SUBDIRECTLY IRREDUCIBLE PSEUDO-COMPLEMENTED ADL'S

Ch. Santhi Sundar Raj^{*}, Maddu Santhi Department of Engineering Mathematics, Andhra University Visakhapatnam- 530 003, A.P., India. *santhisundarraj@yahoo.com*

K. Ramanuja Rao

Department of Mathematics, Fiji National University Lautoka, P.O.Box 5529, FIJI. ramanuja.kotti@fnu.ac.fj

Abstract

We introduce the concept of congruence on pseudo-complemented ADL's and study on certain properties of these. Mainly, in this paper all subdirectly irreducible pseudo-complemented ADL's are characterized.

AMS Subject Classification: 06D99

Key words: Almost Distributive Lattice (ADL); associative ADL; pseudo-complementation; congruence on pseudo-complemented ADL; subdirectly irreducible ADL.

1 Introduction

In [4], W.H. Cornish defined a congruence Θ on a pseudo-complemented distributive lattice $(L, \lor, \land, *, 0, 1)$ as a congruence on the lattice $(L, \lor, \land, 0, 1)$ which is also compatible with the unary operation * and called such a congruence as a *-congruence. The concept of an Almost Distributive Lattice

^{*}Corresponding author

(ADL) was introduced by Swamy and Rao [8] as a common abstraction of several lattice theoretic and ring theoretic generalizations of Boolean algebra and Boolean rings. Swamy, Rao and Rao [9] have introduced the notion of pseudo-complementation on an ADL and proved that the class of pseudo-complemented ADL's is equationally definable. It was observed that an ADL can have more than one pseudo-complementation. In this paper we prove that the compatible property for a pseudo-complementation * on an ADL A is independent of any pseudo-complementation on A. In the sense that if Θ is a congruence on an ADL A and *, + are pseudo-complementations on A, then $(a^*, b^*) \in \Theta$ if and only if $(a^+, b^+) \in \Theta$ for all $a, b \in A$. With is motivation, we introduce the concept of congruence on a pseudo-complemented ADL A. The main purpose of this paper is to characterize subdirectly irreducible pseudo-complemented ADL's. In particular we characterize subdirectly irreducible discrete ADL.

2 Preliminaries

We first recall certain elementary definitions and results concerning Almost Distributive Lattices. These are collected from [8] and [9].

Definition 2.1. An algebra $A = (A, \land, \lor, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following identities

- (1). $0 \wedge a = 0$
- (2). $a \lor 0 = a$
- (3). $a \land (b \lor c) = (a \land b) \lor (a \land c)$
- (4). $(a \lor b) \land c = (a \land c) \lor (b \land c)$
- (5). $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- (6). $(a \lor b) \land b = b$.

Any distributive lattice bounded below is an ADL, where 0 is the smallest element. Also, a commutative regular ring (R, +, ., 0, 1) with unity can be made into an ADL by defining the operations \wedge and \vee on R by

$$a \wedge b = a_0 b$$
 and $a \vee b = a + b - a_0 b$,

where, for any $a \in R$, a_0 is the unique idempotent in R such that $aR = a_0R$ and 0 is the additive identity in R. Further any nonempty set X can be made into an ADL by fixing an arbitrarily choosen element 0 in X and by defining the operations \land and \lor on X by

$$a \wedge b = \begin{cases} 0, & \text{if } a = 0\\ b, & \text{if } a \neq 0 \end{cases} \text{ and } a \vee b = \begin{cases} b, & \text{if } a = 0\\ a, & \text{if } a \neq 0. \end{cases}$$

This ADL $(X, \wedge, \vee, 0)$ is called a discrete ADL. An ADL A is said to be associative ADL if the operation \vee on A is associative. Through out this paper, by an ADL we always mean an associative ADL only.

Definition 2.2. Let A be an ADL. For any a and $b \in A$, define

 $a \leq b$ if and only if $a = a \wedge b$ (this is equivalent to $a \vee b = b$).

Then \leq is a partial order on A.

