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Abstract

We introduce the concept of congruence on pseudo-complemented
ADL’s and study on certain properties of these. Mainly, in this paper
all subdirectly irreducible pseudo-complemented ADL’s are character-
ized.
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1 Introduction

In [4], W.H. Cornish defined a congruence Θ on a pseudo-complemented dis-
tributive lattice (L,∨,∧, ∗, 0, 1) as a congruence on the lattice (L,∨,∧, 0, 1)
which is also compatible with the unary operation ∗ and called such a con-
gruence as a ∗−congruence. The concept of an Almost Distributive Lattice
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(ADL) was introduced by Swamy and Rao [8] as a common abstraction of
several lattice theoretic and ring theoretic generalizations of Boolean alge-
bra and Boolean rings. Swamy, Rao and Rao [9] have introduced the notion
of pseudo-complementation on an ADL and proved that the class of pseudo-
complemented ADL’s is equationally definable. It was observed that an ADL
can have more than one pseudo-complementation. In this paper we prove
that the compatible property for a pseudo-complementation ∗ on an ADL A
is independent of any pseudo-complementation on A. In the sense that if Θ is
a congruence on an ADL A and ∗,+ are pseudo-complementations on A, then
(a∗, b∗) ∈ Θ if and only if (a+, b+) ∈ Θ for all a, b ∈ A. With is motivation, we
introduce the concept of congruence on a pseudo-complemented ADL A. The
main purpose of this paper is to characterize subdirectly irreducible pseudo-
complemented ADL’s. In particular we characterize subdirectly irreducible
discrete ADL.

2 Preliminaries

We first recall certain elementary definitions and results concerning Almost
Distributive Lattices. These are collected from [8] and [9].

Definition 2.1. An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an
Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following
identities

(1). 0 ∧ a = 0

(2). a ∨ 0 = a

(3). a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(4). (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(5). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(6). (a ∨ b) ∧ b = b.

Any distributive lattice bounded below is an ADL, where 0 is the smallest
element. Also, a commutative regular ring (R,+, ., 0, 1) with unity can be
made into an ADL by defining the operations ∧ and ∨ on R by

a ∧ b = a0b and a ∨ b = a+ b− a0b,

where, for any a ∈ R, a0 is the unique idempotent in R such that aR = a0R
and 0 is the additive identity in R. Further any nonempty set X can be made
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into an ADL by fixing an arbitrarily choosen element 0 in X and by defining
the operations ∧ and ∨ on X by

a ∧ b =

{
0, if a = 0

b, if a ̸= 0
and a ∨ b =

{
b, if a = 0

a, if a ̸= 0.

This ADL (X,∧,∨, 0) is called a discrete ADL. An ADL A is said to be
associative ADL if the operation ∨ on A is associative. Through out this
paper, by an ADL we always mean an associative ADL only.

Definition 2.2. Let A be an ADL. For any a and b ∈ A, define

a ≤ b if and only if a = a ∧ b (this is equivalent to a ∨ b = b).

Then ≤ is a partial order on A.

Theorem 2.3. The following hold for any a, b and c in an ADL A.

(1). a ∧ 0 = 0 = 0 ∧ a and a ∨ 0 = a = 0 ∨ a

(2). a ∧ a = a = a ∨ a

(3). a ∧ b ≤ b ≤ b ∨ a

(4). a ∧ b = a⇔ a ∨ b = b

(5). a ∧ b = b⇔ a ∨ b = a

(6). (a ∧ b) ∧ c = a ∧ (b ∧ c) (i.e., ∧ is associative)

(7). a ∨ (b ∨ a) = a ∨ b

(8). a ≤ b⇒ a ∧ b = a = b ∧ a ⇔ a ∨ b = b = b ∨ a

(9). (a ∧ b) ∧ c = (b ∧ a) ∧ c

(10). (a ∨ b) ∧ c = (b ∨ a) ∧ c

(11). a ∧ b = b ∧ a⇔ a ∨ b = b ∨ a

(12). a ∧ b = inf{a, b} ⇔ a ∧ b = b ∧ a⇔ a ∨ b = sup{a, b}.

