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In 1932 Whitney posed the problem that find an ear decomposition of a graph starting with an 

ear which is a cycle. In 1939 Robbins proved this result for 2-edge connected graphs. In 1986 

Laszlo et al. have given an efficient parallel algorithm for constructing ear decomposition of 

various types of graphs. In this paper, we survey an ear decomposition of several classes of 
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types of ear decompositions. In the end, we provide a list of some open problems related to ear 

decomposition of graphs. 
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1. INTRODUCTION 

In 1932 Whitney [36] posed the problem that find an ear 

decomposition of a graph starting with an ear which is a 

cycle. Whitney found an open ear decomposition for 2-vertex 

connected graphs, and Robbin [32] found the ear 

decomposition of 2-edge connected graph. After then 

Whitney generalizes this result for 3-vertex connected graph 

as a graph G = (V,E) with |V | ≥ 2 is a 3-vertex connected if 

and only if G has non separating ear decomposition. In 1939 

Robbin [32] have answered this problem for 2-edge 

connected graphs, and state that a graph is 2-edge connected 

if and only if it has an ear decomposition. 

In 1939 Robbin [32] introduced the ear decomposition of 

2-edge connected graphs a tool for proving the Robbin’s 

theorem that these are exactly the graphs that may be given a 

strongly connected orientations. Because of pioneering work 

of Whitney and Robbin on ear decomposition, an ear 

decomposition is sometimes also called WhitneyRobbin’s 

Synthesis[11]. Lovasz, Maon Schieber, Vishkin, Miller, and 

Ramchandran [23] provided an efficient parallel algorithm 

for constructing an ear decomposition of various types of 

graphs. 

Ear decomposition have number of uses, in particular, in 

computing the connectivity of graphs, strong connectivity of 

directed graphs. Ear decomposition has the flavor of general 

search technique in graphs. It arranges the vertices of the 

graph by partitioning them into paths. This enables further 

exploration of the graph in an orderly manner. Such a search 

technique is called an Ear-Decomposition Search(EDS). It is 

known that Depth-First Search(DFS) and Breadth-First 

Search(BFS) are main techniques for searching graphs. Ear 

decomposition may be used to characterize several important 

graph classes and as a part of efficient graph algorithms. They 

may also be generalized from graphs to matroid. For more 

details see [34] . Several important classes of graphs may be 

characterized as the graphs having certain types of ear 

decomposition. 

On a classical computers ear decomposition of 2-edge 

connected graphs and open ear decomposition of 2-vertex 

connected graphs may be found by greedy algorithm that find 

each ear one at time. The decomposition of ears allows us to 

systematically remove the nodes of degree greater than two. 

It is helpful in the context of parallel graph algorithm to 

increase the available parallelism in the computation and 

decrease the work required. 

 

2. PRILIMINARIES 

The following definitions can be found in Wilson [37] . 

Definition 2.1. A graph is G = (V,E) is a mathematical 

structure consisting of two sets V and E. The elements of V 

are called vertices, and the elements of E are called edges. 

https://doi.org/10.47191/ijmcr/v12i8.07
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A graph G is said to be a connected if every two vertices 

in G is connected by a path. 

Definition 2.2. A graph is said to be 2-vertex connected if 

minimum 2 vertices are needed to delete in order disconnect 

the graph. 

A graph is said to be 3-vertex connected if minimum 3 

vertices are needed to delete in order disconnect the graph. A 

graph is said to be 2-edge connected if minimum 2 edges are 

needed to delete in order disconnect the graph. 

A simple graph on n vertices is said to be a complete graph if 

each pair of distinct vertices are adjacent. It is denoted by Kn. 

The degree of a vertex is the number of edges with that vertex 

as an end point. 

Definition 2.3. A Planar Graph is a graph that can be drawn 

in the plane without crossing, that is no two edges intersect 

geometrically except at a vertex with which both are incident. 

Definition 2.4. Let G be a graph with vertex set V (G) and 

edge set E(G). A subset M of E(G) is called matching of G if 

no two of the edges in M are adjacent. 

Definition 2.5. A perfect matching in a graph is a subset of 

its edges with the property that each of its vertices is the 

endpoint of exactly one of the edges in the subset. 

Definition 2.6. A matching covered graph is a connected 

graph in which every edge belongs to at least one perfect 

matching. 

