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1. INTRODUCTION AND PRELIMINARIES 

A crucial area of discussion in general topology is 

the concept of continuity. Signal and Signal [14] defined 

almost continuous functions as generalizations of 

continuity as weaker and stronger types of continuity. In 

1978, Popa [7] generalized Signal's notion of virtually 

continuity by defining almost quasi continuous functions.  

In this paper, a new class of weaker forms of 

spgα-continuous functions, known as almost spgα-

continuous functions was introduced using spgα-open 

sets. The examination of a new weaker class of functions 

known as faintly spgα-continuous, along with various 

characterizations is covered in the next section. Finally, 

some essential characteristics of almost spgα-functions 

are defined. 

Throughout this paper, spaces R and S always means 

topological spaces (R, τ) and (S, σ) and :(R, τ)  → (S, σ)  

(simply  : R → S) denotes a function  of a space (R, τ) into 

a space (S, σ). 

Definition1.1[10]: A subset A of  a  topological space R  is  

called  spgα-closed  if spcl(A) ⊆ U  whenever A ⊆ U  and 

U is α-open in R. 

The complement of a spgα-closed set is called spgα-open. 

Definition 1.2 [11]: A function  is said to be spgα-

continuous (spgα- irresolute) if for every open  (resp. 

spgα-open) set V in S, −1(V) is spgα-open in R. 

Definition 2.1. A function  is called almost continuous [14] 

(in the sense of Signal) at r R if for every open set V in S 

containing (r), there U  O(R, r) with (U)  cl(int(V)).  

If  is almost continuous at every point of R, then it is called 

almost continuous. 

 

2. ALMOST spg-CONTINUOUS FUNCTIONS 

In this section we introduced almost spgα-continuous 

functions in topological spaces and study some of their 

basic properties. 

Definition 2.1: A function : R → S is said to be almost 

spgα-continuous (a.spgα.C) if for each r  R and 

VO(S, (r)), there exists U spgα-O(R, r) such that 

(U)  int(cl(V)). 

Theorem 2.2: For a function , the following statements 

are equivalent: 

(i) f is a.spgα.C. 

(ii) for every V  RO(S), −1(V) spgα-O(R). 

(iii) for every F  RC(S), −1(F) spgα-C(R). 

(iv) If A  R, (spgα-cl(A))  clδ((A)). 

(v) If B  S, spgα-cl(−1(B)) −1(clδ(B)). 

(vi) for every F δ-c(S), −1(F) spgα-C(R). 

(vii) for every V δ-O(S), −1(V) spgα-O(R). 

Proof. (i) ⇒ (ii) Suppose V  RO(S) and r −1(V). Then 
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(r)  V. As V  O(R) and  is a.spgα.C, so U spgα-

O(R, r) with (U)  int(cl(V)) = V. Thus, r  U  

−1((U))  −1(V) and so, −1(V) spgα-O(R). 

(ii) ⇒ (v) Let B  S. Then −1(B)  S. By (iv), (spgα-

cl(−1(B))) cl-δ((−1(B))) cl(δ(B)) and so, spgα-

cl(−1(B))  −1((spgα-cl(−1(B))))  −1(cl-δ(B)). 

(v) ⇒ (vi) Let F  δ-C(S), then spgα-cl(−1(F)) 

−1(clδ(F)) = −1(F). 

So, spgα-cl(−1(F)) = −1(F) and hence −1(F) spgα-

C(R). 

(vi) ⇒ (vii) Let V  δ-O(S), then S - V  δ-C(S). By 

hypothesis, −1(S - V) spgα-C(R). Since −1(S - V)= R 

- −1(V), we have R - −1(V) spgα-C(R). Thus, −1(V) 

spgα-O(R). 

(vi) ⇒ (i) Let r R and V O(S) where (r)  V. Let us 

put W = int(cl(V)) and U = −1(W). As cl(V) is a closed in 

S, so W = int(cl(V))  δ-O(S) and from (vii), U = −1(W) 

spgα-O(R). Now, (r)  V = int(V)  int(cl(V)) = W, 

and so r −1(W)= U,  (U)= (−1(W))  W = int(cl(V)). 