An element m ∈ A is said to be maximal if m ≤ x implies m = x.
It can be easily observed that m is maximal if and only if m ∧ x = x for
all x ∈ A. A non-empty subset I of A is called an ideal (filter) of A if
a ∨ b ∈ I (a ∧ b ∈ I) and a ∧ x ∈ I (x ∨ a ∈ I) whenever a, b ∈ I and x ∈ A.
For any a ∈ A, (a] = {a ∧ x : x ∈ A} is the principal ideal generated by a
and [a) = {x ∨ a : x ∈ A} is the principal filter generated by a.
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Definition 2.4. An equivalence relation θ on an ADL A is called a congru-
ence if θ is compatible with ∧ and ∨, in the sense that, for any a, b, c, d ∈
A, (a, b) and (c, d) ∈ θ implies (a∧c, b∧d) ∈ θ and (a∨c, b∨d) ∈ θ. We denote
the zero congruence on A by ∆A. That is ∆A = {(x, y) ∈ A× A : x = y}

Definition 2.5. Let A be an ADL. A mapping a 7→ a∗ of A into itself is
called a pseudo-complementation on A if the following conditions are satisfied
for any a and b ∈ A.

(1) a ∧ a∗ = 0

(2) a ∧ b = 0 ⇒ a∗ ∧ b = b

(3) (a ∨ b)∗ = a∗ ∧ b∗

An ADL with a pseudo-complementation is called a pseudo-complemented
ADL.

Example 2.6. Let X be a discrete ADL and, for any arbitrarily fixed x ̸= 0
in X, define the unary operation ∗ on X by

a∗ =

{
0, if a ̸= 0

x, if a = 0

Then ∗ is a pseudo complementation on X. Here, with each x ̸= 0 in X, we
obtain a pseudo complementation on X.

Theorem 2.7. Let ∗ be a pseudo complementation on an ADL A. Then the
following hold for any a and b ∈ A.

(1) 0∗ is a maximal element in A.

(2) m∗ = o for all maximal elements m.

(3) 0∗∗ = 0

(4) a∗ ≤ 0∗

(5) a∗ ∧ a = 0 (In fact, a ∧ b = 0 ⇔ b ∧ a = 0 )

(6) a∗∗ ∧ a = a

(7) a∗∗∗ = a∗

(8) a ≤ b⇒ b∗ ≤ a∗
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(9) a∗ ∧ b∗ = b∗ ∧ a∗ and a∗ ∨ b∗ = b∗ ∨ a∗

(10) a ∧ b = 0 ⇔ a∗∗ ∧ b = 0 ⇔ a ∧ b∗∗ = 0 ⇔ a∗∗ ∧ b∗∗ = 0

(11) (a ∧ b)∗ = (b ∧ a)∗ and (a ∨ b)∗ = (b ∨ a)∗

(12) a∗ ∧ b = (a ∧ b)∗ ∧ b

(13) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ = b∗∗ ∧ a∗∗.
Theorem 2.8. Let ∗ and + be two pseudo-complementations on an ADL A.
Then the following hold for any a and b ∈ A.

(1) a∗ ∧ a+ = a+

(2) a∗+ = a++

(3) a∗ ∧ 0+ = a+

(4) a∗ = b∗ ⇔ a+ = b+

(5) a∗ = 0 ⇔ a+ = 0

(6) a∗ ∨ a∗∗ = 0∗ ⇔ a+ ∨ a++ = 0+

3 Congruences on pseudo-complemented ADLs

In this section, we introduce the concept of congruence on a pseudo-
complemented ADL A by considering any pseudo- complementation on A as
one of the fundamental operations on the algebra A.

Before going to the main text we prove an important lemma which shows
that the compatible property for a pseudo-complementation ∗ on A is inde-
pendent of any pseudo-complementations on A.

Lemma 3.1. Let θ be a congruence relation on an ADL A and ∗,+ be pseudo-
complementations on A. Then θ is compatible with ∗ if and only if it is so
with +.

