -compact. **Theorem 3.16:** Let f be f.spg ωa .C, injective function. If (i) S is θ -T₁ then R is spg ωa -T₁

(i) S is θ -T₂ then R is spg $\omega \alpha$ -T₂

Proof: (i) Let S be θ -T₁. Then for any $r_1, r_2 \in \mathbb{R}$ with $r_1 \cap r_2 = \varphi$, there exists V₁, V₂ $\in \theta$ -O(S) such that $f(r_1) \in V_1$, $f(r_2) \notin V_1$ and $f(r_1) \notin V_1$, $f(r_2) \in V_2$. Then $f^{-1}(V_1)$, $f^{-1}(V_2) \in \text{spg}\omega\alpha$ -O(R) as f is f.spg $\omega\alpha$ -C such that $r_1 \in f^{-1}(V_1)$, $r_1 \notin f^{-1}(V_2)$ and $r_2 \notin f^{-1}(V_1)$, $r_2 \in f^{-1}(V_2)$, implies that R is spg $\omega\alpha$ -T₁.

(ii) Let S be θ -T₂. Then for any $r_1, r_2 \in \mathbb{R}$, there exist V_1 , $V_2 \in \theta$ -O(S) such that $f(r_1) \in V_1$ and $f(r_2) \in V_2$. Then $f^{-1}(V_1), f^{-1}(V_2) \in \operatorname{spg}\omega\alpha$ -O(R) containing r_1 and r_2 respectively such that $f^{-1}(V_1) \cap f^{-1}(V_2) = \varphi$ as $V_1 \cap V_2 = \varphi$. Thus R is $\operatorname{spg}\omega\alpha$ -T₂.

REFERENCES

- 1. D. Andrijevic, Semi-open sets, Math. Vensik, 38(1986), 24-32.
- 2. D. S. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar. ,46 (1985), 83-92.
- N. Karthikeyan and N. Rajesh, On faintly g-continuous functions, Int. Jl. of Pure and Applied Maths. Vol. 92, (2014), 777-784.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- 5. P. E. Long and L. L. Herrington, The T_{θ} -topology and faintly continuous functions, Kyngupook Math. Jl. 22(1982), 7-14.
- T. Noiri and V. Popa, On Almost β-continuous functions, Acta Math. Hungar., 79 (4)(1998),329-339.
- V. Popa, Sur Certains decomposition de la continuite dans lens escapes topologists, Glansik Math. Ser., 14, (1978), 359-362.
- T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie, 34(82), (1990), 263-270.
- T. M. Nour, Almost ω-continuous functions, European Jl. Sci. Res., 8(1) (2005), 43-47.

10. M. M. Holliyavar, T. D. Rayanagoudar and Sarika M.

Patil, On semi-pre generalized $\omega\alpha$ -Closed Sets in Topological Spaces, Global Jl. of Pure and Appl. Maths., Vol. 13 (10), (2017), 7627-7635.

- Sarika M. Patil, T. D. Rayanagoudar and M. M. Holliyavar, spgωα-Continuous Functions in Topological Spaces, IOSR Jl. of Mathematics, Vol.19, Issue 03, Ser. 02, (2023), 55-57.
- M. M. Holliyavar, T. D. Rayanagoudar and Sarika M. Patil, Weaker Forms on Separation Axioms, Int. Journal of Mathematics and Computer Research, Vol. 12, Issue 6, 2024, Pp: 4324-4328.
- M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Mat., 4 (24) (1969),89-99.
- 14. M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. Jl., 16 (1968), 63-73.
- M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-381.