Proposition 2.3: Every a.spgα.C is w.spgα.C. 

Proof. Let r R and V O(S) with (r)  V. As  is 

a.spgα.C, there exists U spgα-O(R) with r  U and  

(U)  int(cl(V))  cl(V). Hence,  is w.spgα.C. 

Theorem 2.4: For a function , the following statements 

are equivalent: 

(i)  is a.spgα.C, 

(ii) for each r R and V  O(S) containing (r), there 

exists U spgα-O(R, r) with (U) s-cl(V), 

(iii) for each r R and V  RO(S) containing (r), there 

exists U spgα-O(R, r) with (U)  V. 

(iv) for each r R and V  δ-O(S) containing (r), there 

exists U  spgα-O(R, r) with (U)  V. 

Theorem 2.5: For a function , the following statements 

are equivalent: 

(i)  is a.spgα.C, 

(ii) −1(int(cl(V))) spgα-O(R), for every V O(S). 

(iii) for every F  C(S), −1(cl(int(F))) spgα-C(R). 

Proof. (i)⇒(ii): Let V  O(R). We need to show that 

−1(int(cl(V))) spgα-O(R).  

Let r −1(int(cl(V))). Then  (r)  int(cl(V)) and 

int(cl(V)) which is a regular open in S. As  is a.spgα.C, 

so U spgα-O(R, r) with (U)  int(cl(V)), that is r  U 

 −1(int(cl(V))). In consequence, −1(int(cl(V))) spgα-

O(R).  

(ii)⇒(iii): Let F  C(S). Then S - F O(S). From (ii), 

−1(int(cl(S - F)))) spgα-O(R) and −1(int(cl(S - F))) = 

−1(int(S - int(F))) = −1(S - cl(int(F))) = R - −1(int(cl(F))). 

Hence −1(int(cl(F))) spgα-C(R). 

(iii)⇒(i): Let F RC(S). Then, F C(S). From (iii), 

−1(cl(int(F))) spgα-C(R). As F  RC(S), then 

−1(cl(int(F))) = −1(F). Therefore, −1(F) spgα-C(R). 

By Theorem 3.2,  is a.spgα.C. 

Theorem 2.6: Let  be a.spgα.C and V  O(S). If r  

spgα-cl((−1(V)) - (−1(V), then  (r) spgα-cl(V). 

Proof. Let r R with r  spgα-cl((−1(V)) - (−1(V). 

Suppose (r) spgα-cl(V). Then, H  spgα-O(S) 

containing (r) where H  V = . So, cl(H)  V = , and 

so int(cl(H))  V =  and int(cl(H)) is a regular open in R. 

As  is a.spgα.C, U spgα-O(R, r) with (U)  

int(cl(H)). Hence, (U)  V = . 

However, since r spgα-cl((−1(V), U  (−1(V) =  

holds for every U spgα-O(R, r), so (U)  V , we 

have a contradiction. Then it follows that (r) spgα-

cl(V). 

Definition 2.7: Let R be a space. A filter base * is said to 

be: 

(i) spgα-convergent to a point r in R, if for every U 

spgα-O(R, r), there exists B  Λ* with B  U. 

(ii) R-convergent [13] to a point r in R if for every U  

RO-(R, r), there exists B  Λ* such that B  U. 

Theorem 2.8: If  is a.spgα.C, then for each r R and 

filter base Λ* in R is spgα-converging to r, the filter base 

(Λ*) is R-convergent to (r). 

Proof. Let r R and Λ* be any filter base in R, which is 

spgα-converging to r. By Theorem 2.6, for any V RO-

(S) containing (r), there exists U spgα-O(R, r) with 

(U)  V.  

As Λ* is spgα-converging to r, there exists B  Λ* with 

B  U, that is (B) V. Hence the filter base (Λ*) is R-

convergent to (r). 

Definition 2.9: A net (rλ) is said to be spgα-convergent 

to a point r, if for every V spgα-O(R, r), there exists an 

index λ0 such that for λ ≥ λ0, rλ V. 

Theorem 2.10: If  is a.spgα.C, then for each point r R 

and each net (rλ) which is spgα-convergent to r, then the 

net ((rλ )) is R-convergent to f (r). 