Proof. For any a ∈ A we have that

a
∗
= a+ ∧ 0∗ and a+ = a∗ ∧ 0+(from Theorem 2.8(3))

Suppose θ is compatible with ∗. Then,

(a, b) ∈ θ ⇒ (a∗, b∗) ∈ θ
⇒ (a∗ ∧ 0+, b∗ ∧ 0+) ∈ θ
⇒ (a+, b+) ∈ θ .

Therefore θ is compatible with +. Converse is similar.
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Definition 3.2. An equivalence relation θ is said to be a congruence on a
pseudo-complemented ADL A if θ is compatible with ∨,∧ and any pseudo-
complementation on A.

In the following we give different examples of congruences on pseudo-
complemented ADL’s.

Example 3.3. Let D be a discrete ADL with more than two elements and
define

Φ = {(a, b) ∈ D ×D : a = 0 = b or both a ̸= 0 and b ̸= 0}.

Then Φ is a non-zero congruence on the pseudo-complemented ADL D.

Example 3.4. Let D be discrete ADL with more then three elements.
Let 0 ̸= x ∈ D. Define

Θ = {(a, b) ∈ D ×D : a = b or a, b ∈ D − {0, x}}

Then Θ is a non-zero congruence on the pseudo-complemented ADL D.

Theorem 3.5. Let A be an ADL and ∗ a pseudo-complementation on A.
Define

∼= {(a, b) ∈ A× A : a ∧ b = b and b ∧ a = a}.
Then ∼ is a congruence on the pseudo-complemented ADL A.

Proof. It is easy to prove that ∼ is reflexive and symmetric.
Let (a, b), (b, c) ∈ ∼. Then a ∧ b = b and b ∧ a = a, b ∧ c = c and c ∧ b = b.
Now, a ∧ c = b ∧ a ∧ c = a ∧ b ∧ c = b ∧ c = c and

c ∧ a = b ∧ c ∧ a = c ∧ b ∧ a = b ∧ a = a.
Therefore (a, c) ∈ ∼ and hence ∼ is an equivalence relation on A.
Let (a, b), (c, d) ∈ ∼. Then a ∧ b = b, b ∧ a = a, c ∧ d = d and d ∧ c = c.

Now, (a ∧ c) ∧ (b ∧ d) = a ∧ c ∧ b ∧ d = a ∧ b ∧ c ∧ d = b ∧ d.
Similarly, (b ∧ d) ∧ (a ∧ c) = a ∧ c. Therefore (a ∧ c, b ∧ d) ∈ ∼.

Now, (a ∨ c) ∧ (b ∨ d) = ((a ∨ c) ∧ b) ∨ ((a ∨ c) ∧ d)
= ((a ∧ b) ∨ (c ∧ b)) ∨ ((a ∧ d) ∨ (c ∧ d))
= (b ∨ (c ∧ b)) ∨ ((a ∧ d) ∨ d)
= b ∨ d

and similarly, (b ∨ d) ∧ (a ∨ c) = a ∨ c. Therefore (a ∨ c, b ∨ d) ∈ ∼.
Let (a, b) ∈ ∼. Then a∧b = b and b∧a = a and hence a∨b = a and b∨a = b.
Now, a∗ ∧ b∗ = (a∨ b)∗ = (b∨ a)∗ = b∗ and b∗ ∧ a∗ = (b∨ a)∗ = (a∨ b)∗ = a∗.
Therefore (a∗, b∗) ∈∼. Hence∼ is a congruence on the pseudo-complemented
ADL A.
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Theorem 3.6. Let A be an ADL and ∗ a pseudo-complementation on A.
For any nonempty subset I of A such that x ∨ y ∈ I for all x, y ∈ I, define

Θ(I) = {(a, b) ∈ A× A : a ∧ x∗ = b ∧ x∗ for some x ∈ I}

Then, Θ(I) is a congruence on the pseudo-complemented ADL A.