Theorem 2.3. The following hold for any a, b and c in an ADL A.

- (1). $a \wedge 0 = 0 = 0 \wedge a \text{ and } a \vee 0 = a = 0 \vee a$
- (2). $a \wedge a = a = a \vee a$
- (3). $a \wedge b \leq b \leq b \vee a$
- (4). $a \wedge b = a \Leftrightarrow a \vee b = b$
- (5). $a \wedge b = b \Leftrightarrow a \vee b = a$
- (6). $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ (i.e., \wedge is associative)
- (7). $a \lor (b \lor a) = a \lor b$
- (8). $a \leq b \Rightarrow a \land b = a = b \land a \iff a \lor b = b = b \lor a$
- (9). $(a \wedge b) \wedge c = (b \wedge a) \wedge c$
- (10). $(a \lor b) \land c = (b \lor a) \land c$
- (11). $a \wedge b = b \wedge a \Leftrightarrow a \vee b = b \vee a$
- (12). $a \wedge b = \inf\{a, b\} \Leftrightarrow a \wedge b = b \wedge a \Leftrightarrow a \vee b = \sup\{a, b\}.$

An element $m \in A$ is said to be maximal if $m \leq x$ implies m = x. It can be easily observed that m is maximal if and only if $m \wedge x = x$ for all $x \in A$. A non-empty subset I of A is called an ideal (filter) of A if $a \lor b \in I$ ($a \land b \in I$) and $a \land x \in I$ ($x \lor a \in I$) whenever $a, b \in I$ and $x \in A$. For any $a \in A$, (a] = { $a \land x : x \in A$ } is the principal ideal generated by aand [a) = { $x \lor a : x \in A$ } is the principal filter generated by a. **Definition 2.4.** An equivalence relation θ on an ADL A is called a congruence if θ is compatible with \wedge and \vee , in the sense that, for any $a, b, c, d \in A$, (a, b) and $(c, d) \in \theta$ implies $(a \wedge c, b \wedge d) \in \theta$ and $(a \vee c, b \vee d) \in \theta$. We denote the zero congruence on A by Δ_A . That is $\Delta_A = \{(x, y) \in A \times A : x = y\}$

Definition 2.5. Let A be an ADL. A mapping $a \mapsto a^*$ of A into itself is called a pseudo-complementation on A if the following conditions are satisfied for any a and $b \in A$.

- (1) $a \wedge a^* = 0$
- $(2) \ a \wedge b = 0 \Rightarrow a^* \wedge b = b$
- (3) $(a \lor b)^* = a^* \land b^*$

An ADL with a pseudo-complementation is called a pseudo-complemented ADL.

Example 2.6. Let X be a discrete ADL and, for any arbitrarily fixed $x \neq 0$ in X, define the unary operation * on X by

$$a^* = \begin{cases} 0, & \text{if } a \neq 0 \\ x, & \text{if } a = 0 \end{cases}$$

Then * is a pseudo complementation on X. Here, with each $x \neq 0$ in X, we obtain a pseudo complementation on X.

Theorem 2.7. Let * be a pseudo complementation on an ADL A. Then the following hold for any a and $b \in A$.

- (1) 0^* is a maximal element in A.
- (2) $m^* = o$ for all maximal elements m.
- $(3) 0^{**} = 0$
- (4) $a^* \leq 0^*$
- (5) $a^* \wedge a = 0$ (In fact, $a \wedge b = 0 \Leftrightarrow b \wedge a = 0$)
- (6) $a^{**} \wedge a = a$
- (7) $a^{***} = a^*$
- $(8) \ a \leq b \Rightarrow b^* \leq a^*$

- (9) $a^* \wedge b^* = b^* \wedge a^*$ and $a^* \vee b^* = b^* \vee a^*$
- $(10) \ a \wedge b = 0 \Leftrightarrow a^{**} \wedge b = 0 \Leftrightarrow a \wedge b^{**} = 0 \Leftrightarrow a^{**} \wedge b^{**} = 0$
- (11) $(a \wedge b)^* = (b \wedge a)^*$ and $(a \vee b)^* = (b \vee a)^*$
- (12) $a^* \wedge b = (a \wedge b)^* \wedge b$
- (13) $(a \wedge b)^{**} = a^{**} \wedge b^{**} = b^{**} \wedge a^{**}.$

Theorem 2.8. Let * and + be two pseudo-complementations on an ADL A. Then the following hold for any a and $b \in A$.