Definition 2.7. A matroid M consists of a non-empty finite 

set E and a non-empty collection B of subsets of E, called 

bases, satisfying the following properties: 

(1) no base properly contains another base 

(2) if B1 and B2 are bases and if e is any element of B, 

then there is an element f of B2 such that (B1 − {e})) 

∪ {f} is also a base. 

The following definitions are due to Bhavale and Waphare 

[2] . 

Definition 2.8. An ear of a loopless connected graph G is a 

subgraph of G such that it is a maximal path in which all 

internal vertices are of degree two in G or it is a cycle in 

which all but one vertex have degree two in G. If G is a cycle 

itself then that cycle is the only ear of G. 

An ear of of a graph G is called an open ear if the two end 

points do not coincide in G. 

Definition 2.9. Let G be a loopless connected graph. An ear 

decomposition of G is a partition of its set of edges into a 

sequence of ears E0,E1,...,Ek such that 

1) For each i, Ei is a cycle or a path of G 

2) E0 ∪ E1 ∪ ... ∪ Ei is a connected and having Ei as an ear of 

E0 ∪ E1 ∪ ... ∪ Ei for all i = 1,2,...,k. If Ei is a cycle then it 

is attached to E0 ∪ E1 ∪ ... ∪ Ei−1 by exactly one vertex. If 

Ei is a path then it is attached to E0 ∪ E1 ∪ ... ∪ Ei−1 by 

atleast one end vertex. Clearly . 

An ear decomposition is called open ear decomposition if 

two end points of each ear after the first are distinct from each 

other. The following definition is due to Whitney [36] . 

Definition 2.10. A non-separating ear decomposition is an 

open ear decomposition such that for each vertex V with one 

exception V has a neighbour whose first appearance in the 

decomposition is in a later ear than the first appearance of V 

. 

The following definitions are due to Eppistein [6] . 

Definition 2.11. 2-terminal series parallel graph is a graph 

that may be constructed by a sequence of series and parallel 

composition starting from a set of a single edge graph K2 with 

assigned terminals. 

Definition 2.12. A graph is called series graph if it is 2-

terminal series parallel graph when some two of vertices are 

regarded as a source and sink. 

The following definition is due to Lovasz [19] . 

Definition 2.13. A factor critical graph is a graph with n 

vertices in which every induced subgraph of n − 1 vertices 

has a perfect matching. 

The following definitions are due to Khuller [14] . 

Definition 2.14. A tree ear decomposition is a proper ear 

decomposition E0,E1,...,Ek in which each ear Ei should have 

both its endpoints on the same ear Ej, j < i. 

Definition 2.15. Nested ear decomposition is a tree ear 

decomposition such that within each ear the set of pairs of 

end points of other ears that lie within form a set of nested 

intervals. 

The following definition is due to Smith [35] . 

Definition 2.16. A graph is of bounded genus if you can 

always find some surface with a finite number of holes on 

which the graph can be drawn without edge crossings. 

 

3. APPLICATIONS OF EAR DECOMPOSITION 

In this section we will discuss in detail about some 

applications of ear decompositions like searching techniques 

in graphs, and connectivity of a graph. 

3.1. Serching Techniques. The linear time serial algorithm 

of Lempel et al. [18] for testing planarity of graphs uses the 

linear time serial algorithm of Even and Tarjan [7] for st-

numbering. This st-numbering algorithm is based on depth-

first search (DFS). A known conjecture states that DFS, 

which is a key technique in designing serial algorithms, is not 

manageable to poly-log time parallelism using around 

linearly (or even polynomially) many processors. The first 

contribution of this paper is a general method for searching 

efficiently in parallel undirected graphs, called ear 

decomposition search (EDS). The second contribution 

demonstrates the applicability of this search method. They 

present an efficient parallel algorithm for st-numbering in a 

biconnected graph. The algorithm runs in logarithmic time 

using a linear number of processors on a concurrent-read 

concurrent-write (CRCW) PRAM. 