Proof. The proof is similar to that of Theorem 2.7. 

Theorem 2.11: If  is a.spgα.C injective and S is r-T1, 

then R is spgα-T1. 

Proof. Suppose S is r-T1. For any distinct points r and s in 

R, (r)  (s). There exist V, W O(R) with (r)  V, (s) 

 V, (r)  W and (s)  W. As  is a.spgα.C, −1(V), 

−1(W) spgα-O(R) with r −1(V), s −1(V), r 

−1(W) and s −1(W), which shows that R is spgα-T1. 

Theorem 2.12: If  is a.spgα.C injective and S is r-T2, 

then R is spgα-T2. 

Proof. For any pair of distinct points r and s in R. Then by 

the injectivity of , (r)  (s). There exist disjoint U, V  

RO-(R) such that  (r)  U and (s)  V. As  is 

a.spgα.C, −1(U) spgα-O(R, r) and −1(V) spgα-

O(R, s). Thus, −1(U)  −1(V)=, as U  V = . So R is 

spgα-T2. 
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Definition 2.13.: A function  is said to be: 

(i) spgα-irresolute [11] if −1(V) is spgα-open in R for 

every spgα-open set V of S. 

Definition 2.14: A topological space R is said to be almost 

regular [10] if for any F  RC(R) and any point r R - F, 

there exist disjoint U, V  O(R) such that r  U and F  

V. 

Theorem 2.15: If  is a w.spgα.C and S is almost regular, 

then  is a.spgα.C. 

Proof. Let r  R and V O(S, (r)). By almost regularity 

of S, there exists spgα  RO(S) with (r)  spgα  

cl(spgα)  int(cl(V)). As  is w.spgα.C, there exists 

Uspgα-O(R, r) with (U)  cl(spgα)  int(cl(V)). 

Thus,  is a.spgα.C. 

Definition 2.16 [10]: A spgα-frontier of a A is denoted 

by spgα-Fr(A), is defined by spgα-Fr(A) = spgα- 

cl(A) spgα-cl(R - A). 

Theorem 2.17: The set of all points r R in which a 

function  is not a.spgα.C is identical with the union of 

spgα-frontier of the inverse images of regular open sets 

containing (r). 

Proof. Suppose  is not a.spgα.C at r  R. Then there 

exists V  RO(S) containing (r) such that U  (R - 

−1(V))  for every U spgα-O(R, r). Therefore, r 

spgα-cl(R - −1(V)) = R - spgα-int(−1(V)) and r 

−1(V). Thus, r spgα-Fr(−1(U)).  

Conversely, suppose  is a.spgα.C at r  R and V  

RO(S) containing (r). Then there exists U spgα-O(R, 

r) such that U  −1(V), that is r spgα-int(−1(V)). Thus, 

r  R - spgα-Fr(−1(V)). 

Theorem 2.18: If  is a.spgα.C, * is w.spgα.C with S 

is Hausdorff, then the set {r  R: (r)= *(r)} is spgα-

closed in R. 

Proof. Let A = {r  R: (r)= *(r)} and r  R - A. Then 

(r) ≠ *(r). As S is Hausdorff, there exist V, W  O(S) 

with (r)  V, *(r)  W and V  W = . Hence int(cl(V)) 

 cl(W) = . Since  is a.spgα.C, there exists U spgα-

O(R, r) with (U)  int(cl(V)). As * is w.spgα.C, there 

exists H spgα-O(R) such that *(H)  cl(W*). Now put 

U = spgα  H, then U spgα-O(R, r) and (U)  *(U) 

 int(cl(V))  cl(W) = . Therefore, we obtain U ∩ A = ∅ 

and hence A is spgα-C(R). 

Theorem 2.19: Suppose the product of two spgα-open 

sets is spgα-open. If 1: (R1, τ) → (S, σ) is w.spgα.C, 

2: (R2, τ) → (S, σ) is a.spgα.C and S is Hausdorff, then 

the set {(r1, r2) R1 x R2 : 1(r1)= 2(r2)} is spgα-closed 

in R1 x R2. 