- (1) $a^* \wedge a^+ = a^+$
- (2) $a^{*+} = a^{++}$
- (3) $a^* \wedge 0^+ = a^+$

$$(4) \ a^* = b^* \Leftrightarrow a^+ = b^+$$

(5)
$$a^* = 0 \Leftrightarrow a^+ = 0$$

(6) $a^* \vee a^{**} = 0^* \Leftrightarrow a^+ \vee a^{++} = 0^+$

3 Congruences on pseudo-complemented ADLs

In this section, we introduce the concept of congruence on a pseudocomplemented ADL A by considering any pseudo- complementation on A as one of the fundamental operations on the algebra A.

Before going to the main text we prove an important lemma which shows that the compatible property for a pseudo-complementation * on A is independent of any pseudo-complementations on A.

Lemma 3.1. Let θ be a congruence relation on an ADL A and *,+ be pseudocomplementations on A. Then θ is compatible with * if and only if it is so with +.

Proof. For any $a \in A$ we have that

$$a^* = a^+ \wedge 0^*$$
 and $a^+ = a^* \wedge 0^+$ (from Theorem 2.8(3))

Suppose θ is compatible with *. Then,

$$\begin{aligned} (a,b) \in \theta &\Rightarrow (a^*,b^*) \in \theta \\ &\Rightarrow (a^* \wedge 0^+, b^* \wedge 0^+) \in \theta \\ &\Rightarrow (a^+,b^+) \in \theta \end{aligned}$$

Therefore θ is compatible with +. Converse is similar.

Definition 3.2. An equivalence relation θ is said to be a congruence on a pseudo-complemented ADL A if θ is compatible with \lor , \land and any pseudo-complementation on A.

In the following we give different examples of congruences on pseudocomplemented ADL's.

Example 3.3. Let D be a discrete ADL with more than two elements and define

$$\Phi = \{(a, b) \in D \times D : a = 0 = b \text{ or both } a \neq 0 \text{ and } b \neq 0\}.$$

Then Φ is a non-zero congruence on the pseudo-complemented ADL D.

Example 3.4. Let *D* be discrete ADL with more then three elements. Let $0 \neq x \in D$. Define

$$\Theta = \{ (a, b) \in D \times D : a = b \text{ or } a, b \in D - \{0, x\} \}$$

Then Θ is a non-zero congruence on the pseudo-complemented ADL D.

Theorem 3.5. Let A be an ADL and * a pseudo-complementation on A. Define

$$\sim = \{(a, b) \in A \times A : a \wedge b = b and b \wedge a = a\}.$$

Then \sim is a congruence on the pseudo-complemented ADL A.

Proof. It is easy to prove that \sim is reflexive and symmetric. Let $(a, b), (b, c) \in \sim$. Then $a \wedge b = b$ and $b \wedge a = a, b \wedge c = c$ and $c \wedge b = b$. Now, $a \wedge c = b \wedge a \wedge c = a \wedge b \wedge c = b \wedge c = c$ and

 $c \wedge a = b \wedge c \wedge a = c \wedge b \wedge a = b \wedge a = a.$

Therefore $(a, c) \in \sim$ and hence \sim is an equivalence relation on A. Let $(a, b), (c, d) \in \sim$. Then $a \wedge b = b, b \wedge a = a, c \wedge d = d$ and $d \wedge c = c$. Now, $(a \wedge c) \wedge (b \wedge d) = a \wedge c \wedge b \wedge d = a \wedge b \wedge c \wedge d = b \wedge d$.