In 1992 Vijaya Ramchandran [33] deals with a parallel 

algorithmic technique that has proved to be very useful in the 

design of efficient parallel algorithms for several problems 

on undirected graphs. She describe this method for searching 

undirected graphs, called open ear decomposition, and she 
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relate this decomposition to graph biconnectivity. She present 

an efficient parallel algorithm for finding this decomposition 

and relate it to a sequential algorithm based on depth-first 

search. She then apply open ear decomposition to obtain an 

efficient parallel algorithm for testing graph triconnectivity, 

and for finding the triconnnected components of a graph. 

In 2016 Pachorkar et al. [31] present a new GPU algorithm 

for obtaining an ear decomposition of a graph. Their 

implementation of the proposed algorithm on an NVidia 

Tesla K40c improves the state-of-the-art by a factor of 2.3x 

on average on a collection of real-world and synthetic graphs. 

The improved performance of their algorithm is due to our 

proposed characterization that identifies edges of the graph 

as redundant for the purposes of an ear decomposition. Then 

they study an application of the ear decomposition of a graph 

in computing the betweenness-centrality values of nodes in 

the graph. They use an ear decomposition of the input graph 

to systematically remove nodes of degree two. The actual 

computation of betweenness-centrality is done on the 

remaining nodes and the results are extended to nodes 

removed in the previous step. They show that this approach 

improves the state-of-the-art for computing betweenness-

centrality on an NVidia K40c GPU by a factor of 1.9x on an 

average over a collection of real-world graphs. 

In 2019 Havet and Nisse [12] studied the complexity of 

deciding whether a graph admits an ear decomposition with 

prescribed ear lengths. They proved that deciding whether a 

graph admits an ear decomposition with all ears of length at 

most l is polynomial-time solvable for all fixed positive 

integer l. On the other hand, deciding whether a graph admits 

an ear decomposition without ears of length in F is NP 

complete for any finite set F of positive integers. They also 

proved that, for any k ≥ 2, deciding whether a graph admits 

an ear decomposition with all ears of length 0 (mod k) is NP 

complete. 

3.2. Connectivity. In 1986 Miller and Ramachandran [28] 

present and efficient parallel algorithm for ear decomposition 

and a triconnectivity test based on it. Their algorithm runs in 

O(logm) parallel time using O(n + m) processors, where n is 

the number of vertices and m is number of edges in a graph. 

In 1994 Kavvadias et al. [16] shows that how to 

decompose efficiently in parallel any graph into a number ¯γ 

of outerplanar subgraphs (called hammocks) satisfying 

certain separator properties. They achieve this decomposition 

in O(logn log logn) time using O(n + m) CREW PRAM 

processors for an n-vertex m-edge graph. This decomposition 

provides a general framework for solving graph problems 

efficiently in parallel. Its value is demonstrated by using it to 

improve previous bounds for shortest paths and related 

problems in the class of sparse graphs which includes planar 

and bounded genus graphs. 

In 2000 Kazmierczak and Radhakrishnan [15] present an 

asynchronous distributed algorithm to determine an ear 

decomposition of an arbitrary, connected, bidirectional 

network containing n-nodes and m-links which uses O(m) 

messages and which can be completed in O(n) time. Using 

the ear decomposition, they obtain two results for a 

distributed network as the distributed ear decomposition 

algorithm can be used to test biconnectivity, determine 

biconnected components, find cutpoints and bridges using 

O(m) messages in O(n) time. Also the distributed ear 

decomposition algorithm can be used to test if a biconnected 

network is outerplanar using O(n) messages in O(n) time, and 

if the network is outerplanar, the embedding is also given 

using the same message and time complexity. 

In 2017 Dutta et al. [5] studied an ear decomposition of a 

graph G is a partition of the edge set of G into a sequence of 

edge-disjoint paths, such that only the end vertices of each 

path appear in earlier paths. For a graph on n vertices and m 

edges, the state-of-art algorithm for obtaining an ear 

decomposition by Schmidt takes O(m + n) time. They design 

and implement a new algorithm to obtain an ear 

decomposition for a biconnected graph, whose running time 

O(m + n). In practice, however, their experiments reveal that 

the proposed algorithm runs at least 2 times faster than 

Schmidts algorithm. The speed increases as the graph gets 

denser. 

In 2017 Dutta et al. [8] studied the applicability of an ear 

decomposition of graphs to problems such as all-pairs-

shortest paths and minimum cost cycle basis. Through 

experimentation they show that the resulting solutions are 

scalable in terms of both memory usage and also their 

speedup over best known current implementations. They 

believe that their techniques have the potential to be relevant 

for designing scalable solutions for other computations on 

large sparse graphs. 