Proof. Clearly Θ(I) is reflexive and symmetric. Let (a, b), (b, c) ∈ Θ(I).
Then a∧x∗ = b∧x∗ and b∧y∗ = c∧y∗ for some x, y ∈ I. Now, a∧ (x∨y)∗ =
a∧x∗∧y∗ = b∧x∗∧y∗ = x∗∧b∧y∗ = x∗∧c∧y∗ = c∧x∗∧y∗ = c∧(x∨y)∗ and
x ∨ y ∈ I. Therefore (a, c) ∈ Θ(I) and hence Θ(I) is an equivalence relation
on A. Let (a, b) and (c, d) ∈ Θ(I). Then a ∧ x∗ = b ∧ x∗ and c ∧ y∗ = d ∧ y∗
for some x, y ∈ I.

Now (a ∧ c) ∧ (x ∨ y)∗ = (a ∧ c) ∧ x∗ ∧ y∗

= a ∧ x∗ ∧ c ∧ y∗

= b ∧ x∗ ∧ d ∧ y∗

= b ∧ d ∧ x∗ ∧ y∗

= (b ∧ d) ∧ (x ∨ y)∗

and (a ∨ c) ∧ (x ∨ y)∗ = (a ∨ c) ∧ (x∗ ∧ y∗)
= (a ∧ x∗ ∧ y∗) ∨ (c ∧ x∗ ∧ y∗)
= (b ∧ x∗ ∧ y∗) ∨ (x∗ ∧ c ∧ y∗)
= (b ∧ x∗ ∧ y∗) ∨ (x∗ ∧ d ∧ y∗)
= (b ∧ x∗ ∧ y∗) ∨ (d ∧ x∗ ∧ y∗)
= (b ∨ d) ∧ (x∗ ∧ y∗)
= (b ∨ d) ∧ (x ∨ y)∗.

Therefore (a ∧ c, b ∧ d) and (a ∨ c, b ∨ d) ∈ Θ(I). Thus Θ(I) is a congruence
relation on the ADL A. Again let (a, b) ∈ Θ(I). Then a ∧ x∗ = b ∧ x∗ for
some x ∈ I.
Now, a∗ ∧ x∗ = (a ∧ x∗)∗ ∧ x∗ (by 2.7(12)) = (b ∧ x∗)∗ ∧ x∗ = b∗ ∧ x∗.
Therefore (a∗, b∗) ∈ Θ(I) and hence Θ(I) is a congruence on pseudo-complemented
ADL A.

Theorem 3.7. Let A be an ADL and ∗ a pseudo-complementation on A.
For any nonempty subset F of A such that x∧ y ∈ F for all x, y ∈ F , define

ψ(F ) = {(x, y) ∈ A× A : x ∧ a∗∗ = y ∧ a∗∗ for some a ∈ F}

Then, ψ(F ) is a congruence on the pseudo-complemented ADL A.
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Proof. This is similar to above.

Theorem 3.8. Let A be an ADL and ∗ a psuedo- complimentation on A and
F be a filter of A, define

θF = {(a, b) ∈ A× A : x ∧ a = x ∧ b for some x ∈ F}.

Then θF is a congruence on the pseudo-complemented ADL A.

Proof. It is easy to prove that θF is reflexive and symmetric.
Let (a, b), (b, c) ∈ θF . Then x∧a = x∧ b and y∧ b = y∧ c, for some x, y ∈ F .
Then x∧ y ∈ F and x∧ y ∧ a = y ∧ x∧ a = y ∧ x∧ b = x∧ y ∧ b = x∧ y ∧ c.
Therefore (a, c) ∈ θF and hence θF is an equivalence relation on A. Let
(a, b), (c, d) ∈ θF . Then x ∧ a = x ∧ b and y ∧ c = y ∧ d for some x, y ∈ F .
Now, x ∧ y ∧ a ∧ c = x ∧ a ∧ y ∧ c = x ∧ b ∧ y ∧ d = x ∧ y ∧ b ∧ d and

x ∧ y ∧ (a ∨ c) = (x ∧ y ∧ a) ∨ (x ∧ y ∧ c)
= (y ∧ x ∧ a) ∨ (x ∧ y ∧ d)
= (y ∧ x ∧ b) ∨ (x ∧ y ∧ d)
= ((x ∧ y) ∧ b) ∨ ((x ∧ y) ∧ d)
= (x ∧ y) ∧ (b ∨ d).