Similarly, $(b \wedge d) \wedge (a \wedge c) = a \wedge c$. Therefore $(a \wedge c, b \wedge d) \in \sim$.

Now,
$$(a \lor c) \land (b \lor d) = ((a \lor c) \land b) \lor ((a \lor c) \land d)$$

= $((a \land b) \lor (c \land b)) \lor ((a \land d) \lor (c \land d))$
= $(b \lor (c \land b)) \lor ((a \land d) \lor d)$
= $b \lor d$

and similarly, $(b \lor d) \land (a \lor c) = a \lor c$. Therefore $(a \lor c, b \lor d) \in \sim$. Let $(a, b) \in \sim$. Then $a \land b = b$ and $b \land a = a$ and hence $a \lor b = a$ and $b \lor a = b$. Now, $a^* \land b^* = (a \lor b)^* = (b \lor a)^* = b^*$ and $b^* \land a^* = (b \lor a)^* = (a \lor b)^* = a^*$. Therefore $(a^*, b^*) \in \sim$. Hence \sim is a congruence on the pseudo-complemented ADL A. **Theorem 3.6.** Let A be an ADL and * a pseudo-complementation on A. For any nonempty subset I of A such that $x \lor y \in I$ for all $x, y \in I$, define

$$\Theta(I) = \{(a, b) \in A \times A : a \land x^* = b \land x^* \text{ for some } x \in I\}$$

Then, $\Theta(I)$ is a congruence on the pseudo-complemented ADL A.

Proof. Clearly $\Theta(I)$ is reflexive and symmetric. Let $(a, b), (b, c) \in \Theta(I)$. Then $a \wedge x^* = b \wedge x^*$ and $b \wedge y^* = c \wedge y^*$ for some $x, y \in I$. Now, $a \wedge (x \vee y)^* = a \wedge x^* \wedge y^* = b \wedge x^* \wedge y^* = x^* \wedge b \wedge y^* = x^* \wedge c \wedge y^* = c \wedge x^* \wedge y^* = c \wedge (x \vee y)^*$ and $x \vee y \in I$. Therefore $(a, c) \in \Theta(I)$ and hence $\Theta(I)$ is an equivalence relation on A. Let (a, b) and $(c, d) \in \Theta(I)$. Then $a \wedge x^* = b \wedge x^*$ and $c \wedge y^* = d \wedge y^*$ for some $x, y \in I$.

Now
$$(a \wedge c) \wedge (x \vee y)^* = (a \wedge c) \wedge x^* \wedge y^*$$

$$= a \wedge x^* \wedge c \wedge y^*$$

$$= b \wedge x^* \wedge d \wedge y^*$$

$$= b \wedge d \wedge x^* \wedge y^*$$

$$= (b \wedge d) \wedge (x \vee y)^*$$
and $(a \vee c) \wedge (x \vee y)^* = (a \vee c) \wedge (x^* \wedge y^*)$

$$= (a \wedge x^* \wedge y^*) \vee (c \wedge x^* \wedge y^*)$$

$$= (b \wedge x^* \wedge y^*) \vee (x^* \wedge c \wedge y^*)$$

$$= (b \wedge x^* \wedge y^*) \vee (d \wedge x^* \wedge y^*)$$

$$= (b \vee d) \wedge (x^* \wedge y^*)$$

$$= (b \vee d) \wedge (x \vee y)^*.$$

Therefore $(a \wedge c, b \wedge d)$ and $(a \vee c, b \vee d) \in \Theta(I)$. Thus $\Theta(I)$ is a congruence relation on the ADL A. Again let $(a, b) \in \Theta(I)$. Then $a \wedge x^* = b \wedge x^*$ for some $x \in I$.

Now, $a^* \wedge x^* = (a \wedge x^*)^* \wedge x^*$ (by 2.7(12)) $= (b \wedge x^*)^* \wedge x^* = b^* \wedge x^*$. Therefore $(a^*, b^*) \in \Theta(I)$ and hence $\Theta(I)$ is a congruence on pseudo-complemented ADL A.