In 1999 Franzblau [10] proved that the existence of two 

natural variations on ear decomposition can be tested in 

polynomial time. The first is a weak long-ear decomposition 

in which every ear (path) is either disconnecting or is at least 

as long as a given bound B. The second is a strong short-ear 

decomposition, in which every ear is non-disconnecting and 

has length at most B. 

 

4. TYPES OF EAR DECOMPOSITION 

In this section we will discuss in detail about some types 

of ear decomposition like canonical ear decomposition, 

optimal ear decomposition etc. 

4.1. Canonical Ear Decomposition. In 1983 Lovasz [20] 

study the technique of ear decomposition of matching 

covered graphs. Also he proved that a non-bipartite matching 

covered graph contains K4 or K2 ⊕ K3 (the triangular prism). 

Using this result they give a new characterization of those 

graphs whose matching and covering numbers are equal. 

Then he apply this results to the theory of 2-critical graphs. 

Also he proved the canonical ear decomposition theorem 

stated as Every non-bipartite matching covered graph G has 

a canonical ear decomposition. 
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In 1998 Carvalho et al. [26] shows that every matching 

covered graph G different from K2 has atleast ∆ edge-disjoint 

removable ears, where ∆ is the maximum degree vertex of G. 

This shows that any matching covered graph G has atleast ∆! 

different ear decompositions,and thus is a generalization of 

the fundamental theorem of Lovasz and Plummer [23] 

establishing the existence of ear decompositions. They also 

show that every brick G different from K4 and C6 has ∆ − 2 

edges, each of which is a removable edge in G, that is, an 

edge whose deletion from G results in a matching covered 

graph. This generalizes a well known theorem of Lovasz. 

Using this theorem, they give a simple proof of another 

theorem due to Lovasz, which says that every non-bipartite 

matching covered graph has a canonical ear decomposition, 

that is, one in which either the third graph in the sequence is 

an odd-subdivision of K4 or the fourth graph in the sequence 

is an odd subdivision of C6. This method in fact shows that 

every non-bipartite matching covered graph has a canonical 

ear decomposition which is optimal, that is, one which has as 

few double ears as possible. 

In 2005 Carvalho et al. [24] gives main result is an O(nm)-

time (deterministic) algorithm for constructing an ear 

decomposition of a matching-covered graph, where n and m 

denote the number of nodes and edges. The improvement in 

the running time comes from new structural results that give 

a sharpened version of Lovsz and Plummer’s [22] Two-Ear 

theorem. Their algorithm is based on O(nm)-time algorithms 

for two other fundamental problems in matching theory, 

namely, finding all the allowed edges of a graph, and finding 

the canonical partition of an elementary graph. 

In 2020 Hailun Zheng [39] found the first non-octahedral 

balanced 2-neighborly 3-sphere and the balanced 2-

neighborly triangulation of the lens space L(3,1). Each 

construction has 16 vertices. He proved that there exists a 

balanced 3-neighborly non-spherical 5-manifold with 18 

vertices. Also he proved that the rank-selected subcomplexes 

of a balanced simplicial sphere do not necessarily have an ear 

decomposition. 

4.2. Optimal Ear decomposition. In 2002 Marcelo et al. [27] 

studied about optimal ear decomposition. A Petersen brick is 

a graph whose underlying simple graph is isomorphic to the 

Petersen graph. For a matching covered graph G, b(G) denote 

the number of bricks of G, and p(G) denote the number of 

Petersen bricks of G. An ear decomposition of G is optimal 

if among all ear decompositions of G, it uses the least 

possible number of double ears. Marcelo et al. proved that the 

number of double ears in an optimal ear decomposition of a 

matching covered graph G is b(G) + p(G). In particular, if G 

is a brick that is not a Petersen brick, then there is an ear 

decomposition of G with exactly one double ear. They give 

an alternative proof of L. Lovsz’ matching lattice 

characterization theorem. 