Proof. Let A = {(r1, r2) R1 x R2 : 1(r1) = 2(r2)}. If (r1, r2) 

 (R1 x R2) – A, then 1(r1)  2 (r2). As S is Hausdorff, 

there exist disjoint open sets V1 and V2 in S with 1(r1)  

V1 and 2 (r2)  V2 and cl(V1) int(cl(V2)) = . As 1 (resp. 

2) is w.spgα.C (resp. a.spgα.C), there exists 

U1spgα-O(R1, r1) such that 1(U1)  cl(V1) (resp. 

U2spgα-O(R2, r2) with 2(spgα-cl(U1))  int(cl(V2))). 

Hence, (r1, r2)  U1 x U2  R1 x R2 – A. Thus, (R1 x R2) – 

A is spgα-open and so A is spgα-closed in R1 x R2. 

3. Faintly spgα-Continuous Functions 

Definition 3.1: A function : R → S is called faintly 

spgα-continuous (briefly f.spgα.C) at a point r  R if 

for each V  θ-O(S, (r)), there exists U spgα-O(R, r) 

such that (U)  V. 

If  has the above property at each point of R, then  is said 

to be f.spgα.C. 

Theorem 3.2: The following statements are equivalent for 

a function : 

(i)  is f.spgα.C 

(ii) for each V  θ-O(S), −1(V) spgα-O(R). 

(iii) for each F  θ-C(S), −1(F*) spgα-C(R). 

(iv)  is spgα.C. 

 (v) for every B  S, spgα-cl(−1(B))  −1(cl(B)). 

(vi) for every A  S, −1(int(A))  spgα-int(-1(A)). 

Proof: (i) → (ii) Let  be f.spgα.C and V -O(S) such 

that r  −1(V). Then there exists U spgα-O(R, r) with 

(U) V, that is r  U  −1(V). Thus −1(V) spgα-

O(R). 

(ii) → (i) Let r  R and V -O(S, (r)). From (ii), −1(V) 

spgα-O(R, r). Let U = −1(V), then (U)  V. Hence  

is f.spgα.C. 

(ii) → (iii) Let V -C(S), then S-V -O(R). From (ii), 

−1(S-V) = R - −1(V) spgα-O(R) and hence −1(V) 

spgα-C(R). 

(iii) → (ii) Let V -O(S), then S-V -C(S). From (iii), 

−1(S-V) = R - −1(V) spgα-C(S) and hence −1(V) 

spgα-O(R). 

From the definition 3.1, we can prove the other equivalent 

properties. 

Remark 3.3: Every spgα.C is f.spgα.C. 

Example 3.4: Let R = {r1, r2, r3} and  = {R, , {r1}, {r2, 

r3}} and  = {S, φ, {r1}, {r2}, {r1, r2}, {r2, r3}}. Then the 

identity function  is f.spgα.C but not spgα.C. 

Definition 3.5: A function  is said to be weakly spgα-

continuous (briefly w.spgα.C) if for each point r  R and 

for each V O(S, (r)), there exists U spgα-O(R, r) 

such that  (U)  cl(V). 

Theorem 3.6: Every weakly continuous function is 

f.spgα.C. 

Proof: Let r  R and V  θ-O(S, (r)). Then there exists 

W  O(S) such that (r)  W  V, that is (r)  W  cl(W) 

 V. By w.spgα.C, there exists U spgα-O(R) such 

that (U)  cl(W), that is (U)  cl(W)  V. Thus, for each 

V  θ-O(S, (r)), there exists U spgα-O(R, r) such that 

(U)  V. Hence  is f.spgα.C. 
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Theorem 3.7: Let  be f.spgα.C and S is regular space. 

Then  is spgα.C. 

Proof: Let V  O(S). As S is regular, V  θ-O(S). Since  

is f.spgα.C and from theorem 3.6, −1(V) spgα-O(R). 

Therefore for every V  O(S), −1(V) spgα-O(R). Thus 

 is spgα.C. 

Theorem 3.8: Every f.spgα.C functions is s.spgα.C. 

Proof: Let r  R and V be clopen set in S containing (r). 

Then, V  θ-O(S). Since  is f.spgα.C, there exists U 

spgα-O(R, r) such that (U)  V. Thus, for every V  

θ-O(S), (U)  V. Therefore  is s.spgα.C. 