Theorem 3.7. Let A be an ADL and * a pseudo-complementation on A. For any nonempty subset F of A such that $x \land y \in F$ for all $x, y \in F$, define

$$\psi(F) = \{(x, y) \in A \times A : x \wedge a^{**} = y \wedge a^{**} \text{ for some } a \in F\}$$

Then, $\psi(F)$ is a congruence on the pseudo-complemented ADL A.

Proof. This is similar to above.

Theorem 3.8. Let A be an ADL and * a psuedo- complementation on A and F be a filter of A, define

$$\theta_F = \{(a, b) \in A \times A : x \land a = x \land b \text{ for some } x \in F\}.$$

Then θ_F is a congruence on the pseudo-complemented ADL A.

Proof. It is easy to prove that θ_F is reflexive and symmetric. Let $(a, b), (b, c) \in \theta_F$. Then $x \wedge a = x \wedge b$ and $y \wedge b = y \wedge c$, for some $x, y \in F$. Then $x \wedge y \in F$ and $x \wedge y \wedge a = y \wedge x \wedge a = y \wedge x \wedge b = x \wedge y \wedge b = x \wedge y \wedge c$. Therefore $(a,c) \in \theta_F$ and hence θ_F is an equivalence relation on A. Let $(a,b), (c,d) \in \theta_F$. Then $x \wedge a = x \wedge b$ and $y \wedge c = y \wedge d$ for some $x, y \in F$. Now, $x \wedge y \wedge a \wedge c = x \wedge a \wedge y \wedge c = x \wedge b \wedge y \wedge d = x \wedge y \wedge b \wedge d$ and

$$\begin{aligned} x \wedge y \wedge (a \lor c) &= (x \wedge y \wedge a) \lor (x \wedge y \wedge c) \\ &= (y \wedge x \wedge a) \lor (x \wedge y \wedge d) \\ &= (y \wedge x \wedge b) \lor (x \wedge y \wedge d) \\ &= ((x \wedge y) \wedge b) \lor ((x \wedge y) \wedge d) \\ &= (x \wedge y) \wedge (b \lor d). \end{aligned}$$

Therefore $(a \land c, b \land d)$ and $(a \lor c, b \lor d) \in \theta_F$. Finally $(a,b) \in \theta_F \Rightarrow x \land a = x \land b$ for some $x \in F \Rightarrow x \land b \land a^* = 0 \Rightarrow b \land x \land a^* =$ $0 \Rightarrow b^* \land x \land a^* = x \land a^* \Rightarrow x \land b^* \land a^* = x \land a^* \land b^* = x \land a^*(\because a^*, b^* < 0^*)$ Similarly, we can obtain that $x \wedge a^* \wedge b^* = x \wedge b^*$ and hence $x \wedge a^* = x \wedge b^*$. Therefore $(a^*, b^*) \in \theta_F$. Thus θ_F is a congruence on the pseudo-complemented ADL A.

Corollary 3.9. Let A be an ADL and * a psuedo- complementation on A. For any $a \in A$, define

$$\theta_a = \{ (x, y) \in A \times A : a \land x = a \land y \}$$

Then θ_a is a congruence on the pseudo-complemented ADL A. Moreover $\theta_a = \Delta_A$ if and only if a is maximal.

Proof. This follows from the fact that $\theta_a = \theta_{[a]}$.

Definition 3.10. Let A be an ADL and $a \in A$. Define

$$\theta^a = \{(x, y) \in A \times A : a \lor x = a \lor y\}$$

From [8], it follows that θ^a is a congruence on the ADL A for any $a \in A$. However, if A is pseudo-complemented, then θ^a may not be a congruence on the pseudo-complemented ADL A, that is, θ^a may not be compatible with a pseudo-complementation *. For, consider the following.