In 2005, Lee et al. [17] studied about WDM-based 

network as n WDM-based network, a single fiber abortion 

may cause many logical lightpaths failures such that 

embedded logical topology of a WDM network may become 

disconnected. And a huge amount of data of a single link 

carried is lost by this link errors. For this reason Lee et al. 

propose an efficient survivable routing approach, which is 

based on the technique of ear-decomposition, to create 

protected routing of the embedded logical topology that can 

withstand a physical link failure. Their approach divides the 

logical topology into several ears, and restricts the lightpaths 

of the same ear are routed by using disjoint physical links. To 

solve the survivable problem is NP-complete, and they 

formulate the survivable routing problem as an ILP problem 

based on the results of ear decomposition. And their 

experiments has shown that the solution generated from their 

ILP achieves the two results namely a high performance in 

terms of the survivable routing and a better performance than 

previous research results for the balance of traffic loads. 

4.3. Odd ear decomposition. In 2006 B. Szegedy and C. 

Szegedy [34] studied about matroids. Matroids admitting an 

odd ear-decomposition can be viewed as natural 

generalizations of factor-critical graphs. They proved that a 

matroid representable over a field of characteristic 2 admits 

an odd ear-decomposition if and only if it can be represented 

by some space on which the induced scalar product is a non-

degenerate symplectic form. They also show that, for a 

matroid representable over a field of characteristic 2, the 

independent sets whose contraction admits an odd ear-

decomposition form the family of feasible sets of a 

representable ∆-matroid. 

4.4. Convex Ear decomposition. In 2007 R Woodroofe [38] 

consider the problem of constructing a convex ear 

decomposition for a poset. The usual technique, introduced 

by Nyman and Swartz, starts with a CL-labeling and uses this 

to shell the ears of the decomposition. He axiomatize the 

necessary conditions for this technique as a CL-ced or EL-

ced. He found an EL-ced of the d-divisible partition lattice, 

and a closely related convex ear decomposition of the coset 

lattice of a relatively complemented finite group. Along the 

way, he construct new EL-labelings of both lattices. The 

convex ear decompositions so constructed are formed by face 

lattices of hypercubes. He then proceed to show that if two 

posets P1 and P2 have convex ear decompositions (CL-ceds), 

then their products P1 × P2 also have a convex ear 

decompositions (CL-ceds). 

In 2008 Marcelo et al. [25] introduce the concept of 

combed graphs and present an ear decomposition theorem for 

this class of graphs. This theorem includes the well known 

ear decomposition theorem for matching covered graphs 

proved by Lovasz and Plummer [23]. Then they use the ear 

decomposition theorem to show that any two edges of a 2-

connected combed graph lie in a balanced circuit of an 

equivalent combed graph. This result generalises the theorem 

that any two edges in a matching covered graph with at least 

four vertices belong to an alternating circuit. 
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4.5. Nested ear decomposition. In 1992 David Eppstein [6] 

proved that a 2-vertex connected graph is series parallel if 

and only if it has nested ear decomposition. Also he gives an 

algorithm for recognizing directed series parallel graphs 

based on a structural characterization of series parallel graphs 

in terms of their ear decompositions. This algorithm can 

recognize undirected as well as directed series parallel 

graphs. 

In 1996 Coullard et al. [3] gives an algorithm for 

computing an e-based ear decomposition (that is, an ear 

decomposition of every circuit of which contains element) of 

a matroid using only a polynomial number of elementary 

operations and port oracle calls. In the case that matroid M is 

binary, the incidence vectors of the circuits in the ear 

decomposition form a matrix representation for M. Thus, this 

algorithm solves a problem in computational learning theory; 

it learns the class of binary matroid port (BMP) functions 

with membership queries in polynomial time. 

In 1989 Samir Khuller [14] gives a definition of tree ear 

decomposition. For more details see[14] . In 1993, Frank [9] 

proved that it is possible to find the ear decomposition with 

fewest even ears in any graph. For more details see [9]. 

In 2024, Tibor Jordn [13] prove that if the two-

dimensional rigidity matroid of a graph G on at least seven 

vertices is connected, and G is minimal with respect to this 

property, then G has at most 3n − 9 edges. This bound, which 

is best possible, extends Dirac’s bound [4] on the size of 

minimally 2-connected graphs to dimension two. The bound 

also sharpens the general upper bound of Murty [29] for the 

size of minimally connected matroids in the case when the 

matroid is a rigidity matroid of a graph. Their proofs rely on 

ear-decompositions of connected matroids and on a new 

lower bound on the size of the largest circuit in a connected 

rigidity matroid, which may be of independent interest. They 

use these results to determine the tight upper bound on the 

number of edges in a minimally redundantly rigid graph in 

two dimensions. Furthermore, as an application of their proof 

methods, they gives a new proof for Murty’s theorem. 