Therefore (a ∧ c, b ∧ d) and (a ∨ c, b ∨ d) ∈ θF . Finally
(a, b) ∈ θF ⇒ x ∧ a = x ∧ b for some x ∈ F ⇒ x ∧ b ∧ a∗ = 0 ⇒ b ∧ x ∧ a∗ =
0 ⇒ b∗ ∧ x ∧ a∗ = x ∧ a∗ ⇒ x ∧ b∗ ∧ a∗ = x ∧ a∗ ∧ b∗ = x ∧ a∗(∵ a∗, b∗ ≤ 0∗)
Similarly, we can obtain that x ∧ a∗ ∧ b∗ = x ∧ b∗ and hence x ∧ a∗ = x ∧ b∗.
Therefore (a∗, b∗) ∈ θF . Thus θF is a congruence on the pseudo-complemented
ADL A.

Corollary 3.9. Let A be an ADL and ∗ a psuedo- complimentation on A.
For any a ∈ A, define

θa = {(x, y) ∈ A× A : a ∧ x = a ∧ y}

Then θa is a congruence on the pseudo-complemented ADL A. Moreover
θa = ∆A if and only if a is maximal.

Proof. This follows from the fact that θa = θ[a).

Definition 3.10. Let A be an ADL and a ∈ A. Define

θa = {(x, y) ∈ A× A : a ∨ x = a ∨ y}

From [8], it follows that θa is a congruence on the ADL A for any a ∈ A.
However, if A is pseudo-complemented, then θa may not be a congruence on
the pseudo-complemented ADL A, that is, θa may not be compatible with a
pseudo-complementation ∗. For, consider the following.
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Example 3.11. Let A be the set of all open subsets of the real number
system with the usual topology. Then A is an ADL (infact, it is a lattice)
under the set operations ∩ and ∪. Also, A is pseudo-complemented, where,
for any X in A, X∗ is the interior of the complement of X. Now, consider

P = R− Z, Q = (0, 1) and S = (1, 2).

Then P,Q and S ∈ A and P∪Q = P∪S and therefore (Q,S) ∈ θP . However,
(Q∗, S∗) /∈ θP , since

Q∗ = (−∞, 0) ∪ (1,∞) and S∗ = (−∞, 1) ∪ (2,∞)

and P ∪Q∗ ̸= P ∪ S∗ ( for 2 ∈ P ∪Q∗ and 2 /∈ P ∪ S∗)

Theorem 3.12. Let A be an ADL with a pseudo- complimentation ∗. If θa is
compatible with ∗ for all a ∈ A, then A is a Stone ADL (that is, a∗∨a∗∗ = 0∗

for all a ∈ A [10]).

Proof. Let a ∈ A. Now a∗∗ ∨ 0 = a∗∗ ∨ a∗∗ and hence (0, a∗∗) ∈ θa
∗∗
. If θa

∗∗

is compatible with ∗, then (0∗, a∗∗∗) ∈ θa
∗∗
; therefore,

a∗∗ ∨ 0∗ = a∗∗ ∨ a∗∗∗ = a∗∗ ∨ a∗

and hence a∗ ∨ a∗∗ = 0∗ ( note that x∗ ≤ 0∗ for all x ∈ A).

Remark 3.13. The converse of the above theorem is false. Let A = [0, 1],
the closed unit interval of real numbers where ∧ and ∨ are the minimum and
maximum operations. Then A is a Stone ADL (infact a lattice), where 0∗ = 1
and a∗ = 0 for all a ̸= 0. Take a = 0.5. Then (0, a) ∈ θa; but (0∗, a∗) /∈ θa

(since 1 = a ∨ 1 = a ∨ 0∗ and a ∨ a∗ = a ∨ 0 = a ̸= a ∨ 0∗).