Example 3.11. Let A be the set of all open subsets of the real number system with the usual topology. Then A is an ADL (infact, it is a lattice) under the set operations \cap and \cup . Also, A is pseudo-complemented, where, for any X in A, X^{*} is the interior of the complement of X. Now, consider

$$P = \mathbb{R} - \mathbb{Z}, \ Q = (0, 1) \text{ and } S = (1, 2).$$

Then P, Q and $S \in A$ and $P \cup Q = P \cup S$ and therefore $(Q, S) \in \theta^P$. However, $(Q^*, S^*) \notin \theta^P$, since

$$Q^* = (-\infty, 0) \cup (1, \infty)$$
 and $S^* = (-\infty, 1) \cup (2, \infty)$
and $P \cup Q^* \neq P \cup S^*$ (for $2 \in P \cup Q^*$ and $2 \notin P \cup S^*$)

Theorem 3.12. Let A be an ADL with a pseudo- complimentation *. If θ^a is compatible with * for all $a \in A$, then A is a Stone ADL (that is, $a^* \lor a^{**} = 0^*$ for all $a \in A$ [10]).

Proof. Let $a \in A$. Now $a^{**} \vee 0 = a^{**} \vee a^{**}$ and hence $(0, a^{**}) \in \theta^{a^{**}}$. If $\theta^{a^{**}}$ is compatible with *, then $(0^*, a^{***}) \in \theta^{a^{**}}$; therefore,

$$a^{**} \lor 0^* = a^{**} \lor a^{***} = a^{**} \lor a^*$$

and hence $a^* \vee a^{**} = 0^*$ (note that $x^* \leq 0^*$ for all $x \in A$).

Remark 3.13. The converse of the above theorem is false. Let A = [0, 1], the closed unit interval of real numbers where \wedge and \vee are the minimum and maximum operations. Then A is a Stone ADL (infact a lattice), where $0^* = 1$ and $a^* = 0$ for all $a \neq 0$. Take a = 0.5. Then $(0, a) \in \theta^a$; but $(0^*, a^*) \notin \theta^a$ (since $1 = a \vee 1 = a \vee 0^*$ and $a \vee a^* = a \vee 0 = a \neq a \vee 0^*$).

Theorem 3.14. Let A be an ADL and * a pseudo- complimentation on A. Then for any $a \in A$,

$$\sim_a = \{ (x, y) \in A \times A : x \land y = y, \ y \land x = x \ and \ a \lor x = a \lor y \}$$

is a congruence on the pseudo-complemented ADL A. Moreover $\sim_a = \Delta_A$ if and only if a is the zero element of A.

Proof. Clearly $\sim_a = \sim \cap \theta^a$ and hence \sim_a is compatible with \lor and \land on A. Further we prove that \sim_a is compatible with *. Let $(x, y) \in \sim_a$. Then $x \land y = y, \ y \land x = x$ and $a \lor x = a \lor y$. Then $x^* = (x \lor y)^* = (y \lor x)^* = y^*$ and hence $(x^*, y^*) \in \sim_a$. Thus \sim_a is a congruence on the pseudo-complemented ADL A.

4 Subdirectly irreducible pseudo-complemented ADLs

Let us recall that a non-trivial algebra L (containing more than one element) is called subdirectly irreducible if the intersection of any family of non-zero congruences is again non-zero; or equivalently C(L), the lattice of all congruence relations on A has smallest non-zero congruence. Here we characterize subdirectly irreducible pseudo-complemented ADL's.

We first characterize subdirectly irreducible discrete ADL.

Theorem 4.1. Let A be a discrete ADL. Suppose that A is subdirectly irreducible as a pseudo-complemented ADL. Then $|A| \leq 3$.

Proof. Let A be a discrete ADL with more than three elements. Let x, y, z be three distinct elements in $A - \{0\}$. Define

 $\theta = \{(a, b) \in A \times A : \text{ either } a = b \text{ or } a, b \in \{x, y\}\}$

and $\phi = \{(a, b) \in A \times A : \text{ either } a = b \text{ or } a, b \in \{x, z\}\}$

Then θ and ϕ are congruence relations on the pseudo-complemented ADL *A*. Since $(x, y) \in \theta$ and $(x, z) \in \phi$, we have $\theta \neq \Delta_A$ and $\phi \neq \Delta_A$ and also $\theta \cap \phi = \Delta_A$. Therefore *A* is not subdirectly irreducible, which is a contradiction. Thus *A* has at most three elements. \Box

Finally in the following theorem we find all the subdirectly irreducible pseudo-complemented ADL's.