 

5. POSET DISMANTLABLE BY DOUBLY 

IRREDUCIBLE 

In 2020, Bhavale and Waphare [1] introduced the concept 

of poset dismantlable by doubly irreducible. Also they gives 

the following definitions. 

Definition 5.1. A partially ordered set (in short poset) is a set 

P of elements together with a binary relation ≤ on P which is 

reflexive, antisymmetric and transitive. 

Definition 5.2. An element x ∈ P is an upper bound for a 

subset S ⊂ P if s ≤ x for all s ∈ S. 

An upper cone of S denoted by Su is defined as Su = {x ∈ P 

| s ≤ x, ∀s ∈ S}. 

Definition 5.3. The least element of Su is called join of S, 

denoted by ∨S. 

An lower cone of S denoted by Sl is defined as Sl = {x ∈ P 

| x ≤ s, ∀s ∈ S}. 

Definition 5.4. The greatest element of Sl is called meet of S, 

denoted by ∧S. 

In particular, ∨{a,b} and ∧{a,b} are respectively denoted 

by a ∨ b and a ∧ b. 

Definition 5.5. A lattice is a poset in which every pair of 

elements has the meet and the join. 

Definition 5.6. An element x in a lattice L is called join-

reducible (meet-reducible) in L, if there exist y,z ∈ L both 

distinct from x such that y ∨ z = x(y ∧ z = x). 

Definition 5.7. An element x in a lattice L is called join-

irreducible (meet-irreducible) if it is not join-reducible 

(meet-reducible). 

Definition 5.8. An element x in a lattice L is called doubly 

irreducible if it is both join-irreducible and meet-irreducible. 

Definition 5.9. An element a of a poset P is called doubly 

irreducible in P if a has at most one upper cover and at most 

one lower cover in P. 

Definition 5.10. A finite lattice L of order n is called 

dismantlable if there exists a chain L1 ⊂ L2 ⊂ ... ⊂ Ln(= L) of 

sublattices of L such that |Li| = i for all i. 

Thus a dismantlable lattice is a lattice which can be 

completely dismantled by removing one element at each 

stage. 

Definition 5.11. An element a of a poset P is called 

irreducible in P if a is an isolated element or a has precisely 

one upper cover or precisely one lower cover in P. 

Definition 5.12. An n-element poset P is called dismantlable 

by irreducibles if there exists a chain P1 ⊂ P2 ⊂ ... ⊂ Pn(= P) 

of subposets of P such that P1 has one element and Pi−1 = Pi 

x, where x is an irreducible element in Pi, for all i. 

In 2014 Bhavale and Waphare [2] found an ear 

decompsition of a covering graph of poset by doubly 

irreducible element. Also gives the following results. 

Theorem 5.13. [2] Let P be a poset dismantlable by doubly 

irreducibles and G be a covering graph of P which is a tree. 

Let E be a maximal path in G. Then G has an ear 

decomposition E0,E1,...,Ek such that E0 = E and G = E0 ∪ E1 ∪ 

... ∪ Ek. 

Theorem 5.14. [2] Let P be a poset dismantlable by doubly 

irreducibles and G be a covering graph of P which is 

connected, loopless and contains a cycle C such that 

E0 = C and G = E0 ∪ E1 ∪ ... ∪ Ek. 

 

6. OPEN PROBLEMS 

(1) Find an ear decomposition of graph starting with an 

ear which is a cycle. 

(2) Find an ear decomposition of graph starting with an 

ear which is a path. 

(3) Find an ear decomposition of digraph starting with 

an ear which is a cycle. 

(4) Find an ear decomposition of digraph starting with 

an ear which is a path. 

(5) Find an ear decomposition of a covering graph of 

poset dismantlable by irreducibles starting with an 

ear which is a cycle. 
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(6) Find an ear decomposition of a covering graph of 

poset dismantlable by irreducibles starting with an 

ear which is a path. 
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