Theorem 3.14. Let A be an ADL and ∗ a pseudo- complimentation on A.
Then for any a ∈ A,

∼a= {(x, y) ∈ A× A : x ∧ y = y, y ∧ x = x and a ∨ x = a ∨ y}

is a congruence on the pseudo-complemented ADL A. Moreover ∼a= ∆A if
and only if a is the zero element of A.

Proof. Clearly ∼a= ∼ ∩θa and hence ∼a is compatible with ∨ and ∧ on
A. Further we prove that ∼a is compatible with ∗. Let (x, y) ∈ ∼a. Then
x∧y = y, y∧x = x and a∨x = a∨y. Then x∗ = (x∨y)∗ = (y∨x)∗ = y∗ and
hence (x∗, y∗) ∈ ∼a. Thus ∼a is a congruence on the pseudo-complemented
ADL A.
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4 Subdirectly irreducible pseudo-complemented

ADLs

Let us recall that a non-trivial algebra L (containing more than one element)
is called subdirectly irreducible if the intersection of any family of non-zero
congruences is again non-zero; or equivalently C(L), the lattice of all congru-
ence relations on A has smallest non-zero congruence. Here we characterize
subdirectly irreducible pseudo-complemented ADL’s.

We first characterize subdirectly irreducible discrete ADL.

Theorem 4.1. Let A be a discrete ADL. Suppose that A is subdirectly irre-
ducible as a pseudo-complemented ADL. Then |A| ≤ 3.

Proof. Let A be a discrete ADL with more than three elements. Let x, y, z
be three distinct elements in A− {0}. Define

θ = {(a, b) ∈ A× A : either a = b or a, b ∈ {x, y}}

and ϕ = {(a, b) ∈ A× A : either a = b or a, b ∈ {x, z}}

Then θ and ϕ are congruence relations on the pseudo-complemented ADL
A. Since (x, y) ∈ θ and (x, z) ∈ ϕ, we have θ ̸= ∆A and ϕ ̸= ∆A and
also θ ∩ ϕ = ∆A. Therefore A is not subdirectly irreducible, which is a
contradiction. Thus A has atmost three elements.

Finally in the following theorem we find all the subdirectly irreducible
pseudo-complemented ADL’s.

Theorem 4.2. Let (A,∨,∧, 0) be any subdirectly irreducible pseudo-
complemented ADL. Then A is discrete .

Proof. Suppose that A is a subdirectly irreducible pseudo-complemented
ADL. Then there exists smallest non-zero congruence on the pseudo-comple-
mented ADL A, say φ. Choose x, y ∈ A such that x ̸= y and (x, y) ∈ φ.
Then we prove that atleast one of x and y is maximal. Assume that both x
and y are not maximal. Then by the Corollary 3.9, θx ̸= ∆A ̸= θy, so that
(x, y) ∈ θx ∩ θy. Hence x = x∧ x = x∧ y and y = y ∧ y = y ∧ x This implies
that x = y which is a contradiction. Therefore without loss of generality we
may assume that x is maximal. Now, we prove that every non-zero element
in A is maximal. Let 0 ̸= a ∈ A. Suppose if possible a is not maximal. Since
x is maximal, x ∧ a = a so that a ∧ x is a non zero element in A (other-
wise, a ∧ x = 0 ⇒ x ∧ a = 0 ⇒ a = 0). Therefore, by the Theorem 3.14,
∼a∧x ̸= ∆A. Also, since a is not maximal, by the Corollary 3.9, θa ̸= ∆A and
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hence θa∩ ∼a∧x ̸= ∆A. Therefore φ ⊆ θa∩ ∼a∧x and hence (x, y) ∈ θa∩ ∼a∧x.
Now, x = (a∧x)∨x = (a∧x)∨ y = (a∧ y)∨ y = y which is a contradiction.
Thus a is maximal and hence A is discrete.

The following is an immediate consequence of the above two results.

Theorem 4.3. A pseudo-complemented ADL is subdirectly irreducible if and
only if it is discrete and has atmost three elements.
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