Theorem 4.2. Let $(A, \lor, \land, 0)$ be any subdirectly irreducible pseudocomplemented ADL. Then A is discrete.

Proof. Suppose that A is a subdirectly irreducible pseudo-complemented ADL. Then there exists smallest non-zero congruence on the pseudo-complemented ADL A, say φ . Choose $x, y \in A$ such that $x \neq y$ and $(x, y) \in \varphi$. Then we prove that atleast one of x and y is maximal. Assume that both x and y are not maximal. Then by the Corollary 3.9, $\theta_x \neq \Delta_A \neq \theta_y$, so that $(x, y) \in \theta_x \cap \theta_y$. Hence $x = x \wedge x = x \wedge y$ and $y = y \wedge y = y \wedge x$ This implies that x = y which is a contradiction. Therefore without loss of generality we may assume that x is maximal. Now, we prove that every non-zero element in A is maximal. Let $0 \neq a \in A$. Suppose if possible a is not maximal. Since x is maximal, $x \wedge a = a$ so that $a \wedge x$ is a non zero element in A (otherwise, $a \wedge x = 0 \Rightarrow x \wedge a = 0 \Rightarrow a = 0$). Therefore, by the Theorem 3.14, $\sim_{a \wedge x} \neq \Delta_A$. Also, since a is not maximal, by the Corollary 3.9, $\theta_a \neq \Delta_A$ and

hence $\theta_a \cap \sim_{a \wedge x} \neq \Delta_A$. Therefore $\varphi \subseteq \theta_a \cap \sim_{a \wedge x}$ and hence $(x, y) \in \theta_a \cap \sim_{a \wedge x}$. Now, $x = (a \wedge x) \lor x = (a \wedge x) \lor y = (a \wedge y) \lor y = y$ which is a contradiction. Thus *a* is maximal and hence *A* is discrete.

The following is an immediate consequence of the above two results.

Theorem 4.3. A pseudo-complemented ADL is subdirectly irreducible if and only if it is discrete and has atmost three elements.

References

- G. Birkhoff, Lattice Theory, Vol. 25 Amer. Math. Soc., Colluquim Publications, 1967.
- [2] T. S. Blyth, Ideals and filters of pseudo-complemented semilattices, Proc. Edinburgh Math. Soc. 23 (1980) 301-316.
- [3] S. Burris and H. P. Sankappanavar, A course in Universal algebra, Springer - Verlag, Newyork, 1980.
- [4] W. H. Cornish, Congruences on distributive pseudo-complemented lattices, Bull. Austral. Math. Soc. 8 (1973) 161-179.
- [5] O. Frink, Pseudo-complementes in semilattices, *Duke Math. J.*, Vol. 29 (1961), 505 -514.
- [6] G. C. Rao and M. Sambasivarao, Annihilator Ideals in Almost Distributive Lattices, *International Mathematical Forum*, Vol. 4 (2009), no 15, 733-746.
- [7] Ch. Santhi Sundar Raj, B. Venkateswarlu and R. Vasu Babu, The Stonity of a pseudo-complemented ADL, Asian-European Journal of Mathematics., Vol. 7, No. 3(2014).
- [8] U. M. Swamy and G. C. Rao, Almost Distributive Lattices, J. Australian Math. Soc., (Series A), Vol. 31 (1981), 77- 91.
- [9] U. M. Swamy, G. C. Rao and G. N. Rao, Pseudo complementation on Almost Distributive Lattices, *Southeast Asian Bull. Math.*, Vol. 24 (2000), 95-104.
- [10] U. M. Swamy, G.C. Rao and G.N. Rao, Stone Almost Distributive Lattices, Southeast Asian Bulletin of Mathematics, Vol.27(2003), 513-526.