Definition 3.9: Let R be TS. Since the intersection of two 

clopen sets of R is clopen, the clopen sets of R may be use 

as a base for a topology for R. This topology is called the 

ultra-regularization of τ and is denoted by τu. 

A topological space R is said to be ultra-regular if τ = τu. 

Theorem 3.10: The following statements are equivalent 

for a function : R → S, if S is ultra-regular space: 

(i)  is spgα.C 

(ii)  is f.spgα.C 

(iii)  is s.spgα.C. 

Proof: It follows from the theorem 3.2, 3.8 and definition 

3.9. 

Definition 3.11: A spgα-frontier of a subset A of a space 

R is defined as  

spgα-Fr(A) = spgα-cl(A) spgα-cl(R-A). 

Theorem 3.12: The set of all points r  R in which a 

function  is not f.spgα.C is the union of spgα-frontier 

of the inverse images of -open set containing  (r). 

Proof: Suppose  is not f.spgα.C at each point r  R. 

Then there exists V -O(S, (r)) such that (U) is not 

contained in V and hence r -cl(R − −1(V)).  

On the other hand, let r −1(V)  spgα-cl(−1(V)) and 

hence r spgα-cl(−1(V)). Therefore, we can observe that 

r spgα-fr(−1(V)).  

Conversely, assume that  is f.spgα.C at each point r  

R and V -O(S, (r)). Then, there exists U spgα-O(R, 

r) such that U  −1(V). Hence r spgα-int(−1(V)). 

Therefore r  spgα-fr(−1(V)). 

Theorem 3.13: Let  be a function and : (R, τ) → (R x S, 

τ x σ) the graph of  defined by spg(x) = (r, (r)) for 

every r  R. If  is f.spgα.C then  is f.spgα.C. 

Proof: Let U -O(S), then R x U -O(R x S). It follows 

that −1(U) = ()−1(R × U) spgα-O(R, r). Hence  is 

f.spgα.C. 

Theorem 3.14: Faintly spgα-continuous image of a 

spgα-connected space is connected.  

Proof: Assume that S is not connected. Then there exist 

two non-empty open sets V1 and V2 such that V1 V2 =  

and V1 V2 = S. Hence −1(V1)  −1(V2) =  and −1(V1) 

 −1(V2) = R. As  is surjective, −1(V1), −1(V2) are non-

empty subsets of R. Then V1, V2-O(R), since V1 and V2 

are both open and closed. As  is f.spgα.C, −1(V1), 

−1(V2) spgα-O(R) and hence R is not spgα-

connected which is contradiction to the assumption.  

Hence S is connected. 

Theorem 3.15: If  is f.spgα.C surjective and R is 

spgα-compact then S is -compact. 

Proof: Let  be f.spgα.C surjective. Let {Gα : α  λ} be 

any -open cover of S. Since  is f.spgα.C, −1(Gα) is 

spgα-open cover of R. Then there exists a finite subcover 

{−1(Gi) :i = 1, 2, 3, ...} in R, that is {Gi : i = 1, 2, 3..} is a 

subfamily which covers the space S. Thus S is -compact. 

Theorem 3.16: Let  be f.spgα.C, injective function. If  

(i) S is -T1 then R is spgα-T1 

(ii) S is -T2 then R is spgα-T2 

Proof: (i) Let S be -T1. Then for any r1, r2  R with r1 

r2 = , there exists V1, V2-O(S) such that (r1)  V1, 

(r2)  V1 and (r1) V1, (r2)  V2. Then −1(V1), −1(V2) 

spgα-O(R) as  is f.spgα.C such that r1−1(V1), 

r1−1(V2) and r2  −1(V1), r2  -1(V2), implies that R is 

spgα-T1. 

(ii) Let S be -T2. Then for any r1, r2 R, there exist V1, 

V2  -O(S) such that (r1)  V1 and (r2)  V2. Then 

−1(V1), −1(V2) spgα-O(R) containing r1 and r2 

respectively such that −1(V1)  −1(V2) =  as V1 V2 = 

. Thus R is spgα-T2. 
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